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Abstract

This article is concerned with developing tools for investigating har-
monic maps f : Σ→M from a closed Riemann surface Σ into a compact
manifold M of dimension at least three, using a perturbative approach
based upon the α-energy of Sacks and Uhlenbeck. We present a replace-
ment procedure for α-harmonic maps which is similar to one that has
been used for harmonic maps, and show how it can be used to investigate
the structure of critical points for the α-energy, when α > 1 is sufficiently
close to one. We give an estimate on the rate of growth of the energy
density in the bubbles of such critical points as α→ 1, when the bubbles
are at a distance at least L0 > 0 from the base.

1 Prologue

The Morse theory of geodesics is a highly successful application of global analysis
techniques to calculus of variations for nonlinear ODE’s. It is clearly of interest
to develop the calculus of variations for the simplest nonlinear PDE’s, such
as the equations for harmonic maps and minimal surfaces. Does there exist a
partial Morse theory for closed two-dimensional minimal surfaces in compact
Riemannian manifolds? If so, what does it look like?

The main goal of this article (the contents of which are explained more
fully at the end of the Prologue) is to provide an estimate on energy growth
within bubbles of “α-energy critical points” as α → 1, an estimate motivated
by its potential application to constructing a partial Morse theory for closed
two-dimensional minimal surfaces in curved ambient spaces.

Before describing this estimate, it is perhaps useful to review the key features
of the Morse theory of smooth closed geodesics, as presented by Bott [2] and
other authors. If M is a compact Riemannian manifold, we can define the action

J : Map(S1,M) → R by J(γ) =
1
2

∫
S1
|γ′(t)|2dt, (1)
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where Map(S1,M) denotes a suitable completion of the space of smooth maps
from S1 to M . When it is given the L2

1 completion, this space is often denoted
by L2

1(S
1,M), and it is a Hilbert manifold. The Sobolev inequalities give an

inclusion L2
1(S

1,M) ⊂ C0(S1,M) which is well-known to be a homotopy equiv-
alence. Moreover, J is a smooth real-valued function on this Hilbert manifold
L2

1(S
1,M), and the critical points of J are exactly the smooth closed geodesics

in M . Since J satisfies Condition C of Palais and Smale, it is possible to prove
existence of minimax critical points by the method of steepest descent, following
the orbits of the gradient of −J on the manifold L2

1(S
1,M).

From here, the development of a Morse theory of smooth closed geodesics
proceeds in three main stages:

1. TRANSVERSALITY. One shows that for a generic choice of metric on the
compact manifold M , all nonconstant smooth closed geodesics lie on one-
dimensional nondegenerate critical submanifolds, each such submanifold
being an orbit for the action of the group G = S1 of symmetries of J .

2. FINITENESS. One notes that it follows from Condition C that the number
of such submanifolds on which J ≤ J0, for some choice of bound J0, is
finite.

3. MORSE INEQUALITIES. Finiteness, together with an analysis of the or-
bits of the gradient flow for −J , then enables one to establish (equivariant)
Morse inequalities for generic metrics.

Once one has the Morse inequalities for generic metrics, a more refined analysis
often provides geometric results for nongeneric metrics. Thus for ambient man-
ifolds M with finite fundamental group and suitable growth of free loop space
homology, Gromoll and Meyer [6] were able to prove existence of infinitely many
smooth closed geodesics for arbitrary choice of Riemannian metric on M .

Development of a partial Morse theory for closed parametrized minimal sur-
faces in a compact Riemannian manifold (M, g) should proceed via the same
three steps, and should have similar applications. organize development and
measure progress:

Basic Problem. Given a genus g ≥ 0, determine conditions on the topology
of a compact manifold M with finite fundamental group that ensure that there
exist infinitely many prime parametrized minimal surfaces of genus g within M ,
when M is given a generic Riemannian metric.

Here we employ the terminology that the genus of a nonorientable connected
minimal surface is the genus of its oriented double cover. Unlike in the theory
of smooth closed geodesics, we do not expect a uniform answer for all choices
of genus.

In the proposed partial Morse theory, a parametrized minimal surface f :
Σ →M should be regarded as a critical point for the energy

E : Map(Σ,M)×Met(Σ) → R, defined by E(f, h) =
1
2

∫
Σ

|df |2hdAh, (2)
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where Met(Σ) is the space of Riemannian metrics on Σ, and the norm | · |h
and area element dAh are calculated with respect to h ∈ Met(Σ). The energy
is conformally invariant, and each element of Met(Σ) is conformally equivalent
to a unique element in the subspace Met0(Σ) of constant curvature metrics of
total area one. Thus we lose nothing in restricting E to Map(Σ,M)×Met0(Σ).
This restriction is invariant under an obvious action of the group Diff0(Σ) of
diffeomorphisms isotopic to the identity, so E descends to a map on the quotient

E :
Map(Σ,M)×Met0(Σ)

Diff0(Σ)
−→ R.

Now Met0(Σ)/Diff0(Σ) can be regarded as a definition for the Teichmüller space
T of marked conformal structures on Σ (even if Σ is not orientable), and the
proof of Teichmüller’s theorem via harmonic maps ([24], Chapter II) provides a
section for the projection

Map(Σ,M)×Met0(Σ)
Diff0(Σ)

−→ Met0(Σ)
Diff0(Σ)

,

showing that the first quotient is diffeomorphic to Map(Σ,M) × T . Thus we
can regard the energy as a function

E : Map(Σ,M)× T → R, defined by E(f, ω) = E(f, h), (3)

when h is any metric within the conformal equivalence class ω ∈ T .
If Σ is oriented and Diff+(Σ) denotes the group of orientation-preserving

diffeomorphisms, then Γ = Diff+(Σ)/Diff0(Σ) is called the mapping class group.
The action of the mapping class group Γ on Map(Σ,M)×T preserves the energy
E, which therefore descends once again to a function on the quotient:

E : M(Σ,M) → R, where M(Σ,M) =
Map(Σ,M)× T

Γ
. (4)

This quotient M(Σ,M) projects to the moduli space R = T /Γ of conformal
structures on Σ. The moduli space R is trivial when Σ = S2, is homeomorphic
to C when Σ is T 2, and is an orbifold with a more complicated topology that
has been much studied, when Σ has genus g ≥ 2. It is either a partial Morse
theory for (4), or even better, a Γ-equivariant Morse theory for (3), that should
be the analog of the Morse theory of smooth closed geodesics.

A parametrized minimal surface f : Σ → M is a branched cover of a (non-
constant) parametrized minimal surface f0 : Σ0 → M , if there is a conformal
map g : Σ → Σ0 such that f = f0◦g. (For a complete theory, one must allow the
possibility that Σ0 may not be orientable.) The parametrized minimal surface
f : Σ → M is prime if it is not a nontrivial branched cover of a (nonconstant)
parametrized minimal surface of lower energy.

The first step towards a partial Morse theory for E is the transversality
theory presented in [13], and [12], which shows that for generic choice of Rie-
mannian metric on a compact manifold M of dimension at least four, all prime
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parametrized minimal surfaces are free of branch points and lie on nondegener-
ate critical submanifolds, each of which is an orbit for the identity component G
of the group of conformal automorphisms of Σ, which we also call the group of
symmetries of E. This group G is PSL(2,C) when Σ is the two-sphere, S1×S1

when Σ is the torus, and trivial when Σ is a sphere with g handles and g ≥ 2.
Moreover, as explained in [14], when the metric on the ambient space M is
generic, all parametrized minimal surfaces in M are immersions with transver-
sal crossings, imbeddings if the dimension of the ambient manifold M is at least
five. Unbranched covers (such as tori covering tori) also lie on nondegenerate
critical submanifolds, as shown in [15] via a modification of Bott’s index theory
for iterated closed geodesics. On the other hand, although it can be shown that
branched covers of minimal surfaces with nontrivial branch locus lie on critical
submanifolds, it is not known that these critical submanifolds are nondegenerate
for generic choice of metric on M .

The right completion of Map(Σ,M) for proving existence of solutions via
steepest descent is with respect to the L2

1 norm, and this completion barely fails
to lie within C0(Σ,M) via the Sobolev imbedding theorem. Although there
are many methods for proving existence of area minimizing elements in a given
homotopy class, the approach with the most promise for yielding the minimax
critical points needed for partial Morse inequalities is the perturbative approach
adopted by Sacks and Uhlenbeck [21], [22]. Sacks and Uhlenbeck define the α-
energy , for α > 1 as the function

Eα : Map(Σ,M)×Met(Σ) → R

given by Eα(f, h) =
1
2

∫
Σ

(1 + |df |2h)αdAh, (5)

where |df |h and dAh are calculated with respect to the metric h on Σ.
Unlike the usual energy, the α-energy depends on the choice of Riemannian

metric on Σ, not just the underlying conformal structure. However, if we restrict
Eα to Map(Σ,M)×Met0(Σ), then just as before this restriction descends to a
map on the quotient,

Eα : Map(Σ,M)× T −→ R, (6)

and this map approaches E + (1/2) as α → 1. Thus we can indeed regard Eα

as a perturbation of E. We say that a critical point for Eα is an α-minimal
surface.

The right completion of Map(Σ,M) for establishing existence of critical
points for Eα is with respect to the L2α

1 -norm, and this completion is strong
enough that L2α

1 (Σ,M) lies within the space C0(Σ,M) of continuous maps when
α > 1, the inclusion being a homotopy equivalence. For fixed choice of ω, the
function

Eα,ω : L2α
1 (Σ,M) → R, Eα,ω(f) = Eα(f, ω), (7)

is C2 on the Banach manifold L2α
1 (Σ,M), and Sacks and Uhlenbeck show that

the critical points for Eα,ω are C∞. Moreover, Eα,ω satisfies Condition C of
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Palais and Smale, and an extension of Morse theory to Banach manifolds [26]
allows one to establish Morse inequalities for a small perturbations E′α,ω of Eα,ω

in which all critical points are nondegenerate. The rational topology of the space
C0(Σ,M) can often be computed (or at least estimated) by Sullivan’s theory
of minimal models, and one finds that in some cases the number of minimax
homology constraints grows exponentially with energy. (Some examples will be
described in §3.4.)

If we allow the conformal structure in (6) to vary, a minimax sequence for
Eα might approach the boundary of Teichmüller space T , preventing Eα from
satisfying Condition C when Σ has genus at least one. However, the restriction
to Eα to an appropriate subspace of M(T 2,M) does satisfy Condition C in
some cases.

The discussion in §4 of [23] provides motivation for one such restriction. We
say that a component C of Map(T 2,M) has rank two if

f ∈ C ⇒ f] : π1(T 2) → π1(M) maps onto a noncyclic abelian subgroup.

Let Map(2)(T 2,M) denote the union of all components of rank two. (For ex-
ample, if N is a K-3 surface and M = RP 3 × RP 3 ×N , π2(M) = Z2 ⊕ Z2 and
Map(T 2,M) has one such component.) Note that the mapping class group Γ
preserves Map(2)(T 2,M), so Eα induces a map

Eα : M(2)(T 2,M) −→ R, where M(2)(T 2,M) =
Map(2)(T 2,M)× T

Γ
, (8)

and this map does satisfy Condition C. In other words, if [fi, ωi] is a sequence of
points in M(2)(Σ,M) on which Eα is bounded and for which ‖dEα([fi, ωi])‖ →
0, and for each i, (fi, ωi) ∈ Map(T 2,M)×T is a representative for [fi, ωi], then
there are elements φi ∈ Γ such that a subsequence of (fi ◦ φi, φ

∗
iωi) converges

to a critical point for Eα on Map(T 2,M)× T .
To establish Condition C, recall that in the case where Σ is a torus, the

Teichmüller space T is the upper half plane, and after a change of basis we can
arrange that an element ω ∈ T lies in the fundamental domain

D = {u+ iv ∈ C : −(1/2) ≤ u ≤ (1/2), u2 + v2 ≥ 1} (9)

for the action of the mapping class group Γ = SL(2,Z). The moduli space
R is obtained from D by identifying points on the boundary. The complex
torus corresponding to ω ∈ T can be regarded as the quotient of C by the
abelian subgroup generated by d and ωd, where d is any positive real number, or
alternatively, this torus is obtained from a fundamental parallelogram spanned
by d and ωd by identifying opposite sides. The fundamental parallelogram of
area one can be regarded as the image of the unit square {(t1, t2) ∈ R2 : 0 ≤
ti ≤ 1} under the linear transformation(

t1
t2

)
7→
(
x
y

)
=

1√
v

(
1 u
0 v

)(
t1
t2

)
,

5



where z = x + iy is the usual complex coordinate on C. A straightforward
calculation gives a formula for the usual energy

E(f, ω) =
1
2

∫
P

(∣∣∣∣∂f∂x
∣∣∣∣2 +

∣∣∣∣∂f∂y
∣∣∣∣2
)
dxdy

=
1
2

∫
P

(
v

∣∣∣∣ ∂f∂t1
∣∣∣∣2 +

1
v

∣∣∣∣ ∂f∂t2 − u
∂f

∂t1

∣∣∣∣2
)
dt1dt2,

P denoting the image of the unit square. The only way that ω can approach
the boundary of Teichmüller space while remaining in the fundamental domain
D is for v → ∞. The rank two condition implies that the maps t1 7→ f(t1, b)
must be homotopically nontrivial, and hence the length in M of t1 7→ f(t1, b) is
bounded below by a positive constant c. This implies that

E(f, ω) ≥ 1
2

∫ 1

0

∫ 1

0

v

∣∣∣∣ ∂f∂t1
∣∣∣∣2 dt1dt2
≥ v

2
(average length of t1 7→ f(t1, b))2 ≥

c2v

2
(10)

by the Cauchy-Schwarz inequality, and hence Eα(f, ω) (which is ≥ E(f, ω))
must approach infinity. This establishes Condition C on M(2)(Σ,M).

Moreover, if f ∈ Map(2)(T 2,M),

f ◦ φ = f for some φ ∈ Γ ⇒ φ = identity.

Thus the mapping class group SL(2,Z) acts freely on Map(2)(T 2,M)×T , which
implies that the quotient M(2)(T 2,M) is actually a smooth manifold. Just as
for a generic perturbation of Eα,ω, one can establish a Morse-Witten complex
for a generic perturbation E′α of Eα : M(2)(T 2,M) → R.

Thus we have a very well-behaved critical point theory for the function
E′α : M(2)(T 2,M) → R, and the goal of the perturbation approach to minimal
surface theory is to investigate the limit as α → 1. Our choice of domain has
eliminated the necessity to consider branched covers of spheres or degeneration
of conformal structure; we have isolated the difficulty that sequences of critical
points for Eα may develop bubbles as α→ 1.

