Name: <u>Key</u>

Mathematics 108A: Quiz 4

August 5, 2008

Professor J Douglas Moore

Part I. True-False. Circle the best answer to each of the following questions Each question is worth 2 points.

1 Let $\beta = \{u_1, \dots u_n\}$ be a finite subset of a vector space V over a field F. Then β is a basis for V if and only if every element v of V can be uniquely expressed as a linear combination of elements of β

FALSE

2. Let \mathbb{R}^{∞} be the set of infinite sequences $(x_1, x_2, \dots, x_i, \dots)$, where each x_i is a real number. The linear map $T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ defined by

$$T(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots)$$

has a nonzero null space spanned by the vector $(1,0,0,\dots)$.

TRUE

FALSE

3 matrix A defines a linear map

$$T_A: \mathbb{R}^n \to \mathbb{R}^m$$
 by $T_A(\mathbf{x}) = A\mathbf{x}$.

The null space of this linear map is the space of solutions to the homogeneous linear system

$$a_{11}x_1 + a_{12}x_2 + a_{1n}x_n = 0,$$

$$a_{21}x_1 + a_{22}x_2 + a_{2n}x_n = 0,$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{mn}x_n = 0$$
(1)

FALSE

4. The range of the linear map T_A is the space of vectors $\mathbf{b}=(b_1,\ldots,b_m)$ in \mathbb{R}^m such that the linear system

$$\begin{array}{rcl} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = & b_1, \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = & b_2, \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n & = & b_m, \end{array}$$

has a solution

TRUE

FALSE

5. Suppose that $T: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation and

$$\operatorname{null}(T) = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 - 2x_4 = 0, x_3 + x_4 = 0\}$$

Then T must be surjective.

TRUE

Part II. Give complete answers to each of the following questions.

1. (7 points) Let $\mathcal{P}_2(\mathbb{R})$ denote the space of polynomials of degree two, with basis $\beta = (p_0, p_1, p_2)$, where

$$p_0(x) = 1$$
, $p_1(x) = x$, $p_2(x) = x^2$.

Suppose that $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ is the linear transformation defined by

$$T(p(x)) = \frac{dp}{dx}(x) - 7p(x).$$

What is the matrix $\mathcal{M}(T, \beta, \beta)$ of T with respect to this basis?

$$T(1) = -7 = (1 \times x^2) \begin{pmatrix} -7 \\ 0 \\ 0 \end{pmatrix}$$

$$T(x) = 1 - 7x = (1 \times x^2) \begin{pmatrix} 1 \\ -7 \\ 0 \end{pmatrix}$$

$$T(x^2) = 2x - 7x^2 = (1 \times x^2) \begin{pmatrix} 0 \\ 2 \\ -7 \end{pmatrix}$$

$$\mathcal{M}(T,\beta,\beta) = \begin{pmatrix} -7 & 1 & 0 \\ 0 & -7 & 2 \\ 0 & 0 & -7 \end{pmatrix}$$

2. (7 points) a. Complete the following sentence: A list of vectors $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ in V is linearly independent if and only if

$$a_1\overrightarrow{v_1}+\cdots+a_n\overrightarrow{v_n}=\overrightarrow{o}$$
 \Rightarrow $a_1=a_2=\cdots=a_n=o$

b. Suppose that $T: V \to W$ is an injective linear map, and that $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ is a linearly independent list of vectors in V. Prove that $(T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n))$ is a linearly independent list of vectors in W.

Hint: Start by assuming

Then
$$T(a_1\vec{V}_1) + \cdots + a_nT(v_n) = 0$$

Then $T(a_1\vec{V}_1 + \cdots + a_n\vec{V}_n) = \vec{0}$
Thence $a_1\vec{V}_1 + \cdots + a_n\vec{V}_n \in \text{null}(T)$
But null $(T) = \{\vec{0}\}$, so $a_1\vec{V}_1 + \cdots + a_n\vec{V}_n = \vec{0}$
Since $(\vec{V}_1, \dots, \vec{V}_n)$ is linearly independent
 $a_1 = a_2 = \cdots = a_n = 0$.
Ob follows therefore that $(T(\vec{V}_1)_1, \dots, T(\vec{V}_n)_1)$
is linearly independent.

Hint: Finish by showing that

$$a_1 = a_2 = \cdots = a_n = 0$$

3. The Main Theorem from Chapter 3 of the text by Axler is:

Theorem. If V is a finite dimensional vector space and $T: V \to W$ is a linear map into a vector space W, then

$$\dim V = \dim null(T) + \dim range(T)$$

Recall the idea behind the proof. We start by choosing a basis (u_1, \ldots, u_m) for null(T) The Extension Theorem from Chapter 2 states that we can extend this to a basis

$$(\mathbf{u}_1,\ldots,\mathbf{u}_m,\mathbf{v}_1,\ldots,\mathbf{v}_n)$$

of V. If we can show that $(T(\mathbf{v}_1), \dots, T(\mathbf{v}_n))$ is a basis for range(T), then $\dim \operatorname{range}(T) = n$. It will then follow that

$$\dim V = m + n = \dim \operatorname{null}(T) + \dim \operatorname{range}(T),$$

and the theorem will be proven. Thus we need only show that $(T(\mathbf{v}_1), \dots, T(\mathbf{v}_n))$ is linearly independent and spans range(T).

Prove that the list $(T(\mathbf{v}_1), \dots, T(\mathbf{v}_n))$ spans range(T).

Suppose
$$\vec{V} \in \text{range}(T)$$
. Then $\vec{V} = T(\vec{V})$ where $\vec{V} \in V$. We can write
$$\vec{V} = a_1 \vec{u}_1 + \dots + a_m \vec{u}_m + b_1 \vec{V}_1 + \dots + b_n \vec{V}_n$$

Then

$$\overrightarrow{V} = T(\overrightarrow{V}) = T(a_1\overrightarrow{u}_1 + \cdots + a_m\overrightarrow{u}_m + b_1\overrightarrow{V}_1 + \cdots + b_n\overrightarrow{V}_n)$$

$$= a_1 T(\overrightarrow{u}_1^2) + \cdots + a_m T(\overrightarrow{u}_m) + b_1 T(\overrightarrow{V}_1^2) + \cdots + b_n T(\overrightarrow{V}_n^2)$$
Since $\overrightarrow{u}_1, \dots, \overrightarrow{u}_m \in mull(T)$,
$$\overrightarrow{V} = b_1 T(\overrightarrow{V}_1^2) + \cdots + b_n T(\overrightarrow{V}_n^2).$$

$$\therefore (T(\overrightarrow{V}_1^2), \dots, T(\overrightarrow{V}_n^2)) \text{ shared range (T)}.$$