
118 Applied Numerical Linear Algebra

b
Aw

2

Aw Aw

b=Ax

b

Ax

r=Ax-b

Ax=0

k_LS = 2k(A) k_LS = infinity

!=0 ! !="/2

k_LS = O(k(A))

An alternative form for the bound in Theorem 3.4 that eliminates the O(ε2)
term is as follows [256, 147] (here r̃ is the perturbed residual r̃ = (b + δb) −
(A + δA)x̃):

‖x̃ − x‖2

‖x‖2
≤ εκ2(A)

1 − εκ2(A)

(
2 + (κ2(A) + 1)

‖r‖2

‖A‖2‖x‖2

)
,

‖r̃ − r‖2

‖r‖2
≤ (1 + 2εκ2(A)).

We will see that, properly implemented, both the QR decomposition and
SVD are numerically stable; i.e., they yield a solution x̃ minimizing ‖(A +
δA)x̃ − (b + δb)‖2 with

max
(

‖δA‖
‖A‖ ,

‖δb‖
‖b‖

)
= O(ε).

We may combine this with the above perturbation bounds to get error bounds
for the solution of the least squares problem, much as we did for linear equation
solving.

The normal equations are not as accurate. Since they involve solving
(AT A)x = AT b, the accuracy depends on the condition number κ2(AT A) =
κ2

2(A). Thus the error is always bounded by on κ2
2(A)ε, never just κ2(A)ε.

Therefore we expect that the normal equations can lose twice as many digits
of accuracy as methods based on the QR decomposition and SVD.

Furthermore, solving the normal equations is not necessarily stable; i.e.,
the computed solution x̃ does not generally minimize ‖(A + δA)x̃ − (b + δb)‖2
for small δA and δb. Still, when the condition number is small, we expect
the normal equations to be about as accurate as the QR decomposition or
SVD. Since the normal equations are the fastest way to solve the least squares
problem, they are the method of choice when the matrix is well-conditioned.

We return to the problem of solving very ill-conditioned least squares prob-
lems in section 3.5.

3.4. Orthogonal Matrices

As we said in section 3.2.2, Gram–Schmidt orthogonalization (Algorithm 3.1)
may not compute an orthogonal matrix Q when the vectors being orthogonal-

Linear Least Squares Problems 119

ized are nearly linearly dependent, so we cannot use it to compute the QR
decomposition stably.

Instead, we base our algorithms on certain easily computable orthogonal
matrices called Householder reflections and Givens rotations, which we can
choose to introduce zeros into vectors that they multiply. Later we will show
that any algorithm that uses these orthogonal matrices to introduce zeros
is automatically stable. This error analysis will apply to our algorithms for
the QR decomposition as well as many SVD and eigenvalue algorithms in
Chapters 4 and 5.

Despite the possibility of nonorthogonal Q, the MGS algorithm has im-
portant uses in numerical linear algebra. (There is little use for its less stable
version, CGS.) These uses include finding eigenvectors of symmetric tridiagonal
matrices using bisection and inverse iteration (section 5.3.4) and the Arnoldi
and Lanczos algorithms for reducing a matrix to certain “condensed” forms
(sections 6.6.1, 6.6.6, and 7.4). Arnoldi and Lanczos are used as the basis of
algorithms for solving sparse linear systems and finding eigenvalues of sparse
matrices. MGS can also be modified to solve the least squares problem stably,
but Q may still be far from orthogonal [33].

3.4.1. Householder Transformations

A Householder transformation (or reflection) is a matrix of the form P =
I − 2uuT where ‖u‖2 = 1. It is easy to see that P = P T and PP T = (I −
2uuT)(I − 2uuT) = I − 4uuT + 4uuT uuT = I, so P is a symmetric, orthogonal
matrix. It is called a reflection because Px is reflection of x in the plane
through 0 perpendicular to u.

x

Px
0

u

Given a vector x, it is easy to find a Householder reflection P = I − 2uuT

to zero out all but the first entry of x: Px = [c, 0, . . . , 0]T = c · e1. We do
this as follows. Write Px = x − 2u(uT x) = c · e1 so that u = 1

2(uT x)(x − ce1);
i.e., u is a linear combination of x and e1. Since ‖x‖2 = ‖Px‖2 = |c|, u must
be parallel to the vector ũ = x ± ‖x‖2e1, and so u = ũ/‖ũ‖2. One can verify
that either choice of sign yields a u satisfying Px = ce1, as long as ũ = 0. We
will use ũ = x + sign(x1)e1, since this means that there is no cancellation in

120 Applied Numerical Linear Algebra

computing the first component of ũ. In summary, we get

ũ =





x1 + sign(x1) · ‖x‖2
x2
...

xn




with u =

ũ

‖ũ‖2
.