We review some well-known facts regarding bubbling. Suppose that Σ is an
oriented connected surface of genus at least one. Consider a sequence {(fm, ωm)}
of critical points for Eαm with αm > 1, where fm : Σ →M has bounded energy
and bounded Morse index, such that αm → 1 as m→∞. The articles of Sacks
and Uhlenbeck [21], Parker [18] and Chen and Tian [3] describe what happens
in the limit. If ωm lies in a bounded subset of T , a subsequence of {ωm} will
converge to an element ω0 ∈ T . Upon passing to a further subsequence, we can
arrange that {fm : Σ →M} will converge in Ck for all k on compact subsets of
the complement of a finite subset {p1, . . . , pl} of Σ to a map

f∞ : Σ− {p1, . . . , pl} −→M.
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By the removable singularity theorem (Theorem 3.6 of [21]), f∞ can be extended
to a harmonic map f0 : Σ →M . It can be checked (see the Conformality Lemma
at the end of §3.2) that f0 is critical for variations in conformal structure, and
hence (f0, ω0) is a parametrized minimal surface, which we call the base minimal
surface. Moreover, suitable reparametrizations of neighborhoods of the points
p1, . . . , pl will converge (in an appropriate sense) to a collection g1, . . . gk : S2 →
M of nonconstant minimal two-spheres, called bubbles. (A finite number of
minimal two-spheres might bubble off at the same point.) We call the collection
{f0, g1, . . . , gk}, consisting of the base minimal surface and all of the nonconstant
two-sphere bubbles obtained a minimal surface configuration. If the sequence is
minimizing within a given component of M(Σ,M), Parker [18] and Chen and
Tian [3] show that after passing to a subsequence

lim
m→∞

E(fm, ωm) = E(f0, ω0) + E(g1) + · · ·E(gk). (11)

In other words, no energy is lost in the necks between bubbles.
An understanding of the bubbling process is used to establish the following

Finiteness Theorem. Choose a bound E0 on energy, and let

M(Σ,M)E0 = {[f, ω] ∈M(Σ,M) : E([f, ω]) ≤ E0},
M(2)(Σ,M)E0 = {[f, ω] ∈M(2)(Σ,M) : E([f, ω]) ≤ E0}. (12)

Finiteness Theorem. For generic choice of Riemannian metric on a manifold
M at least five,

1. within M(2)(T 2,M)E0 , there are only finitely many S1 × S1 orbits of
minimal tori, and

2. there is a constant L0 > 0 such that every sequence of α-minimal surfaces
within M(2)(T 2,M)E0 converges to a minimal torus with bubbles such
that the base minimal surface lies at a distance of at least L0 from the
nearest nonconstant bubble two-sphere.

Proof: For the first statement, we note that if there were infinitely many
parametrized minimal tori, f1, f2, . . . with energy ≤ E0, a subsequence would
have to converge in Ck on the complement of finitely many bubble points.
However, since the metric on M is generic, any parametized minimal surface
is imbedded, even those with several components. Thus on the one hand, the
distance to any two-sphere bubble is positive, while on the other, it follows from
a theorem of Parker [18] that in the limit of a sequence of conformal harmonic
maps bubbles have zero distance from the base. We conclude that bubbling is
in fact impossible for sequences of conformal harmonic maps. A subsequence
must therefore converge at all points of T 2 to a limiting parametrized minimal
torus. (Recall that lying within Map(2)(T 2,M) prevents degeneration.) But
minimal tori lie on nondegenerate critical submanifolds, and hence the S1 × S1

orbits are isolated, yielding a contradiction.
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For the second statement, we rescale the Riemannian metric on M so that
its maximum sectional curvature is at most one. It then follows from the Gauss
equation and the Gauss-Bonnet Theorem that if f : S2 →M is minimal,

E(f) =
∫

Σ

dA ≥
∫

Σ

KdA = 4π, and hence E1 = 4π

is a lower bound on the energy of any bubble. By the argument for finiteness
given above, there are finitely many prime parametrized minimal two-spheres
g1, . . . , gm with energy < 2E1, and since the metric is generic, the images
S1 = g1(S2), . . . , Sm1 = gm1(S

2) are imbedded minimal two-spheres. We take
tubular neighborhoods about each minimal two-sphere S1, . . . , Sm1 of radius ε1,
where ε1 > 0 is chosen small enough that the distance from each such minimal
two-sphere to each of the finitely many imbedded minimal tori with energy < E0

is > 2ε1.
Since branched covers of spheres are not known to be nondegenerate, we

cannot argue that there may not be prime minimal spheres Ck close to the
branched covers. However, using the finiteness argument once again, we can
show that there are only finitely many prime parametrized minimal two-spheres
gm1+1, . . . , gm2 with energy in the interval [2E1, 3E1) and with images Sm1+1,
. . . , Sm2 lying outside the ε1-tubular neighborhoods of S1, . . . , Sm1 . We take
tubular neighborhoods about S1, . . . , Sm2 of radius ε2, where ε2 > 0 is chosen
so that ε2 ≤ ε1, and so that the distance from each such minimal two-sphere to
each of the finitely many minimal tori with energy < E0 is > 2ε2.

We then show that there are only finitely many prime parametrized mini-
mal two-spheres gm2+1, . . . , gm3 with energy in the interval [3E1, 4E1) which lie
outside the ε2-tubular neighborhoods of S1, . . . , Sm2 , and so forth. We continue
in this fashion until we construct prime minimal two-spheres with energy in the
interval [kE1, (k + 1)E1), where (k + 1)E1 > E0. We can then set L0 = εk.
Each minimal two-sphere with energy < E0 has distance at least L0 from each
minimal torus, finishing the proof.

The Finiteness Theorem establishes the second step in the program of developing
a Morse theory for

E : M(2)(T 2,M) −→ R.
To carry out the third step and establish partial Morse inequalities for E, we
need to study the direct limit of the Morse-Witten complexes of E′α as α→ 1.

This might be regarded as a daunting endeavor. However, the preceding
discussion motivates the development of techniques for understanding bubbling
under the following simplifying hypothesis:

for maps within the union N of some components of M(Σ,M)E0 ,
all bubbling minimal two-spheres are at distance at least L0 > 0

from the base minimal surfaces from which they bubble. (13)

When this hypothesis is satisfied, we will see that bubbling sequences of αm-
minimal surfaces of genus at least one within N must be far from conformal,
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and indeed must develop necks with conformal parameter going to infinity as
α → 1. This is in sharp contrast to the zero-distance bubbling that occurs in
sequences of conformal harmonic maps, a fact which is exploited not only in
the proof given above for the Finiteness Theorem, but also in the theory of J-
holomorphic curves ([10], §4.7). When hypothesis (13) holds, one should expect
more control on the growth of energy density within bubbles than is possible
in nongeneric settings, such as in the theory of J-holomorphic curves. This
gives a better understanding of the critical points generating the Morse-Witten
complexes of E′α as α→ 1.

In the remainder of this article, we describe some techniques which we believe
will be useful in exploiting hypothesis (13).

In §2, we present a replacement procedure for α-harmonic maps, which is
similar to the replacement procedure for harmonic maps in Riemannian mani-
folds based upon Morrey’s solution to the Dirichlet problem for harmonic maps
(used, for example, by Schoen and Yau in [23]). This replacement procedure
is simpler in some ways, since we can utilize Condition C, and systematically
apply techniques from global analysis.

Under the assumption that π1(M) is finite, we then use an estimate of Gro-
mov [7] with this replacement procedure in §3 to give a simple proof of an
extension of the Chen-Tian result of no energy loss in necks of sequences of
α-energy critical points with α → 1, from minimizing sequence within a given
homotopy class to minimax sequences of bounded Morse index. (We obviously
need such an extension to study minimax critical sequences in the direct limit
complex.) We also point out that the Gromov estimates can be applied to es-
timate the rate of growth of the number of α-energy critical points as a bound
on α-energy is increased.

The main result of the article is presented in §4. We show that under hypoth-
esis (13), there is a positive constant c (depending on L0 and a bound on total
α-energy) such that when α is sufficiently close to one, bubbles are concentrated
within disks of radius

≤ r(α, c) = e−b(α,c), where b(α, c) =
c

(α− 1)1/2α
. (14)

the constant c depending on an upper bound on α-energy and a lower bound
on the distance to bubbles. Here the radius is measured with respect to the
background metric of constant curvature and total area one on Σ.

Estimate (14), formulated more precisely in the Scaling Theorem stated at
the beginning of §4, implies that α-energy density must grow at a specific rate
within bubbles as α→ 1. A similar lower bound on radius is also given.

Finally, in §5, we give a brief description of how the Scaling Theorem
can be used to describe the generators of the direct limit complex of E′α :
M(2)(T 2,M)E0 → R, when E′α is a perturbation of Eα with nondegenerate
critical points, and the bound E0 on energy is sufficiently low that only one
bubble can form.

We hope to describe some applications of the Scaling Theorem in a sequel.
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2 Local stability and replacement

2.1 Background on α-harmonic maps

In this section, we discuss an extension of a local stability result of Jäger and
Kaul [8] from harmonic to α-harmonic maps, and its application to a replace-
ment procedure for α-harmonic maps.

If h is any Riemannian metric on the compact connected surface Σ, we can
define an (α, h)-harmonic map (or more briefly an α-harmonic map when the
metric on Σ is understood) as a critical point for the function

Eα,h : Map(Σ,M) −→ R defined by Eα,h(f) =
1
2

∫
Σ

(1 + |df |2h)αdAh.

We begin this section with a few preliminary remarks about α-harmonic maps,
referring the reader to [21], [22] or further background results, and to [5] for the
extension to the case where Σ has a boundary constrained to lie in a smooth
submanifold of M . The case in which Σ has boundary fixed (Dirichlet boundary
conditions) can be treated in much the same way. For simplicity of notation,
we will often suppress the notation for the metric on Σ and write Eα for Eα,h.

It is convenient to regard M as isometrically imbedded in some Euclidean
space RN of large dimension, always possible by the Nash embedding theorem.
If Σ is a compact connected surface, possibly with boundary ∂Σ consisting of
several circles, and p ≥ 2, we let Lp

k(Σ,RN ) denote the completion of the space
of smooth maps from Σ to RN with respect to the Sobolev Lp

k norm. The space
Lp

k(Σ,RN ) is always a Banach space, and a Hilbert space if p = 2. If k ≥ 2, or
p > 2 and k ≥ 1 and the boundary of Σ is empty, then

Lp
k(Σ,M) = {f ∈ Lp

k(Σ,RN ) : f(q) ∈M for all q ∈ Σ},

is an infinite-dimensional smooth submanifold. More generally, if Σ has a bound-
ary ∂Σ and f0 : ∂Σ →M is a fixed smooth map, we set

Lp
k,0(Σ,M) = {f ∈ Lp

k(Σ,M : f |∂Σ = f0}

which is also an infinite-dimensional smooth submanifold. Note that the map

Eα,h : Lp
k,0(Σ,M) −→ R,

which is only C2 when p = 2α and k = 1, is actually C∞, when k is sufficiently
large. To see this, regard Eα,h as a composition of several maps

f 7→ df 7→ (1 + |df |2h)α 7→ 1
2

∫
Σ

(1 + |df |2h)αdAh.

When k is large, the first map is smooth into Lp
k−1, the second is smooth by

the well-known ω-Lemma, while the third is always smooth since integration is
continuous and linear.
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For a fixed choice of metric h on Σ, we can differentiate to find the first
variation of Eα, obtaining

dEα(f)(X) =
∫

Σ

〈F (f), X〉dA, for X ∈ TfL
p
k,0(Σ,M),

where f 7→ F (f) is the Euler-Lagrange operator, which depends smoothly on
f , as well as on the metrics 〈·, ·〉 on the ambient manifold M and h on Σ. If
(x, y) are isothermal parameters on Σ so that the Riemannian metric on Σ takes
the form λ2(dx2 + dy2), a calculation shows that the Euler-Lagrange operator
is given by the explicit formula

F (f) = − α

λ2

(
∂

∂x

(
µ2(α−1) ∂f

∂x

))>
− α

λ2

(
∂

∂y

(
µ2(α−1) ∂f

∂y

))>
, (15)

where µ2 = 1 + |df |2 and (·)> denotes orthogonal projection into the tangent
space to the submanifold M of RN . Alternatively, we can write

F (f) = − α

λ2

Dg

∂x

(
µ2(α−1) ∂f

∂x

)
− α

λ2

Dg

∂y

(
µ2(α−1) ∂f

∂y

)
. (16)

whereDg is the covariant derivative for the Levi-Civita connection for the metric
g = 〈·, ·〉 on the ambient manifold M . Differentiating once again yields the
second variation of Eα,

d2Eα(f)(X,Y ) =
∫

Σ

〈L(X), Y 〉dA, for X,Y ∈ TfL
p
k,0(Σ,M), (17)

where L is the Jacobi operator, a second-order formally self-adjoint elliptic op-
erator.

Just as harmonic maps satisfy the unique continuation property (as proven
for example in [20]), so do α-harmonic maps. To see this, we expand the right-
hand side of (15) and write the Euler-Lagrange equation F = 0 as

∂2f

∂x2
+
∂2f

∂y2
= A(f)(df, df)− (α− 1)

(
∂

∂x
(logµ2)

∂f

∂x
+

∂

∂y
(logµ2)

∂f

∂y

)
, (18)

an equation in which A(f)(df, df) stands for a certain expression in terms of
the second fundamental form A(f) of f . We can differentiate the logarithm to
obtain

∂2f

∂x2
+
∂2f

∂y2
= A(f)(df, df)−Qf (f),

where Qf is the nonlinear differential operator defined by

Qf (u) =
α− 1

1 + |df |2

(〈
∂2u

∂x2
,
∂f

∂x

〉
+
〈
∂2u

∂x∂y
,
∂f

∂y

〉)
∂f

∂x

+
(〈

∂2u

∂x∂y
,
∂f

∂x

〉
+
〈
∂2u

∂y2
,
∂f

∂y

〉)
∂f

∂y
.
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We can write this more simply as Lf (f) = A(f)(df, df), where

Lf (u) =
∂2u

∂x2
+
∂2u

∂y2
+Qf (u),

a uniformly elliptic operator when α is sufficiently close to one, whose coefficients
depend on f and df . We observe that the values of Qf are tangent to f , in the
sense that at any point of Σ, they are linear combinations of ∂f/∂x and ∂f/∂y,
evaluated at that point. Given ε > 0, we can choose an α0 sufficiently close to
one that for α ∈ (1, α0],

(1− ε)Lf (u) ≤ ∂2u

∂x2
+
∂2u

∂y2
≤ (1 + ε)Lf (u). (19)

When α is sufficiently close to one, (19) and complexification yields the estimate∣∣∣∣ ∂2f

∂z∂z̄

∣∣∣∣ ≤ K

(∣∣∣∣∂f∂z
∣∣∣∣+ |f |

)
,

where z = x+ iy and K is a constant.
But this is just the estimate we need for the Lemma of Hartman and Wintner

proven in [9], §2.6. The above estimate and the Hartman-Wintner Lemma imply
that if the complex coordinate z is centered at a point p ∈ Σ,

|f(z)| = o(|z|n) ⇒ lim
z→0

∂f

∂z
z−n exists, (20)

and if |f(z)| = o(|z|n) for all n, then f is constant.
We can now follow Sampson [20] and use (19) to prove unique continuation.

