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Mathematics 108A: Quiz 3
July 24, 2008
Professor J Douglas Moore

Part 1. True-False. Circle the best answer to each of the following questions.
Each question is worth 2 points.

1. The function T : R® — R? defined by

53 T
1
() = )26 4 ?) 2
T3 I3
is a linear map-
TRUE FALSE

2 Let R be the set of infinite sequences (zy,Z2,. ., &4, ..}, where each z; is
a real number The function T : R® — R™ defined by

T(xly:cZyISa"') = (1::61:'3:21:531' )
is a linear map

3 Let CP(R) = { continuous functions f : R — R }, a vector space over R with
addition and scalar multiplication defined by

(f+9)t) = f(£) + g(t), (af}(t) =a{f(t)), for ffgeV andaeR

Then )
T:C°(R) = R, defined by T(f)=5 / f(t)dt,
0

is a linear map.

s

4. Let A be an m x n matrix with real coefficients. The range of the linear map
Ta:R* — R™, defined by Ta(x) = Ax, is the space spanned by the rows of A.

TRUE FALS@



S -

8. Let V' = { infinitely differentiable functions 7 : R — R }, a vector space over
R, and if ¢ denotes the variable in the range, let

T:V — V be the linear map defined by T{f) = % +5f.
Then the null space of T is the space of solutions to the differential equation
df
P +5f = 0.

T

TRUE FALSE

Part I1. Give compiete answers to each of the following questions

1. (7 points) Find a basis for the null space of the lnear transformation T :
R® — B3, defined by
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2. (7 points) Suppose that T: V' — W is a linear transformation. Show that
NuliT)={veV: :T(v)=0}
is a {linear) subspace of V
— - L) D
i Ty = Tio+o ) = Tio)y+ Tio)
—

= E; = "\‘{5}) = O & Ned (7Y

v " -
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3. (7 points) Recall the basic lemma from Chapter 2 of the text by Axler:

Linear Dependence Lemma. Suppose that (vi,. .,vn) is & linearly depen-
dent list of vectors in a finite-dimensional vector space V' and that v, # 0. Then
there exists j € {2, ,m} such that v; € span{v;, .,v;.1) Moreover,

Span(vlv s Vi Vs, Vm) = Spa-n(vla i ‘,Vm)-

Use the Linear Dependence Lemma to prove the following:

Theorem. Every spanning list in a vector space V' can be reduced to a basis

Hint: The idea of the proof is to start with a spanning list end throw away
elements until you have a basis
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