Mathematics 108A: Practice Quiz C

July 17, 2008

Professor J. Douglas Moore

Recall the basic lemma from Chapter 2 of the text by Axler:

Linear Dependence Lemma. Suppose that $(\mathbf{v}_1, \dots, \mathbf{v}_m)$ is a linearly dependent list of vectors in a finite-dimensional vector space V and that $\mathbf{v}_1 \neq \mathbf{0}$. Then there exists $j \in \{2, \dots, m\}$ such that $\mathbf{v}_j \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{j-1})$. Moreover,

$$span(\mathbf{v}_1,\ldots,\mathbf{v}_{j-1},\mathbf{v}_{j+1},\ldots\mathbf{v}_m) = span(\mathbf{v}_1,\ldots,\mathbf{v}_m).$$

Assuming this lemma, we then prove the MAIN RESULT of Chapter 2:

Comparison Theorem. If V is a finite-dimensional vector space over F, $(\mathbf{u}_1, \dots, \mathbf{u}_m)$ is a linearly independent list of elements of V and V is the span of a list $(\mathbf{w}_1, \dots, \mathbf{w}_n)$, then $m \leq n$.

The Linear Dependence Lemma can be used to prove the most difficult of the other theorems in Chapter 2. For example:

1. Use the Linear Dependence Lemma to prove the following:

Theorem. Every subspace U of a finite-dimensional vector space is finite-dimensional

Idea: The idea of the proof is to generate a list of vectors $(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$ in U which are linearly independent. Then show that either $U = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$ or one can extend to a linearly independent list $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ by Linear Dependence Lemma. We must get a spanning list before the length of the list exceeds the dimension of V.

Proof: Since V is finite-dimensional, $V = \text{span}(\mathbf{w}_1, \dots, \mathbf{w}_n)$, where n is the dimension of V.

Step 1. If $U = \{0\}$, then U is finite-dimensional. If $U \neq \{0\}$, choose a nonzero $y_1 \in U$. Then (v_1) is linearly independent.

Step k. Suppose that we have constructed a linearly independent list $(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$ within U. If $U = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$, U is finite-dimensional. Otherwise, by the Linear Dependence Lemma, we can extend to a linearly independent list $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ within U.

The process must terminate at some step $k \leq n$ by the Comparison Theorem.

2. Use the Linear Dependence Lemma to prove the following:

Theorem. Every spanning list in a vector space V can be reduced to a basis.

Idea: The idea of the proof is to start with a spanning list and throw away elements until you have a basis. As long as you don't have a basis, the Linear Dependence Lemma says that you can throw something away.

Proof: Suppose that $V = \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$. Start with the list $L = (\mathbf{v}_1, \dots, \mathbf{v}_n)$.

For each $j, 1 \le j \le n$ ask whether \mathbf{v}_j is in the span of the previous elements of the list. If so, throw it away, obtaining a new list. If not, keep \mathbf{v}_j in the list.

Repeat this procedure n times obtaining a new list L which spans V. The Linear Dependence Lemma implies that this list is linearly independent. Hence L is a basis for V.

3. Use the Linear Dependence Lemma to prove the following:

Theorem. Every linearly independent list in a finite-dimensional vector space V can be extended to a basis

Idea: The idea of the proof is to suppose that $(\mathbf{u}_1, \dots, \mathbf{u}_m)$ is a linearly independent list in V. Since V is finite-dimensional, we can write $V = \operatorname{span}(\mathbf{w}_1, \dots, \mathbf{w}_n)$. One by one, add the \mathbf{w}_i 's to the list L, throwing away any additions that make the list linearly dependent (using the Linear Dependence Lemma).

Proof: Suppose that $L = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ is a linearly independent list in V. Since V is finite-dimensional, we can write $V = \text{span}(\mathbf{w}_1, \dots, \mathbf{w}_n)$.

Step 1. If w_1 is in the span of L, throw it away. Otherwise, add w_1 to the end of the list w_1 is in the span of the resulting list and the Linear Dependence Lemma shows that the list is linearly independent.

Step k. Suppose that we have constructed a linearly independent list L extending $(\mathbf{u}_1,\ldots,\mathbf{u}_m)$ such that $\mathbf{w}_1,\ldots,\mathbf{w}_{k-1}$ are in the span of L. If \mathbf{w}_k is in the span of L, throw it away. Otherwise, add \mathbf{w}_k to the list $\mathbf{w}_1,\ldots,\mathbf{w}_k$ are in the span of the new list and the list is linearly independent by the Linear Dependence Lemma.

After n steps, one obtains a list which extends $(\mathbf{u}_1, \dots, \mathbf{u}_m)$, spans W and is linear independent. The resulting list is a basis which extends $(\mathbf{u}_1, \dots, \mathbf{u}_m)$.