We write this as u = House(x). (In practice, we can store ũ instead of u to save
the work of computing u, and use the formula P = I − (2/‖ũ‖2

2)ũũT instead
of P = I − 2uuT .)

Example 3.5. We show how to compute the QR decomposition of a a 5-by-
4 matrix A using Householder transformations. This example will make the
pattern for general m-by-n matrices evident. In the matrices below, Pi is a
5-by-5 orthogonal matrix, x denotes a generic nonzero entry, and o denotes a
zero entry.

1. Choose P1 so A1 ≡ P1A =





x x x x
o x x x
o x x x
o x x x
o x x x




.

2. Choose P2 =
[

1 0
0 P ′

2

]
so A2 ≡ P2A1 =





x x x x
o x x x
o o x x
o o x x
o o x x




.

3. Choose P3 =




1

1
0

0 P ′
3



 so A3 ≡ P3A2 =





x x x x
o x x x
o o x x
o o o x
o o o x




.

4. Choose P4 =





1
1

1
0

0 P ′
4



 so A4 ≡ P4A3 =





x x x x
o x x x
o o x x
o o o x
o o o o




.

Here, we have chosen a Householder matrix P ′
i to zero out the subdiago-

nal entries in column i; this does not disturb the zeros already introduced in
previous columns.

Let us call the final 5-by-4 upper triangular matrix R̃ ≡ A4. Then A =
P T

1 P T
2 P T

3 P T
4 R̃ = QR, where Q is the first four columns of P T

1 P T
2 P T

3 P T
4 =

P1P2P3P4 (since all Pi are symmetric) and R is the first four rows of R̃. $

Linear Least Squares Problems 121

Here is the general algorithm for QR decomposition using Householder
transformations.

Algorithm 3.2. QR factorization using Householder reflections:

for i = 1 to n
ui = House(A(i : m, i))
Pi = I − 2uiuT

i
A(i : m, i : n) = PiA(i : m, i : n)

end for

Here are some more implementation details. We never need to form Pi

explicitly but just multiply

(I − 2uiu
T
i)A(i : m, i : n) = A(i : m, i : n) − 2ui(uT

i A(i : m, i : n)),

which costs less. To store Pi, we need only ui, or ũi and ‖ũi‖. These can
be stored in column i of A; in fact it need not be changed! Thus QR can be
“overwritten” on A, where Q is stored in factored form P1 · · · Pn−1, and Pi is
stored as ũi below the diagonal in column i of A. (We need an extra array of
length n for the top entry of ũi, since the diagonal entry is occupied by Rii.)

Recall that to solve the least squares problem min ‖Ax−b‖2 using A = QR,
we need to compute QT b. This is done as follows: QT b = PnPn−1 · · ·P1b, so
we need only keep multiplying b by P1, P2, . . . , Pn:

for i = 1 to n
γ = −2 · uT

i b
b = b + γui

end for

The cost is n dot products γ = −2 · uT
i b and n “saxpys” b + γui. The cost

of computing A = QR this way is 2n2m − 2
3n3, and the subsequent cost of

solving the least squares problem given QR is just an additional O(mn).
The LAPACK routine for solving the least squares problem using QR is

!"#$!. Just as Gaussian elimination can be reorganized to use matrix-matrix
multiplication and other Level 3 BLAS (see section 2.6), the same can be done
for the QR decomposition; see Question 3.17. In Matlab, if the m-by-n matrix
A has more rows than columns and b is m by 1, %&' solves the least squares
problem. The QR decomposition itself is also available via [Q,R]=qr(A).

3.4.2. Givens Rotations

A Givens rotation R(θ) ≡ [cos θ − sin θ
sin θ cos θ

] rotates any vector x ∈ R2 counter-
clockwise by θ:

