Name: Key

Mathematics 108A: Quiz I

July 1, 2008

Professor J. Douglas Moore

Part I. True-False. Circle the best answer to each of the following questions. Each question is worth 2 points.

1. The set of vectors

$$\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$$

is a (linear) subspace of \mathbb{R}^3 .

TRUE

FALSE

2. The set of vectors

$$\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 - 2x_2 + 3x_3 - 4x_4 = 5\}$$

is a subspace of \mathbb{R}^4 .

TRUE

FALSE

3. The set of vectors $(x_1,x_2,x_3,x_4,x_5) \in \mathbb{R}^5$ such that

$$3x_1 + 2x_2 + 7x_3 + x_4 - 2x_5 = 0,$$
 $x_1 + 2x_2 - 5x_3 + x_4 + 4x_5 = 0$

is a subspace of \mathbb{R}^4 .

FALSE

4 The set of vectors

$$\{\mathbf{x} \in \mathbb{C}^3 : \mathbf{x} = s(1,0,0) + t(0,i,\sqrt{2}) \text{ for some } s,t \in \mathbb{C} \ \}$$

is a subspace of \mathbb{C}^3 .

TRUE

FALSE

5. Let \mathbb{R}^{∞} be the set of infinite sequences $(x_1, x_2, \dots, x_i, \dots)$, where each x_i is a real number. The subset

$$W = \{ \mathbf{x} = (x_1, x_2, \dots, x_i, \dots) \in \mathbb{R}^{\infty} : x_2 = 2 \},$$

is a subspace of \mathbb{R}^{∞} .

TRUE

FALSE

6. Let $M_{m,n}(\mathbb{R})$ denote the space of $m \times n$ matrices over the complexes, regarded as a vector space over \mathbb{R} . Then

$$W = \{ A \in M_{2,2}(\mathbb{R}) : \det A \neq 0 \},$$

is a subspace of $M_{2,2}(\mathbb{R})$

TRUE

7. The set of integers \mathbb{Z} with the usual operations of addition and multiplication is not a field because not all elements have multiplicative inverses within \mathbb{Z} .

FALSE

8. Suppose that V is a vector space over $\mathbb C$ with addition

$$f: V \times V \to V$$
, $f(\mathbf{v}, \mathbf{w}) = \mathbf{v} + \mathbf{w}$

and multiplication

$$g: \mathbb{C} \times V \to V, \qquad g(a, \mathbf{v}) = a\mathbf{v}.$$

Since $\mathbb{R} \subset \mathbb{C}$, we can then define

$$h: \mathbb{R} \times V \to V, \qquad h(a, \mathbf{v}) = g(a, \mathbf{v}).$$

With the operations f and h, V is a vector space over \mathbb{R} .

FALSE

Part II. Give complete answers to each of the following questions.

1. (5 points) Give the definition of a subspace U of a vector space V over the field F

A subspace U of a vector space V is a subset

b. (10 points) Prove that if U and W are subspaces of V, then so is $U \cap W$.

- 1. Bell and BEW, so BEUNW.
- 2. If $\vec{x}, \vec{y} \in U \cap W$, then $\vec{z}, \vec{y} \in U$ and $\vec{x}, \vec{y} \in W$, so $\vec{z} + \vec{y} \in U$ and $\vec{z} + \vec{y} \in U \cap W$.
- 3. If a & F and \$\vec{x} \in U \cap W , then \$\vec{x} \in U \text{ and \$\vec{x} \in W}\$, so a\$\vec{x} \in U \text{ and } o\$\vec{x} \in W \text{ and hence a\$\vec{x} \in U \cap W\$.