To carry this out, we first observe that in terms of local coordinates (u1, . . . , un)
on M and a complex coordinate z = x+ iy on Σ associated to ω, the equation
(18) for α-harmonic maps can be written in terms of the Christoffel symbols Γk

ij

as

∂2fk

∂x2
+
∂2fk

∂y2
= −

∑
i,j

Γk
ij

(
∂fi

∂x

∂fj

∂x
+
∂fi

∂y

∂fj

∂y

)

− (α− 1)
(
∂

∂x
(logµ2)

∂fk

∂x
+

∂

∂y
(logµ2)

∂fk

∂y

)
,

where fk = uk ◦ f , or equivalently,

Lf (f)k = −
∑
i,j

Γk
ij

(
∂fi

∂x

∂fj

∂x
+
∂fi

∂y

∂fj

∂y

)
,

where Lf (f)k is the k-th component of an elliptic operator Lf which satisfies
an estimate like (19):

(1− ε)Lf (u)k ≤
∂2uk

∂x2
+
∂2uk

∂y2
≤ (1 + ε)Lf (u)k. (21)
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Given two solutions f = (fk) and g = (gk) which agree on an open set, we set
hk = fk − gk, and note that the difference (hk) must satisfy

Lf (h)k = −
∑
i,j

Γk
ij(f)

(
∂hi

∂x

∂

∂x
(fj + gj) +

∂hi

∂y

∂

∂y
(fj + gj)

)

−
∑
i,j

(Γk
ij(f)− Γk

ij(g))
(
∂gi

∂x

∂gj

∂x
+
∂gi

∂y

∂gj

∂y

)
+ (α− 1)(Lg − Lf )(g)k.

The differences Γk
ij(f)−Γk

ij(g) and the coefficients of the operator Lg −Lf can
be estimated in terms of hk by the mean value theorem. We can then apply
(45) and the Lemma of Hartman and Wintner mentioned above to show that if
hk vanishes on an open set, it must vanish identically assuming that its domain
is connected. From this we obtain the analog of Theorem 1 of Sampson [20]:

Unique Continuation Lemma. If α0 > 1 is sufficiently close to one and
α ∈ (1, α0], then any two α-harmonic maps from a connected surface Σ into M
which agree on an open set must agree identically.

This Lemma could also be obtained from estimate (19) and the unique contin-
uation theorem of Aronsjazn [1].

Remark. Following the proof of Theorem 3 in [20], we note that it follows
from the Unique Continuation Lemma that if df has rank zero on a nonempty
open set, the harmonic map f must be constant. We now ask what happens
if df has rank one on a nonempty open set U ⊂ Σ. In this case, every point
of U has an open neighborhood which is mapped by f onto a smooth arc C
in M . We can suppose that coordinates (u, θ) have been constructed on U so
that ∂f/∂θ = 0, and thus f : U → M reduces to a function of one variable,
f(u, θ) = f0(u), parametrizing C. The variational equation for f0 is an ordinary
differential equation

D

du

(
µ2(α−1) df0

du

)
= 0, µ2 = 1 +

(
df0
du

)2

,

where D is the covariant derivative defined by the Levi-Civita connection. If we
let (·)⊥ denote orthogonal projection to the component normal to C, we find
that (

D

du

(
µ2(α−1) df0

du

))⊥
= µ2(α−1)

(
D

du

(
df0
du

))⊥
= 0,

which implies that C must be a geodesic arc. Thus we can regard f0 as a
composition f0 = γ ◦ φ where γ : R → M is a unit-speed geodesic and φ :
(a, b) → R. It remains only to determine the parametrization φ. The variational
equation for f0 now implies that φmust satisfy the ordinary differential equation

µ2(α−1) dφ

du
= a, (22)
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where a is a constant of integration. The solutions to this equation depend
on the metric h on Σ. Such α-harmonic parametrizations of geodesics play an
important role in our theory.

By procedures similar to those used to extend the Unique Continuation The-
orem, we can generalize several other theorems from the theory of harmonic
maps to the case of α-harmonic maps. For example:

Bochner Lemma. For each α > 1, there is a constant cα depending contin-
uously on α and a second-order elliptic operator Lα whose coefficients depend
continuously on df and α such that

1. cα → 1 and Lα → ∆ as α → 1, where ∆ is the usual Laplace operator,
and

2. if f : Σ →M is a nonconstant α-harmonic map, then

1
2
Lα(|df |2) ≥ cα|∇df |2 +K|df |2 − |R1212||df |4,

where K is the Gaussian curvature of the Riemannian metric on Σ and
R1212 is the sectional curvature of the two-plane in M spanned by f∗(TΣ).

We can use this lemma just as in the case of harmonic maps (see [20]) to prove
the following result essentially due to Sacks and Uhlenbeck [21]:

ε-Regularity Theorem. Let M be a compact Riemannian manifolds. here
exists an α0 > 1 with the following property: Suppose that f : Dr → M is
an α-harmonic map, where 1 ≤ α ≤ α0 and Dr is the disk of radius r in the
complex plane, with the standard Euclidean metric ds2 and M is a compact
Riemannian manifold. Then there exists ε > 0, depending only on an upper
bound for the sectional curvature of M , such that∫

Dr

e(f)dA < ε ⇒ max
σ∈(0,r]

σ2 sup
Dr−σ

e(f) < 4. (23)

2.2 The Replacement Theorem

To study stability of α-harmonic maps, we need an explicit formula for the
second variation of the α-energy Eα at a critical point f :

d2Eα(f)(X,Y ) = α

∫
Σ

(1 + |df |2)α−1[〈∇X,∇Y 〉 − 〈K(X), Y 〉]dA

+ 2α(α− 1)
∫

Σ

(1 + |df |2)α−2〈df,∇X〉〈df,∇Y 〉dA, (24)

for V,W ∈ TfL
p
k(Σ,M). Here

〈K(X), X〉 =
1
λ2

[〈
R

(
X,

∂f

∂x

)
∂f

∂x
,X

〉
+
〈
R

(
X,

∂f

∂y

)
∂f

∂y
,X

〉]
,
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R being the Riemann-Christoffel curvature tensor of M . The factor of α − 1
in the second term of (24) implies that the first of the two terms in the index
formula dominates when α is close to one. Note also that the second term is
positive semidefinite. As α→ 1, the second variation of the α-energy approaches
the familiar second variation for the usual energy. An integration by parts in
(24) yields the Jacobi operator L which appears in (17).

Recall that if the metric on Σ is h = λ2(dx2+dy2), we can write the standard
Laplace operator as

∆ =
1
λ2

[
∂2

∂x2
+

∂2

∂y2

]
.

Moreover, if h : M → R is a smooth function, we define its second covariant
derivative by the formula

(∇2h)(X,Y ) = X(Y h))− (∇XY )(h),

where ∇ is the Levi-Civita connection. This induces a symmetric bilinear form

∇2h : TpM × TpM −→ R,

for each p ∈ M . It follows from the chain rule that if f : T 2 → R is a smooth
map,

∆(h ◦ f) =
1
λ2

[
∇2h

(
∂f

∂x
,
∂f

∂x

)
+∇2h

(
∂f

∂y
,
∂f

∂y

)]
+ dh(τ(f)),

where τ(f) is the tension of the map f , defined by

τ(f) =
1
λ2

[
D

∂x

∂f

∂x
+
D

∂y

∂f

∂y

]
.

The tension vanishes for harmonic maps, while in the case of an α-harmonic
map f , it follows from the Euler-Lagrange equations that the tension is given
by

τ(f) = −α− 1
λ2

[
∂

∂x
(logµ2)

∂f

∂x
+

∂

∂y
(logµ2)

∂f

∂y

]
,

where µ2 = (1+ |df |2). In the latter case, it is convenient to replace the Laplace
operator by the operator

L =
1
λ2

1
µ2α−2

[
∂

∂x

(
µ2α−2 ∂

∂x

)
+

∂

∂y

(
µ2α−2 ∂

∂y

)]
.

This introduces a new term which exactly cancels the tension field for an α-
harmonic map, leaving

L(h ◦ f) =
1
λ2

[
∇2h

(
∂f

∂x
,
∂f

∂x

)
+∇2h

(
∂f

∂y
,
∂f

∂y

)]
.

Given a point p ∈ M , let Dρ(p) denote the open geodesic ball of radius ρ
about p, where ρ is chosen so that ρ < π/2κ, where κ2 is an upper bound on
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the setional curvature of M and Dρ(p) is disjoint from the cut locus of p. We
can then define a smooth map

h : Dρ(p) −→ R by h(q) =
1− cos(κd(p, q))

κ2
,

where d is the distance function on M . It was proven by Jäger and Kaul [8]
that

∇2h(q)(v, v) ≥ cos(κd(p, q))|v|2.

It follows that if U is an open subset of T 2, f : U → Dρ(p) is an α-harmonic
map, and

φ(x) = cos(κd(p, f(x))), for x ∈ U , (25)

then
L(φ) ≥ −κ2|df |2φ. (26)

Stability Lemma. Let U be a domain in the Riemann surface Σ, and let
f : U → M be an α-harmonic map such that f(U) ⊂ Dρ(p), where Dρ(p) is
a geodesic ball of radius ρ about p ∈ M disjoint from the cut locus of p and
ρ < π/(2κ), where κ2 is an upper bound for the sectional curvature on M . Then
f is stable.

Proof: We modify the proof of Theorem B from [8] following the presentation
in §2.2 of [9]. Suppose that X is a section of f∗TM which satisfies the elliptic
equation

L(X) +
1
λ2

[
R

(
X,

∂f

∂x

)
∂f

∂x
+R

(
X,

∂f

∂y

)
∂f

∂y

]
= 0, (27)

where

L =
1
λ2

1
µ2α−2

[
D

∂x
◦
(
µ2α−2 D

∂x

)
+
D

∂y
◦
(
µ2α−2 D

∂y

)]
. (28)

Assuming without loss of generality that κ is positive, we define a map θ : U → R
by

θ(x) =
|X(x)|2

φ(x)2
,

where φ is defined by (25). Our first objective will be to show that this function
satisfies the maximum principle.

Indeed, setting ψ(x) = |X(x)|2, we find that

θ =
ψ

φ2
⇒ ∇(log θ) =

∇ψ
ψ

− 2
∇φ
φ
,

and hence

L(log θ) =
Lψ

ψ
− 2

Lφ

φ
−

[(
|∇ψ|
ψ

)2

− 2
(
|∇φ|
φ

)2
]
. (29)

16



It follows from the chain rule that

L(ψ) = λ−2µ2−2α∇ ◦ mu2α−2∇(|X|2) = 2|∇X|2 + 2〈L(X), X〉,

and hence by (28),

L(ψ) = 2|∇X|2 − 2
λ2

〈
R

(
X,

∂f

∂x

)
∂f

∂x
+R

(
X,

∂f

∂y

)
∂f

∂y
,X

〉
.

Since

|∇ψ| = 2|〈∇X,X〉| ≤ 2|∇X||X| = 2|∇X|
√
ψ ⇒ |∇ψ|2

ψ
≤ 4|∇X|2

and the sectional curvatures are bounded by κ2, we obtain

L(ψ)
ψ

≥ |∇ψ|2

2ψ2
− 2κ2|df |2.

On the other hand, it follows from equation (26) that

−2
L(φ)
φ

≥ 2κ2|df |2.

Substituting into (29), we obtain

L(log θ) ≥ −
(
|∇ψ|2

2ψ2

)
+ 2

(
|∇φ|2

φ

)
.

Setting k(x) = (1/2)[(∇ψ/ψ) + 2(∇φ/φ)], we obtain

L(log θ) + k(x) · ∇(log θ) ≥ 0,

and by Hopf’s maximum principle, we conclude that θ cannot assume a positive
local maximum in the interior. Thus if X vanishes on the boundary of U , then
θ and hence X must be identically zero.

Let Γ0(f∗TM) denote the space of smooth sections of f∗TM which vanish
on the boundary of U . The above argument shows that the bilinear form

I : Γ0(f∗TM)× Γ0(f∗TM) −→ R

defined by

I(V, V ) =
∫

T 2
(1 + |df |2)α−1[|∇V |2 − 〈K(V ), V 〉]dA

is positive definite. Indeed, if it were not positive definite, there would be a
solution to the elliptic equation L(X) = 0 which vanished on the boundary of
some proper subdomain U1 ⊂ U by Smale’s version of the Morse index theorem
[25], contradicting the maximum principle for the function θ considered in the
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preceding paragraph. Thus I is positive definite and since it follows from (24)
that the Hessian d2Eα(f) for the α-energy satisfies d2Eα(f) ≥ I, we see that it
is also positive definite. Hence f is stable, establishing the Stability Lemma.

The following Replacement Theorem guarantees that we can replace any α-
harmonic disk bounded by a curve Γ lying in a small normal coordinate neigh-
borhood by a disk which minimizes α-energy:

Replacement Theorem. Let U be a domain in the compact Riemann surface
Σ with a smooth boundary ∂U consisting of a finite number of circles, and let
f1, f2 : U ∪ ∂U →M be two α-harmonic maps such that fi(U) ⊂ Dρ(p), where
Dρ(p) is a geodesic ball of radius ρ about p ∈ M disjoint from the cut locus of
p and ρ < π/(2κ), where κ2 is an upper bound for the sectional curvature on
M . Then f1|∂U = f2|∂U ⇒ f1 = f2. Moreover, the unique α-harmonic f with
given boundary values depends continuously on the boundary values and on the
metric g on M .

Proof: We can assume that f1(U) and f2(U) are contained in Dρ−ε(p), for some
ε > 0. We can replace the Riemannian metric ds2 on Dρ(p) by φ(r)ds2, where r
is the radial coordinate on Dρ(p) and φ : [0, ρ) → R is a smooth function which
is identically one for r ≤ ρ − ε, and goes off to infinity as r → ρ so fast that
(Dρ(p), φds2) is complete. Of course, f1 and f2 are still α-harmonic maps into
the Riemannian manifold (Dρ(p), φds2).

Now observe that no α-harmonic map into (Dρ(p), φds2) with the same
boundary as f1 and f2 can actually penetrate the region ρ − ε < r < ρ. For
immersions, one can see this as follows: At a point of tangency to one of the
hyperspheres r = constant, the α-harmonic map would have to have positive
definite second fundamental form in the direction of the unit normal N to the
hypersurface, contradicting the fact that

D

∂x

(
∂f

∂x

)
·N +

D

∂y

(
∂f

∂y

)
·N = 0,

which follows immediately from the Euler-Lagrange equations for α-harmonic
maps. In the general case, one applies the maximum principle to the operator
L described at the beginning of the section.

Since the manifold (Dρ(p), φds2) is complete and hence the α-energy func-
tional on the space of L2α

1 -maps from U into Dρ(p) which take on given values
on ∂U satisfies condition C, we can apply Lusternik-Schnirelman theory. It fol-
lows from Lemma 1 that all critical points of Eα are strict local minima. But
applying the “mountain pass lemma” (via Lusternik-Schnirelman theory on Ba-
nach manifolds as in Palais [16], [17]) to the space of L2α

1 paths joining two
distinct critical points would yield a critical point which would not be a strict
local minimum, a contradiction. Hence there is only one critical point, proving
the uniqueness statement of the Replacement Theorem.

Note that although Lusternik-Schnirelman theory produces critical points
in L2α

1 , regularity theory show that the α-harmonic maps are C∞. For the
sake of the following arguments, we let (M, g) = (Dρ(p), φds2), the complete
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Riemannian manifold described above. If k is sufficiently large, we can define a
map

H : L2
k(U,M) → L2

k−2(f
∗TM)× L2

k−1/2(∂U,M) by H(f) = (F (f), ev(f)),
(30)

where F is the Euler-Lagrange operator and

ev : L2
k(U,M) −→ L2

k−1/2(∂U ;M)

is evalulation on the boundary. The linearization of this map is

X ∈ L2
k(f∗TM) 7→ (L(X), X|∂U) ∈ L2

k−2(f
∗TM)× L2

k−1/2(f
∗TM |∂U),

which is invertible by standard existence and regularity theory. An application
of the inverse function theorem now implies that f depends continuously on the
boundary values.

The proof that the the unique harmonic f depends continuously on the
ambient metric is similar. Let Met2k(M) denote the space of L2

k metrics on M ,
and note that the Euler-Lagrange operator (16) depends on the metric, and
defines a map

F : L2
k,0(U,M)×Met2k−1(M) −→ L2

k−2(U, TM).

If (f, g) is a critical point for this map F , we can define

πV ◦DF (f, g) : TfL
2
k,0(U,M)⊕ TgMet2k−1(M) −→ TfL

2
k−2(U,M),

πV being the vertical projection. We can divide into components,

πV ◦DF (f, g) = (πV ◦D1F (f, g), πV ◦D2F (f, g)),

the first component being the Jacobi operator L. The fact that there are no Ja-
cobi fields implies that this first component of the derivative is an isomorphism.
Smooth dependence on the metric therefore follows from the implicit function
theorem.

The usual replacement procedure for harmonic maps on a disk utilized by Schoen
and Yau can now be obtained by taking the limit as α → 1, and noting that
the α-harmonic maps must converge without bubbling, since the bubbling two-
spheres cannot exist within the normal coordinate ball.

2.3 Application to the thin part of a map

The replacement procedure suggests using a combination of the two approaches,
infinite-dimensional manifolds and finite-dimensional approximations, for study-
ing gradient-like flows for the α-energy. On appropriate open subsets of the
space Map(Σ,M), one can imagine dividing Σ into “thick” and “thin” subsets,
the thin subsets approximating cylindrical parametrizations of curves, which
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could in turn be approximated by broken geodesic paths as described in Mil-
nor’s treatment of Morse theory of geodesics [11]. To understand the thin part
of such a map, we now consider parametrizations of curves as α-energy critical
points.

If h is a Riemannian metric on the domain Σ, we can imbed the function
Eα,h in a larger family of functions that is invariant under rescaling. Thus we
define

Eβ
α,h : Map(Σ,M) → R by Eβ

α,h(f) =
1
2

∫
Σ

(β2 + |df |2)αdA, (31)

where α > 1 and β2 > 0, so that E1
α,h = Eα,h. Since we can write

Eβ
α,h(f) =

β2(α−1)

2

∫
Σ

(
1 +

|df |2

β2

)α

β2dA, (32)

we see that Eβ
α,h can be obtained from Eα,h up to a constant multiple by simply

rescaling the metric h on Σ. Thus all of the results mentioned before for Eα,h

just as well as for Eβ
α,h, including the fact that critical points of Eβ

α,h are auto-
matically C∞. One advantage of the larger family of functions is that we can
take the limit as β → 0, the resulting limit having very nice scaling properties
that allow more precise estimates. (However, simple examples show that critical
points of the limiting function E0

α,h are not necessarily smooth.)
We want to consider critical points for (31) of the form γ ◦ f0, where (as

described at the end of §2.1) γ : [0, L] → M is a smooth unit-speed geodesic
and

f0 ∈ Map0([0, b]× S1, [0, L]) = {smooth maps f0 : [0, b]× S1 → [0, L]
such that f0(0, θ) = 0, f0(b, θ) = L},

θ being the angular coordinate on S1. More generally we could consider maps
of the form γ ◦ f0 where γ : [0, L] →M is any unit speed curve (not necessarily
a geodesic) and f0 is a critical point for the map

Eβ
α,h : Map0([0, b]× S1,R) −→ R. (33)

The cylinder [0,∞)× S1 is diffeomorphic to the punctured unit disk D1(0) via
the map (u, θ) 7→ (r, θ), where r = e−u. The metric h we choose on [0, b]×S1 is

ds2 = e−2u(du2 + dθ2) = dr2 + r2dθ2, (34)

the metric pulled back via this diffeomorphism for the standard Euclidean metric
on the punctured disk.

Since the curvature of R vanishes, we can apply the Replacement Theorem
for arbitrarily large choice of ρ to conclude that there is a unique critical point
for (33) in Map0([0, b] × S1, [0, L]), and an elementary argument using Fourier
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analysis shows that it must be of the form f0(u, θ) = φ(u). Alternatively, one
could argue that there is a unique critical point for

F β
α,h : Map0([0, b], [0, L]) → R,

F β
α,h(φ) = π

∫ b

0

(β2 + e2u|φ′(u)|2)αe−2udu, (35)

where

Map0([0, b], [0, L]) = {smooth maps φ : [0, b] → [0, L]
such that φ(0) = 0, φ(b) = L},

and if φ is this critical point, then f0(u, θ) = φ(u) must be the unique critical
point for Eβ

α,h.
If we let µ2 = β2 + e2u|φ′(u)|2, the critical points for (35) are the solutions

to the Euler-Lagrange equation

d

du

(
µ2(α−1) dφ

du

)
= 0, (36)

from which it follows, in agreement with (22), that

µ2(α−1)φ′(u) = (β2 + e2u|φ′(u)|2)α−1φ′(u) = a, (37)

where a is a constant.
It is easiest to understand equation (37) when we set β = 0. Then it has the

explicit decaying exponential solutions

φ′(u) = ce−2u(α−1)/(2α−1)u = ce−k(α)u,

with c = φ′(0), and with rate constant

k(α) = 2
α− 1
2α− 1

and c2α−1 = a. (38)

We can then calculate the length of the curve,

L = L(φ) =
∫ b

0

φ′(u)du =
c

k
[1− e−kb], (39)

as well as the value of the function F 0
α,h:

F 0
α,h(φ) = π

∫ b

0

e2u(α−1)c2α
(
e−2u(α−1)/(2α−1)

)2α

du

= πc2α

∫ b

0

exp
[
2u
(

(α− 1)(2α− 1)
2α− 1

− 2α(α− 1)
2α− 1

)]
du

= πc2α

∫ b

0

e−2u(α−1)/(2α−1)du =
πc2α

k
[1− e−kb]. (40)
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Eliminating c yields the relationship between the length of the geodesic and the
energy of the corresponding critical point for E0

α,h,

E0
α,h(f0) = F 0

α,h(φ) =
πL2αk2α−1

[1− e−kb]2α−1
= πL2α

(
k

1− e−kb

)2α−1

. (41)

Since (d/du)(1− e−ku) = ke−ku,

be−kb ≤ 1− e−kb

k
=
∫ b

0

e−kudu ≤ b, when a ≤ b. (42)

Moreover, if for some constant c0,

b(α) ≤ c0
(α− 1)σ

, where 0 < σ < 1, (43)

then e−kb → 1 as α→ 1. Thus given any ε > 0, there is an α0 > 1 such that if
α ∈ (1, α0], then it follows from (41) that the unique critical point φα satisfies

πL2α

b2α−1
≤ F 0

α,h(φα) ≤ (1 + ε)
πL2α

b2α−1
.

As α→ 1, φα approaches an affine function φ1 such that

F 0
1,h(φ1) =

πL2

b
. (44)

Here b/2π is the conformal parameter of the cylinder, and we see that we can
paramatrize a curve of given length L with arbitrarily small energy if we let the
conformal parameter go to infinity.

We expect similar phenomena when β2 is small but nonzero, and verify
this expectation with explicit estimates in the next few paragraphs. If we set
ψ(u) = |φ′(u)|2 and rewrite (37) as

(β2 + e2uψ(u))2(α−1)ψ(u) = a2,

then differentiation yields

(β2 + e2uψ)2(α−1)ψ′ + 2(α− 1)(β2 + e2uψ)2α−3(2ψ(u) + ψ′)e2uψ = 0.

This can be simplified to yield

ψ′(u) = − 4(α− 1)ψ(u)2

β2e−2u + (2α− 1)ψ(u)
,

which is equivalent to equation (3.12) from [3] when β2 = 1. In particular,

ψ′(u) ≤ −4(α− 1)
2α− 1

ψ(u) and ψ(u) ≤ ψ(u0)e−
4(α−1)
2α−1 (u−u0),
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when u > u0, which implies that

φ′(u) ≤ φ′(u0)e−
2(α−1)
2α−1 (u−u0), when u ≥ u0. (45)

On the other hand, we can follow (3.16) of [3] and set

v(u) = ψ(u) +
β2

2α− 1
e−2u.

A calculation yields the inequality,

v′(u) ≥ −4(α− 1)
2α− 1

v(u) which implies that

ψ(u) +
β2

2α− 1
e−2u ≥ ψ(u0)e−

4(α−1)
2α−1 (u−u0), when u ≥ u0. (46)

Thus (
φ′(u) +

β√
2α− 1

e−u

)2

≥ (φ′(u0))2e−
4(α−1)
2α−1 (u−u0),

and using Taylor’s theorem we conclude that

φ′(u) ≥ φ′(u0)e−
2(α−1)
2α−1 (u−u0) − β√

2α− 1
e−u, when u ≥ u0. (47)

If we set u0 = 0, we can rewrite (45) and (47) as

φ′(0)e−ku − β√
2α− 1

e−u ≤ φ′(u) ≤ φ′(0)e−ku. (48)

It follows from (37) that

a = (β2 + (φ′(0))2)α−1φ′(0) = φ′(0)2α−1

(
1 +

β2

φ′(0)2

)α−1

.

If we set x = φ′(0), then

c = a1/(2α−1) = x

(
1 +

β2

x2

)(α−1)/(2α−1)

⇒ c ≤ x

(
1 +

α− 1
2α− 1

β2

x2

)
,

and since x > c,

β2

x2
<
β2

c2
⇒ c < x

(
1 +

α− 1
2α− 1

β2

c2

)
⇒ c

(
1− α− 1

2α− 1
β2

c2

)
< x,

the last implication following from the inequality 1− y < 1/(1+ y) when y > 0.
Thus we find that

c

(
1− α− 1

2α− 1
β2

c2

)
≤ φ′(0) ≤ c. (49)
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The estimate (48) integrates to yield an estimate for L in terms of c,

c

k
[1− e−kb]− β√

2α− 1
[1− e−b] ≤ L ≤ c

k
[1− e−kb], (50)

which when L is held fixed yields the estimate for c:

L
k

1− e−kb
≤ c ≤

(
L+

β√
2α− 1

)
k

1− e−kb
. (51)

From this we conclude that

1
c
≤ b

L
or

β

c
≤ bβ

L
. (52)

To estimate Eβ
α(f), where f(u, θ) = γ(φ(u)), we use (45) and Hölder’s in-

equality to conclude that

F β
α (φ) ≤ π

∫ b

0

(
β2e−2u + c2e−4u(α−1)/(2α−1)

)α

e2(α−1)udu

≤


[
π

∫ b

0

(
c2e−4u(α−1)/(2α−1)

)α

e2(α−1)udu

]1/α

+ ε


α

≤
{[
F 0

α(φ)
]1/α

+ Error
}α

,

where

Error =

[
π

∫ b

0

β2αe−2αue2(α−1)udu

]1/α

,

the last step following from Hölder’s inequality.
In view of (51) and the fact that

k

1− e−kb
≤ 1
be−kb

,

we obtain the following lemma.

Thin Part Lemma. Suppose that a length L and a small constant ε > 0
are given. There is an α0 ∈ (1,∞) such that when b > 0 is sufficiently large,
whenever α ∈ [1, α0) and β.0 satisfies the inequality πβ2α < ε/4, the Eβ

α-
minimizing parametrization of any curve of length L parametrized on [0, b]×S1

has (α, β)-energy < ε.

In other words, we can parametrize a curve of any given length L so that it has
arbitrarily small α-energy when α is close to one. This fact (implicit in [3] and
described in [18] for harmonic maps) is one of the key tools for understanding
α-energy critical points in the space Map(Σ,M).

Moreover, if L is smaller than the distance from any point in M to its
cut locus and γ0, γ1 : S1 → M are curves lying in sufficiently small normal
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coordinate neighborhoods of points p and q in M such that d(p, q) = L, then by
continuous dependence on boundary values in the Replacement Theorem, there
is a unique Eβ

α-minimizing map

h′ : [0, b]× S1 −→M such that h′(0, t) = γ0(t), h′(b, t) = γ1(t),

with energy satisfying the estimate of the Thin Part Lemma.

3 Energy loss in necks

Without assuming finiteness of π1(M) and a bound on the Morse index, it is
almost certain that one could construct sequences of α-energy critical points
which lose energy in the necks in the limit as α→ 1. (This is strongly suggested
by the constructions of Morse-Smale sequences for E presented in §4 of [18].)
However, under the assumption of finite π1(M), the Replacement Lemma and
the Thin Part Lemma imply no loss of energy in necks for minimax sequences
corresponding to a given homology or cohomology constraint, as we next explain.

3.1 The Parker-Wolfson bubble tree

To analyze energy loss in necks, we must discuss the Parker-Wolfson bubble
tree [19] in more depth, following §1 of [18] to a large extent. Let Σ be a closed
oriented surface of genus at least one. (We could apply the ensuing arguments
to a nonorientable closed surface by passing to the oriented double cover.) We
consider a sequence {(fm, ωm)} of critical points for Eαm

with m→∞ such that
αm = 1 + (1/2)m, {ωm} is bounded, and fm : Σ →M has bounded energy and
bounded Morse index. Under these conditions, {(fm, ωm)} has a subsequence
such that:

1. The sequence {ωm} converges to an element ω∞ ∈ T .

2. The sequence {fm : Σ →M} converges in Ck for all k on compact subsets
of the complement of a finite subset {p1, . . . , pl} of “bubble points” in Σ
to a harmonic map f∞ : Σ → M . The Conformality Lemma in §3.3 will
show that the map f∞ is conformal, and hence a parametrized minimal
surface.

3. The energy densities e(fm) converge as distributions to the energy density
e(f∞) plus a sum of constant multiples of the Dirac delta function,

e(fm) → e(f∞) +
l∑

i=1

ciδ(pi).

4. The restrictions of fm to a family of suitably rescaled disks centered near
each bubble point converge in a suitable sense to a finite family of minimal
two-spheres, as explained in more detail below.
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We normalize the Riemannian metric on M so that its sectional curvatures
are bounded above by one, and hence as explained in the proof of the Finiteness
Theorem, the energy of each nonconstant harmonic two-sphere is at least 4π.
In particular, the energy ci lost at each bubble point is at least 4π.

For each m, we divide the Riemann surface Σ into several regions. First,
there is a base

Σ0;m = Σ− (D1;m ∪ · · · ∪Dl;m),

where each Di;m is a metric disk of small radius (which approaches zero as
m → ∞) centered at the bubble point pi ∈ Σ. Each disk Di;m is further
decomposed into a union Di;m = A′i;m ∪ B′i;m, where A′i;m is an annular neck
region and B′i;m is a bubble region, a smaller disk which is centered at pi. As
explained in [18], we can arrange that the radius of Di;m is ≤ (constant)/m, the
radius of B′i;m is ≤ (constant)/m3, and the integral of energy density∫

A′
i;m

e(fm)dA = CR,

where CR is a renormalization constant, which we take to be ≤ 2π, small enough
to prevent bubbling in A′i;m.

We conformally expand Di;m to a disk of unit radius with standard polar
coordinates (r, θ), noting that the expansion of B′i;m has radius going to zero
like 1/m2. Given a ball B̂ of radius 1/3 centered at some point along the circle
r = 1/2 in the expanded disk, we can apply the ε-Regularity Theorem of § 2.1
(see (23)) or Main Estimate 3.2 in [21] to show that r|df | ≤ ε1 on B̂, where ε1 is
a constant that can be made arbitrarily small by suitable choice of normalizing
constant CR. Thus r|df | ≤ ε1 at any point in the region 1/6 < r < 5/6. In
terms of the coordinates (u, θ). where e−u = r, this estimate can be expressed
as [(

∂f

∂u

)2

+
(
∂f

∂θ

)2
]
< ε21, for − log

5
6
< u < − log

1
6
. (53)

By a conformal expansion from the disk of radius 1/6 to the disk of radius 5/6
we can get a similar estimate on the region 1/30 < r < 5/6. Continuing in this
fashion we get an estimate on the entire annular region 2(radius of B′i;m) < r <
5/6. By a slight contraction of the neck, we can redefine neck and bubble so
that this estimate holds over the entire neck A′i;m.

Estimate (53) implies that we have a bound on the length of each curve
r = (constant), and thus we can ensure that each neck is mapped by fm to a
small neighborhood of a smooth curve in M .

Let Bi;m be a disk with the same center as B′i;m but with m times the radius
and let Ai;m = Di;m−Bi;m. The disk Bi;m is then expanded to a disk of radius
m by means of the obvious conformal contraction Ti;m : Dm(0) → Bi;m, where
Dm(0) is the disk of radius m in C. A subsequence of

gi;m = fm ◦ Ti;m : Dm(0) →M, m = 1, 2, . . .
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then converges uniformly in Ck on compact subsets C, or on compact subsets
of C − {pi,1, . . . , pi,li}, where {pi,1, . . . , pi,li} is finite set of new bubble points,
to a harmonic map of bounded energy. The limit extends to a harmonic map
of the two-sphere, by the Sacks-Uhlenbeck removeable singularity theorem.

In the case where there are new bubble points {pi,1, . . . , pi,li} in C = S2 −
{∞}, the process can be repeated. Around each such bubble point pi,j , we
construct a small disk Di,j;m which is further subdivided into an annular region
Ai,j;m and a smaller disk Bi,j;m on which bubbling will occur. We construct a
conformal contraction Ti,j;m : Dm(0) → Bi,j;m and a subsequence of

gi;j;m = fm ◦ Ti,j;m : Dm(0) →M, m = 1, 2, . . .

will converge once again to a harmonic two-sphere with one or several punctures,
which can be filled in as before. For each fm in the sequence, we may have
several level-one bubble regions Bi;m, each of which may contain several level-
two bubble regions Bi,j;m, each of which may contain several level-three bubble
regions, and so forth. The process terminates after finitely many steps, yielding
what Parker and Wolfson call a bubble tree, the vertices being harmonic maps (a
base minimal surface f∞ and several minimal two-spheres) and the edges being
parametrized maps from the annular regions into M .

Some of the harmonic two-spheres obtained by this process may have zero
energy (all their energy bubbles away) in which case they are called ghost bub-
bles, but ghost bubbles always have at least one bubble point in addition to ∞.
Moreover, if a ghost bubble has only bubble point in addition to ∞, it can be
eliminated and the two adjoining annuli can be amalgamated into one. This
might be done many times, depending on our choice of renormalization con-
stant. We assume that this process of amalgamation has been carried through,
so each ghost bubble has at least two bubble points in addition to ∞.

When the process is completed, we find that Σ is a disjoint union of the base
Σ0;m, annular regions Ai1,...,ik;m, also called necks, and bubble regions with
disks around bubble points of higher level deleted,

Bi1,...,ik;m −
⋃
j

Di1,...,ik,j;m. (54)

The annular regions and the regions (54) corresponding to ghost bubbles com-
prise the thin part of the map fm, while the base and the regions (54) corre-
sponding to nonconstant harmonic two-spheres make up the thick part . Har-
monic two-spheres at the end of the bubble tree always have energy at least
4π. Thus a bound on the energy gives a bound on the number of leaves in the
bubble tree, and hence a bound on the total number of edges in the bubble tree.

Since the bubble tree is finite, after passing to a subsequence, we can arrange
that each level k, each of the sequences

gi1,...,ik;m = fm ◦ Ti1,...,ik;m : Dm(0) →M, m = 1, 2, . . . (55)

converges uniformly on compact subsets of C minus a finite number of points
to a limiting harmonic two-sphere gi1,...,ik

. Similarly, if

T ′i1,...,ik;m : D1(0) → Di1,...,ik;m
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is the obvious conformal dilation, we can study the maps

h′i1,...,ik;m = fm ◦ T ′i1,...,ik;m : D1(0) →M, m = 1, 2, . . . , (56)

which we call the neck maps. We will show that suitable reparametrizations of
these maps converge to geodesics.

3.2 Proof of no energy loss

Our goal now is to study the neck maps. Thus given a choice of multi-index
(i1, . . . , ik), we consider the restrictions of f to the corresponding annulus Am =
Ai1,...,ik;m. On the disk Dm = Am ∪ Bm, where Bm = Bi1,...,ik;m is the cor-
responding bubble region, we use the polar coordinates (r, θ) centered at the
bubble point, and the related coordinates (u, θ), where u = − log r + c, so that
the boundary ∂Dm corresponds to r = 0. Moreover, we use the flat metric,

ds2 = dr2 + r2dθ2 = e−2u(du2 + dθ2).

(If the genus of Σ is at least two, this is only an approximation to the restriction
of the metric of Σ to the disk, but the approximation becomes better and better
as m→∞.) The annulus Am is described by the inequalities

0 ≤ u ≤ bm, where bm →∞.

In terms of the (u, θ) coordinates, the neck maps (56) will be considered as maps
on the cylinder

h′m = h′i1,...,ik;m : [0, bm]× S1 −→M.

Estimate (53) implies that (after possibly contracting [0, bm] slightly) the
curve h′m({t}×S1) is contained in an πε1-neighborhood of some point in M , for
each t ∈ [0, bm]. Moreover, (53) also implies that cylindrical regions [a, b] × S1

of given length c = b − a lying within the neck, h′m([a, b] × S1) is contained in
an cε1/2-neighborhood of some point p ∈ M . Thus for a fixed choice of m, we
can consider subintervals

[a, b] ⊂ [0, bm] such that h′m([a, b]× S1) ⊂ B(p, ρ),

for some point p ∈M and some radius ρ satisfying the inequality

ρ < min(π/(2κ), (distance from p to its cut locus)),

where κ2 is an upper bound for the sectional curvature on M . This allows us
to use the Replacement Theorem from §2.2.

Choose N so that bm/N < c and divide the interval [0, bm] into N subinter-
vals

[0, bm/N ], [bm/N, 2bm/N ], . . . , [(N − 1)bm/N, bm].
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It follows from continuous dependence upon boundary conditions, that for any
ε > 0 there exists δ > 0 such that

h′m({(k − 1)bm/N} × S1) ⊂ Bδ(p) and h′m({kbm/N} × S1) ⊂ Bδ(q)

⇒ h′m([(k − 1)bm/N, kbm/N ]× S1) ⊂ B(C, ε) = {p ∈M : d(p, C) ≤ ε},

where C is a geodesic arc in M , and d is the distance function defined by the
Riemannian metric on M . We can apply the same argument to the intervals[(

k − 1
2

)
bm
N
,

(
k +

1
2

)
bm
N

]
,

to conclude that h′m approximates a broken geodesic path Cm.
The approximation becomes better and better the further one stays from the

ends of the neck because of exponential decay of ∂h′m/∂θ on the interior of the
neck. Indeed, after translation, a portion of given length, say [−10, 10]×S1, will
get taken to smaller and smaller normal coordinate neighborhoods of a point
p ∈ M as α → 1. In terms of Fermi coordinates along Cm, the equation for
α-harmonic maps on [−10, 10]× S1,

D

∂u

(
∂h′m
∂u

)
+
D

∂θ

(
∂h′m
∂θ

)
= −(α− 1)

[
∂

∂u
(logµ2)

∂h′m
∂u

+
∂

∂θ
(logµ2)

∂h′m
∂θ

]
,

(57)
where µ2 = (1 + |dh′m|2), more and more closely approximates the standard
equation for harmonic maps in Euclidean space

∂2ĥm

∂u2
+
∂2ĥm

∂θ2
= 0.

The latter equation can be be solved by separation of variables and Fourier
series, the solutions being

ĥm(u, θ) = a0 + b0u

+
∑

n

[an coshnu cosnθ + bn sinhnu cosnθ

+ cn coshnu sinnθ + dn sinhnu sinnθ] ,

the vectors an, bn, cn and dn being determined by the boundary conditions
ĥ|{−10}× S1 and ĥ|{10}× S1. Except for the linear terms all the terms in the
sum exhibit exponential decay on the interior of the interval [−10, 10]. Since
the solution to (57) with given boundary conditions depends smoothly on α as
α→ 1, the same must be true for h′m.

The angles between successive geodesic segments must go to zero as bm →∞,
because otherwise α-energy could be decreased by making the angles smaller,
so Cm approaches a geodesic which extends the full length of the neck. (An
alternative approach to this convergence to a geodesic is presented in [3].) In-
ductive application of the Replacement Theorem shows that there is only one
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αm-harmonic map which takes on the given boundary values and lies in a given
ε-tube about Cm, and it must have less αm-energy than any other map in the
given ε-tube. We can get an upper bound on the α-energy by comparing with a
map of the annulus that maps small annular bands near the boundary to disks
and the remainder of the annulus to a parametrization of part of the curve Cm.
Thus the Thin Part Lemma from §2.3 shows that all we need is a bound on
the length of Cm to show that the total energy within the neck goes to zero as
αm → 1.

To get the needed estimate on the length, we need to make the assumption
that M has finite fundamental group. This allows us to apply an estimate of
Gromov (the theorem of §1.4 in [7]) relating Morse index to length of geodesics.
Gromov was interested in understanding the rate of growth of the number of
geodesics of length ≤ L between two points in a Riemannian manifold as the
bound L is increased. To this end, he proved that the Morse index of a geodesic
grows at least linearly with length, that is, if γ is a smooth closed geodesic,

(Length of γ) ≤ (constant)(Morse index of γ). (58)

Since the Morse index of a minimax sequence corresponding to a homology or
cohomology constraint is bounded, this estimate gives a bound on length L of
any neck, finishing the proof that no energy is lost in necks in the limit.

Finally, we reparametrize the neck region once again, and define

hi1,...,ik;m : [0, 1]× S1 −→M by hi1,...,ik;m(t, θ) = h′i1,...,ik;m(tbm, θ).
(59)

When estimate (43) holds, and hence e−kb → 1, the preceding argument shows
that each sequence m 7→ hi1,...,ik;m converges uniformly in Ck on compact sub-
sets to a geodesic γi1,...,ik

: [0, 1] → M , which may be constant. Moreover,
γi1,...,ik

(1) lies in the image of the minimal two-sphere gi1,...,ik
: S2 →M , while

γi1,...,ik
(0) lies in the image of gi1,...,ik−1 if k > 1, or in the image of f∞ : Σ →M

if k = 1.

Definition. A sequence of bubble disks {Bi1,...,ik;m} is essential if the corre-
sponding sequence of rescaled maps gi1,...,ik:m described in the previous section
converge to a nonconstant harmonic two-sphere gi1,...,ik

; otherwise, it is inessen-
tial . Thus the inessential bubble disks converge to ghost bubbles.

Remark. Given any disk Di1,...,ik;m in the above construction, we can we can
consider all essential bubble disks B′1;m, . . . , B′l;m contained within it. We then
have a family

m 7→ Ei1,...,ik;m = Di1,...,ik;m −
l⋃

i=1

B′i;m.

of planar domains possesses a reparametrization which converges to a tree of
geodesics which connect nonconstant harmonic two-spheres or nonconstant har-
monic two-spheres to the base. This tree is very nicely described at the end of
§1 of [18]. As m→∞ the disks B′i;m contract to points.
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A bound on the α-energy yields a bound on the number of bubbles as well
as the level of any bubble.

3.3 Conformality of the base

Once we know that no energy is lost in the necks, we obtain the estimate (11)
for f∞ and the essential bubble two-spheres. Moreover, we can check that the
base f∞ : Σ →M is indeed a parametrized minimal surface:

Conformality Lemma. The map f∞ : Σ → M is conformal with respect to
the limit conformal structure ω∞.

Proof: Since (fm, ωm) is a critical points for

Eαm
: Map(Σ,M)×Met0(Σ) −→ R,

it must be the case that

d

dt
Eα(f, (hab(t)))

∣∣∣∣
t=0

= 0, (60)

whenever t 7→ (hab(t)) is a variation through constant curvature metrics of total
area one on Σ such that (hab(0)) = (hab) represents the conformal class ωm. In
fact the variation needs only to be tangent to the space of constant curvature
metrics of total area one. Thus, if we choose isothermal parameter z = x1 + ix2

for the initial metric, we can consider a metric variation of the form

hab(t) = λ2δab + tḣab, a, b = 1, 2, (61)

λ2 being a positive smooth function, where as shown in [24] (see also §5 of [12]),

ḣ11 + ḣ22 = 0, and (ḣ11 − iḣ12)dz2

is a holomorphic quadratic differential on Σ.
Carrying out the differentiation on the left-hand side of (60) yields

d

dt
Eα(f, (hab(t)))

∣∣∣∣
t=0

=
α

2

∫
Σ

(1 + |df |2)α−1
∑
a,b

d

dt

√
h(t)hab(t)

∣∣∣∣
t=0

〈
∂f

∂xa
,
∂f

∂xb

〉
dx1dx2, (62)

where (hab) is the matrix inverse to (hab) and h = det(hab). Since dh/dt(0) = 0,

d

dt

(√
hh11

√
hh12

√
hh21

√
hh22

)∣∣∣∣
t=0

= λ−2

(
ḣ22 −ḣ12

−ḣ21 ḣ11

)
.
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Thus we find that∑
a,b

d

dt

√
ηηab

∣∣∣∣
t=0

〈
∂f

∂xa
,
∂f

∂xb

〉
dx1dx2

= −

[
ḣ11

λ2

(〈
∂f

∂x1
,
∂f

∂x1

〉
−
〈
∂f

∂x2
,
∂f

∂x2

〉)
+

2ḣ12

λ2

〈
∂f

∂x1
,
∂f

∂x2

〉]
dx1dx2

= − 4
λ2

Re
[(
ḣ11 + iḣ12

)〈∂f
∂z
,
∂f

∂z

〉]
dx1dx2.

Substitution into (62) yields

d

dt
Eα(f, (hab(t)))

∣∣∣∣
t=0

=
α

2

∫
Σ

(1 + |df |2)α−1φdA,

where φ = − 4
λ4

Re
[(
ḣ11 + iḣ12

)〈∂f
∂z
,
∂f

∂z

〉]
. (63)

Note that the measure φdA is absolutely continuous with respect to (1/2)|df |2dA,
and hence

lim
m→∞

α

2

∫
Σ

(1 + |df |2)α−1φmdA = lim
m→∞

α

2

∫
Σ0;m

(1 + |df |2)α−1φmdA

+
∑ α

2

∫
Bi1,...,ik;m

(1 + |df |2)α−1φmdA,

the last sum being taken over all bubble regions in the bubble tree. Taking the
limits on the right we obtain

lim
m→∞

α

2

∫
Σ

(1 + |df |2)α−1φmdA

=
α

2

∫
Σ

Re
[(
ḣ11 + iḣ12

)〈∂f∞
∂z

,
∂f∞
∂z

〉]
dA

+
∑ α

2

∫
S2

Re
[(
ḣ11 + iḣ12

)〈∂gi1,...,ik

∂z
,
∂gi1,...,ik

∂z

〉]
dA.

All the limits in the sum vanish because the bubble harmonic two-spheres are
all conformal. Thus (60) implies that

α

2

∫
Σ

Re
[(
ḣ11 + iḣ12

)〈∂f∞
∂z

,
∂f∞
∂z

〉]
dA = 0

Thus the Hopf differential 〈
∂f∞
∂z

,
∂f∞
∂z

〉
dz2,

a holomorphic quadratic differential, is perpendicular with respect to the natural
inner product to all holomorphic quadratic differentials, and this implies that
it vanishes. It is well-known that vanishing of the Hopf differential of f∞ is
equivalent to conformality, so the lemma is proven.
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3.4 Gromov’s estimate and α-harmonic tori

As Gromov points out in [7], his estimate (58) relating Morse index to length
can be used with the Morse theory of the action function (1) to provide a lower
bound on the number of smooth closed geodesics with energy less than a given
bound in a compact manifold M with finite fundamental group and generic
Riemannian metric. Indeed, if γ is a constant speed smooth closed geodesic, of
Morse index ≤ λ, (58) implies that J(γ) ≤ cλ2, where c is a constant. Thus if
we let

Map(S1,M)a = {γ ∈ Map(S1,M) : J(γ) ≤ a},

then

(Morse index of the geodesic γ) ≤ λ ⇒ γ ∈ Map(S1,M)cλ2
,

and hence

Hν(Map(S1,M),Map(S1,M)cλ2
; Z) = 0, for ν > λ.

Thus it follows from the Morse inequalities that for generic choice of metric on
M ,

(the number of geodesics of energy ≤ cµ2) ≥
µ∑

λ=0

Hλ(Map(S1,M); Q)

(64)
To understand any theory, it is helpful to have a nontrivial example in mind.

If M is a simply connected four-dimensional manifold, it has cup length two. If,
in addition, M is rationally hyperbolic (see [4] for the definition), a theorem of
Vigué-Poirrier [27] implies that the right-hand side of (64) grows exponentially
with µ and the hence the number of smooth closed geodesics in a generic metric
on M with length ≤ L grows exponentially with L. Many nonsingular algebraic
surfaces are rationally hyperbolic, including the K-3 surface and any nonsingular
algebraic surface of general type.

The same reasoning applies to Map(T 2,M), which can be regarded as an
iterated free loop space,

Map(T 2,M) = Map(S1,Map(S1,M)),

its cohomology being computable via Sullivan’s theory of minimal models. In-
deed, the fibration

p1 : Map(T 2,M) −→ Map(S1,M), f 7→ γ, where γ(t) = f(t, 0)

possess a section (or right inverse)

s1 : Map(S1,M) −→ Map(T 2,M), γ 7→ f, where f(t1, t2) = γ(t1).

This implies that the cohomology of Map(S1,M) pulls back injectively via p∗1
to a direct summand of the cohomology of Map(T 2,M). Thus if M is simply
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connected, rationally hyperbolic and has cup length two, we have exponential
growth of

µ∑
λ=0

Hλ(Map(T 2,M); Q),

as well as exponential growth in the number of Γ-orbits of cohomology classes,
where Γ is the mapping class group. Thus, for example, Morse theory on Banach
manifolds implies that the number of critical points for a generic perturbation
E′α : M(2)(Σ,M) → R grow exponentially with energy, when M = RP 3×RP 3×
(K-3 surface).

This begs the question: Which minimax constraints for H∗(Map(Σ,M)) are
realized without bubbling, which prevent degeneration of conformal structure,
and so forth?

4 The Scaling Theorem

4.1 Statement of the Scaling Theorem

To see how dilations influence the α-energy, consider a map from the ε-disk,

f : Dε → RN , where Dε = {(x, y) ∈ R2 : x2 + y2 ≤ ε2},

which takes the boundary ∂Dε to a point. We can expand this to a map on the
unit disk,

fε : D1 → RN , fε(x, y) = f(εx, εy).

Note that

|dfε(x, y)| = ε|df(εx, εy)|,
∫

D1

|dfε|2αdxdy = ε2(α−1)

∫
Dε

|df |2αdxdy,

and hence ∫
Dε

|df |2αdxdy =
(

1
ε

)2(α−1) ∫
D1

|dfε|2αdxdy. (65)

It follows from (65) that as a nonconstant map from the disk f : D1 → RN is
rescaled to a disk of radius ε, with ε→ 0, the highest order term in the α-energy
increases like

(1/ε)2(α−1) = e−2(α−1) log ε as α→ 1.

Thus if we were to let α→ 1 and ε(α) → 0 in such a way that

− log ε(α) =
c0

α− 1
or ε(α) = e−c0/(α−1),

where c0 is a positive constant, we would find that the α-energy in the rescaled
ball would remain approximately constant. We can conclude that if the α-energy
is bounded as α→ 1,

− log ε(α) ≤ c0
α− 1

, for some positive constant c0. (66)
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Note that (− log ε)/2π can be regarded as the conformal invariant of the annulus
D1 −Dε.

We can apply this observation to maps f : Dε →M , whereM is isometrically
imbedded in RN . Of course, there is no reason in general that the radius of a
disk on which a bubble is supported should go to zero like e−c/(α−1), since
supporting on a smaller disk always requires more α-energy. However, when
there is a positive lower bound on the distance between base and bubbles (13),
such as when we consider the function Eα on N = M(2)(T 2,M)E0 , it takes
some energy to construct an α-energy parametrization of a geodesic connecting
bubble to base, and this enables us to obtain a somewhat weaker estimate on
the rate of growth of energy density within bubbles as α→ 1, an estimate which
is sufficient for our projected applications.

Suppose that M has finite fundamental group, and we are given a sequence
{(fm, ωm)} of (αm, ωm)-harmonic maps of bounded Morse index, with ωm con-
verging to some element ω ∈ T . Recall that after passing to a subsequence we
can arrange the following: First, the restrictions of fm to Σ minus the bub-
ble points converges to a base conformal ω∞-harmonic map f∞ : Σ → M . In
addition, we have sequences of bubble regions

Bi1,...,ik;m at level k of radius ri1,...,ik;m,

the radius being measured with respect to the canonical constant curvature
metric of total area one on Σ. For each multi-index (i1, . . . , ik), the restrictions
of fm to Bi1,...,ik;m can be rescaled to maps gi1,...,ik;m on disks of radius m
(as described in (55)) which converge on the complement of a finite number of
points to a harmonic two-sphere bubble gi1,...,ik

. Each bubble region Bi1,...,ik;m

lies in a larger disk

Di1,...,ik;m at level k of radius si1,...,ik;m,

the difference Ai1,...,ik;m = Di1,...,ik;m − Bi1,...,ik;m being one of the necks.
Finally, the restrictions of fm to Ai1,...,ik;m can be reparametrized to maps
hi1,...,ik;m on [0, 1]× S1 (described in (59)) which converge to geodesics γi1,...,ik

in M , the endpoints lying in either the base or one of the bubbles. We have
convergence to what Chen and Tian [3] call a harmonic map from a stratified
Riemann surface.

Scaling Theorem. Let M be a compact Riemannian manifold which satis-
fies the condition that all sectional curvatures are ≤ 1, and let Σ be a closed
surfaces of genus g ≥ 1. Suppose that {(fm, ωm)} is a sequence of (αm, ωm)-
harmonic maps. Let m 7→ Bi1,...,ik;m be a sequence of bubble disks of radius
ri1,...,ik;m and m 7→ Ai1,...,ik;m is the corresponding sequence of necks such that
the reparametrizations of fm on the Ai1,...,ik;m’s converge to a geodesic γi1,...,ik

of nonzero length Li1,...,ik
. If σ = 1/2αm,

lim sup {− [log(ri1,...,ik;m)− log(si1,...,ik;m)] (αm − 1)σ} ≤ c1Li1,...,ik
, (67)
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for 1 < α ≤ α0, where c1 is a positive constant depending on α0 and an upper
bound E1 on the α0-energy of the restriction of fm to Bi1,...,ik;m. Similarly,

lim inf {− [log(ri1,...,ik;m)− log(si1,...,ik;m)] (αm − 1)σ} ≥ c2Li1,...,ik
, (68)

where c2 is a positive constant depending on a lower bound on energy of the
bubble.

Note that (α − 1)σ ∼
√
α− 1. We emphasize that in accordance with the

discussion in the Prologue, we have rescaled the metric ofM so that all harmonic
two-spheres, and hence all bubbles, have energy at least 4π.

For bubbles at level one we can regard (67) and (68) as stating that eventu-
ally,

exp
(

−c2L
(α− 1)σ

)
≤ ri;m ≤ exp

(
−c1L

(α− 1)σ

)
,

where L is the length of the geodesic between base and bubble.
Recall that the sequence of bubble disks {Bi1,...,ik;m} is essential if gi1,...,ik

is a nonconstant harmonic two-sphere. Suppose that hypothesis (13) is satisfied
for some unionN of components ofM(Σ,M), and that the sequence {(fm, ωm)}
is chosen to lie in N , so that when energy is bounded by E0, there is a lower
bound L0 between minimal distance L0 from base minimal surfaces of genus
at least one to minimal two-spheres. A bound E1 on the α-energy gives a
bound on the number of edges in the bubble tree and a bound k on the level
of an essential sequence of bubble disks. Moreover, any essential bubble disk
Bi1,...ik;m of level k is contained in a bubble disk Bi1,...ij ;m of level j, with
1 ≤ j ≤ k, such that the corresponding annulus Ai1,...ij ;m parametrizes a curve
of length at least L1, where L1 = L0/k. The corresponding hi1,...ij ;m’s will then
approach a parametrization of a curve C of length ≥ L1, as described in § 3.2.

Remark. The proof will show that we can take the constants in (67) and (68)
to approach each other. Indeed, if α0 is sufficiently close to one, we could take
the constants to be

c1 = (1− ε)
√
π√

2Eα0,b

, c2 = (1 + ε)
√
π√

2Eb

(69)

where the α0-energy of the restriction of fm to Bi1,...,ik;m is bounded above by
Eα0,b, the usual energy of this restriction is bounded below by Eb and ε > 0
approaches zero and α0 approaches one.

4.2 The model space for a single bubble

The proof is best understood by introducing a model for bubbling. It is helpful
to first consider the case of a single bubble. Thus we imagine that a single
bubble two-sphere forms, and consider a space of maps f from Σ to M that can
serve to approximate a sequence of critical points for Eα as α→ 1 in this case.
Let p be a point in M and divide Σ into three pieces:
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1. a base Σ0 = Σ−Dε(p), where Dε(p) is a disk of radius ε about p,

2. a smaller concentric disk Dη(p) called the bubble, and

3. an annulus N = Dε(p)−Dη(p) called the neck .

As before, we imagine that the disk Dε(p) is given the standard flat metric

ds2 = dx2 + dy2 = dr2 + r2dθ2 = e−2u(du2 + dθ2),

where (r, θ) are the usual polar coordinates and r = e−u.

Definition. We let Mapp,ε,η(Σ,M) denote the subspace of Map(Σ,M) consist-
ing of the smooth maps f : Σ →M which satisfy the following conditions:

1. f takes the circles ∂Dε(p) and ∂Dη(p) to points, and

2. f |N is independent of θ, of the form f(u, θ) = γ ◦φ(u), where γ : [0, L] →
M is a unit-speed curve of length L, and

φ : [− log ε,− log η] → [0, L]

is the unique critical point for the function

Fα(φ) = π

∫ − log η

− log ε

(1 + e2u|φ′(u)|2)αe−2udu, (70)

considered in § 2.3.

Of course, we can regard Mapp,ε,η(Σ,M) as a smooth infinite-dimensional man-
ifold when the completion is with respect to a suitable Sobolev norm. Closely
related is the smooth manifold

Mapε,η0
(Σ,M) = {(f, p, η) ∈ Map(Σ,M)×M × (0, η0)

: f ∈ Mapp,ε,η(Σ,M)}. (71)

which allows the bubble point p and the parameter η to vary. The previous
space Mapp,ε,η(Σ,M) can be regarded as the fiber over (p, η) of a continuous
map

π : Mapε,η0
(Σ,M) −→M × (0, η0),

the projection on the last two factors. We will apply the models in these spaces
in three main cases:

Case I. A single bubble forms. If the single bubble forms at the point p ∈ Σ,
we have a single sequence of bubble disks B1;m centered at p, a single sequence
of neck regions A1;m, and a single sequence of rescaled maps g1;m : Dm(0) →M
which converges uniformly on compact subsets of C to a harmonic two-sphere.
In this case, we can set

εm = s1;m = (radius of A1;m ∪B1;m), ηm = r1;m = m(radius of B1;m).
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When m is sufficiently large, fm will closely approximate an element of the
space Mapp,εm,ηm

(Σ,M).

Case II. Several bubbles form. As we explain more fully later, the same
model can be adapted to apply to the case in which several bubbles are forming,
by setting

ε = si1,...,ik;m, η = ri1,...,ik;m.

In this case, the restriction of fm to Dη may approach a tree consisting of
minimal two spheres connected by geodesics, while the restriction of fm to
Σ−Dε may approach a base minimal surface connected to minimal two-spheres
by geodesics.

Case III. The neck is contracted to have given length. In either of the
previous cases, we can make the bubble region larger so that the restriction
of fm to the annular region, when properly rescaled, approaches a curve of a
given fixed length, the length being less than the distance from any point to its
conjugate locus. We will return to consider this case in § 5.

In each of the three cases, we fix ε > 0, and consider a family of maps depending
continuously on the parameter b,

b ∈ (0,∞) 7→ ζ(b) = (fb, p, η(b)) ∈ Mapε,η0
(Σ,M),

where η(b) = e−bε, (72)

satisfying the additional conditions that

1. the restriction of each fb to the neck N is of the form f(u, θ) = γ ◦ φb(u),
where γ is a fixed curve,

2. the restriction of each fb to Dη(p) is obtained from a fixed map g : D1 →
M by rescaling, where D1 is the unit disk.

The second condition means that there is a map

g : D1 →M, such that fb(x, y) = g(x̄, ȳ), where

{
x = ηx̄,

y = ηȳ,
, (73)

(x̄, ȳ) being the standard coordinates on the unit disk D1.
We consider the effect on the energy of reparametrizations in which b, and

hence η = e−bε, are varied, thereby changing the size of the bubble region. Let

Gα(b) = Eα,h(fb|De−bε(p)), Hα(b) = Eα,h(fb|(Dε(p)−De−bε(p))).

It should be intuitively clear that as b increases, Gα increases whileHα decreases.
Our goal is to show that when b is sufficiently small, the derivative of Hα

dominates and we can decrease energy by increasing b. Conversely, when b is
sufficiently large, the derivative of Gα dominates, and we can decrease energy
by making b smaller.
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4.3 Estimates when β = 0

The needed estimates are easiest to understand if we introduce an additional
parameter β, and consider the family of functions

Eβ
α,h(f) =

1
2

∫
Σ

(β2 + |df |2h)αdA,

just as we did in §2.3, and let β → 0. The parameter β appears when making
a change of scale and expanding the disk Dε(p) = N ∪Dη(p) to a disk of unit
radius, and replacing fb by f̃b̃, where

fb(x, y) = f̃b̃(x̃, ỹ), where

{
x = εx̃,

y = εỹ.

Although the ordinary energy would be invariant under such a rescaling, the
α-energy is not, and in fact

1
2

∫
Dε

(1 + |dfb|2)αdxdy =
1
2

∫
D1

(1 +
|df̃b̃|
ε

2

)αε2dx̃dỹ

=
1

2ε2(α−1)

∫
D1

(ε2 + |df̃b̃|
2)αdx̃dỹ =

1
ε2(α−1)

Eβ

α,h̃
(f̃b̃),

where β = ε and h̃ = dx̃2 + dỹ2.
To simplify notation, we drop the tilde, and obtain a new family of maps

b ∈ (1,∞) 7→ fb ∈ Map(D1(0),M).

Our goal is to minimize Gβ
α(b) +Hβ

α(b), where

Gβ
α(b) = Eβ

α,h(fb|De−b(0)), Hβ
α(b) = Eβ

α,h(fb|N), (74)

where h is the standard flat metric on D1 and we have replaced the old N with

N = D1(0)−De−b(0).

In this section, we describe the needed estimates in the limiting case in which
β → 0. We assume that the restriction of fb to N is a critical point for the
α-energy with Dirichlet boundary conditions for each choice of b.

Recall from §2.3 that since f(u, θ) = γ ◦ φ(u) on N ,

E0
α,h(f |N) = F 0

α,h(φ) = π

∫ b

0

|φ′(u)|2αe2(α−1)udu,

and there is a unique critical point φ to the functional F 0
α,h which satisfies the

end point conditions φ(0) = 0 and φ(b) = L. This critical point is given by the
formula

φ′(u) = ce−ku = ce−(2(α−1))u/(2α−1), where c is a constant,
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the constant being determined by the end point conditions. Indeed, it follows
from (39) that the relationship between b and c (for given choices of α and L)
is given by

c = µ(b) = L
k

1− e−kb
, where µ′(b) < 0 and lim

b→∞
µ(b) = kL. (75)

From (41), we conclude that

H0
α(b) = E0

α,h(fb|N) = πL2α

(
k

1− e−kb

)2α−1

. (76)

On the other hand, we can consider the energy within Dη(0), where for the
rescaled map, we take η = e−b. Note that it follows from (73) that dg = ηdf ,
and hence

G0
α(b) = E0

α,h(fb|De−b(0))

=
1
2

(
1
η

)2(α−1) ∫
D1

|dg|2αdx̄dȳ =
1
2
e2(α−1)b

∫
D1

|dg|2αdx̄dȳ. (77)

To see that there is a unique value of b which minimizes the sum

E0
α,h(fb|Dε(p)) = G0

α(b) +H0
α(b),

we first note that
G0

α(b) ≥ 1
2

∫
D1

|dg|2dxdy.

Moreover,
dG0

α

db
(b) = (α− 1)e2(α−1)b

∫
D1

|dg|2αdx̄dȳ ≥ 0,

d2G0
α

db2
(b) = 2(α− 1)2e2(α−1)b

∫
D1

|dg|2αdx̄dȳ ≥ 0,

soG0
α(b) is bounded below by a positive constant, strictly increasing and concave

up. On the other hand,

H0
α(b) = πL2α

(
2(α−1)
2α−1

1− e−kb

)2α−1

→ πL2α

(
2(α− 1)
2α− 1

)2α−1

(78)

as b→∞, and H0
α(b) →∞ as b→ 0. Moreover, since

d

db

(
1− e−kb

k

)
= e−kb,

we see that

dH0
α

db
(b) = (1− 2α)e−kbπL2α

(
k

1− e−kb

)2α

≤ 0,
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d2H0
α

db2
(b) = (−2α)(1− 2α)e−2kbπL2α

(
k

1− e−kb

)2α+1

≥ 0.

so H0
α(b) is strictly decreasing and concave up. Thus

E0
α(b) = G0

α(b) +H0
α(b) satisfies

d2E0
α

db2
(b) ≥ 0,

and hence E0
α can have at most one local minimum, and any such minimum

must be a global minimum. Such a minimum can occur only if

dG0
α

db
(b) = −dH

0
α

db
(b),

or equivalently,

(α− 1)e2(α−1)b

∫
D1

|dg|2αdx̄dȳ = (2α− 1)e−kbπL2α

(
k

1− e−kb

)2α

. (79)

If we choose α small enough, there will in fact be a unique solution to (79) for
a given choice of L.

We want to give estimates on the choice of b which achieves this minimum.
To do this, we first note that

x ∈ [0, b] ⇒ e−kb ≤ φ′(x) ≤ 1,

so

e−kbb ≤ 1− e−kb

k
=
∫ b

0

e−kxdx ≤ b. (80)

It therefore follows from (79) that

(α− 1)e2(α−1)b

∫
D1

|dg|2αdx̄dȳ ≥ (2α− 1)e−kbπL2α 1
b2α

, (81)

which in turn implies that when α ≤ α0,

(α− 1)b2α ≥ πL2α

2Eα0,b
e−2αkb, where Eα0,b =

1
2

∫
D1

|dg|2α0dx̄dȳ.

Since b ≤ (constant)(α− 1)−σ, for σ ∈ (0, 1) implies that e−2αkb → 1 as α→ 1,
we conclude that

b ≥ c1L

(α− 1)1/2α
, where c1 = (1− ε)

(
π

2Eα0,b

)1/2

, (82)

for 1 < α ≤ α0. (Here we use the fact that 0 < x < 1 implies that x1/2α > x1/2.)
Thus

e−b ≤ exp
(

−c1L
(α− 1)1/2α

)
,
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the estimate needed for the first estimate of the Scaling Theorem when β = 0.
A lower bound on the radius of the bubble region can be obtained in a similar

fashion. It follows from (79) and (80) that

(α− 1)e2(α−1)b

∫
D1

|dg|2αdx̄dȳ ≤ (2α− 1)e−kbπL2α e
2αkb

b2α
. (83)

and since e2(α−1)b = e(2α−1)kb, we conclude that

b2α ≤ (2α− 1)πL2α 1
2(α− 1)Eb

, where Eb =
1
2

∫
D1

|dg|2dx̄dȳ,

or

b ≤ c2L

(α− 1)1/2α
, where c2 = (1 + ε)

(
π

2Eb

)1/2α0

, (84)

for 1 < α ≤ α0. (Here we use the fact that 0 < x < 1 implies that x1/2α <
x1/2α0 .) This gives the second estimate of the Scaling Theorem when β = 0.

4.4 The first estimate in the general case

Once one has the estimate (82) for the case β = 0, a similar estimate can
be obtained by approximation when β > 0 is sufficiently small. This can be
achieved by a relatively straightforward, if somewhat lengthy, application of
Taylor’s theorem. As in the preceding sections, we consider a family of rescaled
maps,

b ∈ (1,∞) 7→ fb ∈ Map(D1(0),M),

and we seek to establish estimates for the functions

Gβ
α(b) = Eβ

α,h(fb|De−b(0)) and Hβ
α(b) = Eβ

α,h(fb|N),

where N = D1(0) − De−b(0), and now β is nonzero. Our strategy is to show
that unless the first estimate (67) of the Scaling Theorem holds,

dGβ
α

db
(b) < −dH

β
α

db
(b).

In other words, we show that the sum can be decreased by increasing b, unless
b satisfies (84) when α is sufficiently close to one.

As far as the restriction to the bubble region goes, we need to estimate the
derivative of

Gβ
α(b) =

1
2
e2(α−1)b

∫
D1

(e−2bβ2 + |dg|2)αdx̄dȳ. (85)

We quickly verify that

dGβ
α

db
(b) = (α− 1)Gβ

α(b)

− αe2(α−1)b(β2e−2b)
∫

D1

(e−2bβ2 + |dg|2)α−1dx̄dȳ, (86)
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and hence
dGβ

α

db
(b) ≤ 2(α− 1)Gβ

α(b), (87)

where Gβ
α(b) is the (α, β)-energy of the bubble.

We also need to consider the effect of varying b on

Hβ
α(b) = π

∫ b

0

(β2e−2u + φ′a(u)2)αe2(α−1)udu, (88)

where φ′a(u) is the function determined implicitly by

(e−2uβ2 + φ′a(u)2)α−1φ′a(u) = ae−2(α−1)u, (89)

a being the constant chosen so that∫ b

0

φ′a(u)du = L, where L is a given constant. (90)

Thus

dHβ
α(b)
db

=
d

db
h(a(b), b),

where h(a, b) = π

∫ b

0

(β2e−2u + φ′a(u)2)αe2(α−1)udu,

and a(b) is determined implicitly by the constraint∫ b

0

φ′a(u)du = L. (91)

The condition dL = 0 implies that

da

db
=

−φ′a(b)∫ b

0
ε′(u)du

, where ε(u) =
∂φa

∂a
(u). (92)

We calculate

dHβ
α

db
=

d

db

(
π

∫ b

0

(φ′a(u)2 + e−2uβ2)αe2(α−1)udu

)
= π

[
(φ′a(b)2 + e−2bβ2)αe2(α−1)b

]
+ π

[∫ b

0

2α(φ′a(u)2 + e−2uβ2)α−1φ′a(u)ε′(u)e2(α−1)udu

] [
da

db

]
, (93)

where da/db is given by (92). It follows from (89) that∫ b

0

2α(φ′a(u)2 + e−2uβ2)α−1φ′a(u)ε′(u)e2(α−1)udu =
∫ b

0

2aαε′(u)du, (94)
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and hence using (92), we can simplify (93) to

dHβ
α

db
=
[
(φ′a(b)2 + e−2bβ2)αe2(α−1)b

]
− 2aαφ′a(b). (95)

The idea is to regard each of the terms in (95) as a perturbation of the corre-
sponding expression for the case where β = 0.

For estimating the first of these expressions, we can regard φ′a(u)2 + e−2uβ2

as a small perturbation of φ′a(u)2. It follows from Taylor’s theorem that if
1 < α < 2, x > 0 and ζ ≥ 0,

xα ≤ (x+ ζ)α ≤ xα

(
1 + α

ζ

x
+

1
2
α(α− 1)

ζ2

x2

)
. (96)

It then follows from (96) that

φ′a(b)2αe2(α−1)b ≤
[
(φ′a(b)2 + e−2bβ2)αe2(α−1)b

]
≤ φ′a(b)2αe2(α−1)b

(
1 + α

e−2bβ2

φ′a(b)
+

1
2
α(α− 1)

e−4bβ4

φ′a(b)2

)
.

Applying (45) and (49) then yields[
(φ′a(b)2 + e−2bβ2)αe2(α−1)b

]
≤ a2α/(2α−1)e−kb

(
1 + α

e−2bβ2

φ′a(b)
+

1
2
α(α− 1)

e−4bβ4

φ′a(b)2

)
, (97)

giving an estimate for the first term in (95).
On the other hand, the second term can be estimated directly by (49):

2aα
(
a1/(2α−1)(1− ε)e−kb − β√

2α− 1
e−b

)
≤ 2aαφ′a(b),

where ε =
α− 1
2α− 1

β2

a2/(2α−1)
. (98)

We can substitute (97) and (98) into Hα,β to obtain the result:

dHα,β

db
(b) ≤ c2α

[
e−kb

(
1 + α

e−2bβ2

φ′a(b)
+

1
2
α(α− 1)

e−4bβ4

φ′a(b)2

)
−2α

(
(1− ε)e−kb − β

c
√

2α− 1
e−b

)]
. (99)

where

c2α−1 = a and ε =
α− 1
2α− 1

β2

c2
.
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Finally, it follows from (90), (48) and (49) that

L =
∫ b

0

φ′a(u)du ≤
∫ b

0

φ′a(0)e−kudu ≤ φ′(0)
1− e−kb

k
≤ c

1− e−kb

k
,

which implies that

c ≥ Lk

1− e−kb
.

Thus it follows from (99) that

− dHβ
α

db
(b) ≥ (2α− 1)e−kb

(
Lk

1− e−kb

)2α

(1− Error)

≥ (2α− 1)e−kb

(
L

b

)2α

(1− Error) , (100)

where the error term is small as long as β/c is sufficiently small.
It follows from (87) and (100) that

dGβ
α

db
(b) +

dHβ
α

db
(b) ≤ 2(α− 1)Gβ

α(b)− (2α− 1)e−kb

(
L

b

)2α

(1− Error) ,

and hence the sum on the left is negative unless

2(α− 1)Gβ
α(b) ≥ (2α− 1)e−kb

(
L

b

)2α

(1− Error) ,

or by (85),

(α− 1)e2(α−1)b

∫
D1

(e−2bβ2 + |dg|2)αdx̄dȳ

≥ (2α− 1)e−kb

(
L

b

)2α

(1− Error) . (101)

We now proceed as in the case β = 0, using (101) instead of (81). We conclude
as in the preceding section that if (67) does not hold, then

dGβ
α

db
+
dHβ

α

db
< 0

whenever α is sufficiently close to one, under the assumption that we can choose
β/c to be arbitrarily small.

4.5 The lower bound on radius in the general case

Our goal in this case is to show that

dGβ
α

db
(b) > −dH

β
α

db
(b).

45



unless b satisfies the second estimate (68) of the Scaling Theorem.
To get an estimate for the derivative of Gβ

α, we let h = sup(|df |2, 1) and let
A be the subset of D1 on which h ≥ 1. Then∫

D1

(e−2bβ2 + |dg|2)α−1dx̄dȳ

≤ B =
∫

D1−A

(e−2bβ2 + 1)α−1dx̄dȳ +
∫

A

(e−2bβ2 + |dg|2)dx̄dȳ.

Thus it follows from (86) that

dGβ
α

db
(b) ≥ 2(α− 1)Gβ

α(b)− (2α)e2(α−1)b(β2e−2b)B, (102)

the last term going to zero as β2 → 0, since boundedness of energy implies that
e2(α−1)b is bounded, for reasons described at the beginning of §4.1.

To estimate the derivative of Hβ
α , we use (95),

dHβ
α

db
=
[
(φ′a(b)2 + e−2bβ2)αe2(α−1)b

]
− 2aαφ′a(b), (103)

and once again regard each term as a perturbation of the corresponding expres-
sion for the case where β = 0.

We note first that

(φ′a(b)2 + e−2bβ2)αe2(α−1)b ≥ φ′a(b)2αe2(α−1)b.

Applying (47) and (49) then yields[
(φ′a(b)2 + e−2bβ2)αe2(α−1)b

]
≥ φ′a(0)e−kb − β√

2α− 1
e−b

≥ c2α

(
1− α− 1

2α− 1
β2

c2

)(
φ′a(0)e−kb − β√

2α− 1
e−u

)
, (104)

giving an estimate for the first term in (103). Note that the error term is small
if both β/c and βe−b are small.

On the other hand, the second term can be estimated directly by (49):

2αφ′a(b) ≤ 2αc. (105)

We can substitute (104) and (105) into Hα,β to obtain the result:

dHα,β

db
(b) ≥ c2α

[(
1− α− 1

2α− 1
β2

c2

)(
φ′a(0)e−kb − β√

2α− 1

)
− 2αe−kb

]
.

(106)
Finally, it follows from (90), (48) and (49) that

L =
∫ b

0

φ′a(u)du ≥
∫ b

0

(
ce−ku − β√

2α− 1
e−u

)
du

≥ c
1− e−kb

k
− β√

2α− 1
(1− e−b),
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which implies that

c ≤
(
L+

β√
2α− 1

(1− e−b)
)

k

1− e−kb
.

Thus it follows from (106) that

− dHβ
α

db
(b) ≤ (2α− 1)e−kb

(
Lk(1 + Error)

1− e−kb

)2α

≤ (2α− 1)e−kb

(
L (1 + Error)

be−kb

)2α

, (107)

where the error term is small as long as β and β/c are sufficiently small.
It follows from (102) and (107) that

dGβ
α

db
(b) +

dHβ
α

db
(b) ≥ 2(α− 1)Gβ

α(b)− (2α)e2(α−1)b(β2e−2b)B

− (2α− 1)e−kb

(
L (1 + Error)

be−kb

)2α

,

and hence the sum on the left is positive unless

2(α− 1)Gβ
α(b)− (2α)e2(α−1)b(β2e−2b)B

≤ (2α− 1)e−kb

(
L (1 + Error)

be−kb

)2α

,

or by (85),

(α− 1)e2(α−1)b

∫
D1

(e−2bβ2 + |dg|2)αdx̄dȳ − Error

≤ (2α− 1)e−kb

(
L (1 + Error)

be−kb

)2α

, (108)

both error terms being small if β and β/c are sufficiently small.
We now proceed as in the case β = 0, using (108) instead of (83). We

conclude as in the preceding section that if (68) does not hold, then

dGβ
α

db
+
dHβ

α

db
> 0

whenever α is sufficiently close to one, under the assumption that we can choose
β and β/c to be arbitrarily small.

4.6 Proof of the Scaling Theorem

Case I: only one bubble forms. We now compare the models of the previous
sections with a sequence {(fm, ωm)} of critical points for Eαm

as described in
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§3.1, under the assumption that only one bubble forms. In this case, we have
a single sequence of bubble disks {Bm} and a single sequence of necks {Am}.
The rescalings gm and hm of the restrictions of fm to Bm and Am converge to
a limit harmonic two sphere g : S2 →M and a cylinder parametrization

h = γ ◦ π : [0, 1]× S1 → [0, 1] →M

of a geodesic γ. Our assumption is that the geodesic γ has length bounded
below by L = L0 in accordance with (13).

To apply the model of §4.2, we have to describe what corresponds to the disk
of radius ε and the smaller concentric disk of radius η. We choose η to be the
radius of the bubble region Bm, but have some freedom of choice of ε because
of the nonzero length of the curves connecting bubbles to base. We recall that
after rescaling to a unit disk, β = ε, the radius of the outer disk in the model.
If rm is the radius of Bm and sm is the radius of Dm = Am ∪Bm, we can let

ε = exp (ζ log rm + (1− ζ) log sm) , (109)

where ζ > 0 is very close to zero. The length of the curve parametrized by the
corresponding annular region approaches (1− ζ)L as α→ 1.

The point is that this allows us to take β and β/c small, as needed in the
estimates in §4.4 and §4.5. indeed,

bm = −[log rm − log sm] ⇒ β = ε = sme
−ζbm ,

which becomes arbitrarily small as bm →∞. Moreover, if follows from (52) that

β

c
≤ bβ

(1− ζ)L
≤ bsme

−ζb

(1− ζ)L
−→ 0 as b→∞.

Thus β and β/c can indeed be taken to be arbitrarily small when α is close to
one. (One might need to change the ε in (69) to account for the shortening of
the curve parametrized by the annulus.) Thus we can indeed ensure that

dGβ
α

db
+
dHβ

α

db
< 0

unless the estimate (67) of the Scaling Theorem is satisfied.
In particular, if p is the bubble point, we can arrange that fm is close to

an element f ′m of Mapp,ε,η(Σ,M) where ε is given by (109) and η = rm, in the
following sense:

1. the restriction of fm Dη(p) is L2α
1 close to f ′m, and

2. the restriction of fm toDε(p)−Dη(p) is C0 and L2α
1 close to a parametriza-

tion (as discussed in §2.3) of a smooth curve C of length at least L/2.

If {ψs : s ∈ R} is a smooth family of piecewise smooth diffeomorphisms of
Σ with ψ0 the identity, each ψs being continuous and smooth on each piece,

Σ−Dε(p), Dε(p)−Dη(p) and Dη(p).
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Then s = 0 must be a critical point for the map s 7→ E(fm ◦ ψs). Assuming
that η does not satisfy the estimate of the Scaling Theorem, we claim that when
m is sufficiently large, we will construct such a family of diffeomorphisms such
that

d

ds
(Eβ

α(fm ◦ ψs))
∣∣∣∣
s=0

6= 0. (110)

Recall that since f ′m ◦ ψs is an element of the model space Mapp,ε,η(Σ,M),
the restriction of f ′m to Dε(p)−Dη(p) is of the form f ′m(u, θ) = γ ◦φ(u) for some
diffeomorphism φ : [a, b] → [0, L]. We construct the family of diffeomorphisms
of Σ by stipulating that the restriction of each ψs to Σ−Dε(p) is the identity,
that ψs|Dη(p) is a rescaling which sends the disk of radius η about p to the
disk of radius e−sη, and that in terms of the coordinates (u, θ) on Dε(p), the
restriction of ψs to Dε(p) − De−sη(p) is of the form ψs(u, θ) = φs(u), where
γ ◦ φs(u) is the parametrization which gives a critical point for the α-energy
with Dirichlet boundary conditions. With this choice of ψs, it follows from § 4.4
that the model f ′m satisfies

d

ds
(Eβ

α(f ′m ◦ ψs))
∣∣∣∣
s=0

6= 0.

The nature of the convergence of fm to the model f ′m now implies that (110)
holds, finishing the proof of the Scaling Theorem in the case of one bubble.

Case II: the general case. Given a sequence {(fm, ωm)} with convergence
properties described in §4.1, we choose an outermost essential sequence of bubble
disks m 7→ Bi1,...,ik;m, and choose a sequence m 7→ Bi1,...,ij ;m with j ≤ k such
that the corresponding hi1,...ij ;m’s approach a curve of length ≥ L1, where
L1 = L/k. We let p be the center of Bi1,...,ij ;m, let ri1,...,ij ;m be the radius of
Bi1,...,ij ;m and let si1,...,ij ;m be the radius of Ai1,...,ij ;m ∪ Bi1,...,ij ;m. We apply
the model this time with η = ri1,...,ij ;m and

ε = exp
(
ζ log ri1,...,ij ;m + (1− ζ) log si1,...,ij ;m

)
,

with ζ very close to zero. Of course, the restriction of fm to Dη may bubble
into several minimal two-spheres, some being ghosts, connected by geodesics.
Similarly, the restriction of fm to Σ−Dε may converge to a base connected by
geodesics to a collection of minimal two-spheres. Our use of the model focuses
on one neck at a time.

We can now repeat the argument of Case I with virtually no change.

5 Conclusion

5.1 Critical points for one bubble configurations

We now continue the discussion of the Prologue, and consider what the Scaling
Theorem says about the direct limit of the Morse-Witten complexes of

E′α : M(2)(T 2,M)E0 → R (111)
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as α → 1, when the bound E0 on energy is chosen so small that at most one
bubble can form. We can achieve this by assuming that the supremum of the
sectional curvatures on M is one, and that

E0 < (minimum value of E on M(2)(T 2,M)) + 8π.

We might also consider more general cases in which Σ is a surface of genus
≥ 1 and energy bounds prevent more than one bubble from forming. We ask
what the Scaling Theorem says about the asymptotic behavior of Eαm

(fm, ωm)
as m → ∞ and αm → 1, assuming that branched covers and degeneration of
conformal structure are avoided.

The fm’s approximate elements of a model space which refines the one given
in § 4.2. For the refined model, we regard S2 as the one-point compactification
of C, the new point being ∞, and let E be the space consisting of triples

(f, γ, g) ∈ Map(Σ,M)×Map([0, 1],M)×Map(S2,M)

which satisfy the following conditions:

1. γ : [0, 1] →M is a constant speed parametrization of a smooth curve from
γ(0) to γ(1),

2. γ(0) = f(p), for some p ∈ Σ, and

3. γ(1) = g(∞).

It is not difficult to show that E is a smooth manifold when the spaces of maps
are completed with respect to suitable Lp

k norms. Given choices of ε and η0,
rescaling of γ defines a homotopy equivalence

hε,η0 : Mapε,η0
(Σ,M) −→ E , (112)

where Mapε,η0
(Σ,M) is defined by (71).

We can regard the sequence {(fm, ωm)} as approaching an element

(f∞, γ1, g1, ω∞) ∈ E × T ,

where f∞ : Σ → M is the base minimal surface obtained in the limit, g1 is the
bubble two-sphere and γ1 is the geodesic connecting base to bubble. It follows
from (44) that when α is sufficiently close to one,∣∣∣∣H0

α(b)− πL2

b

∣∣∣∣ ≤ εH0
α(b).

On the other hand, it follows from the Scaling Theorem, together with the
estimates (69), that

b ∼ L√
α− 1

√
π√

2E(g)
,
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and hence ∣∣∣H0
α(b)− L

√
2(α− 1)πE(g)

∣∣∣ ≤ εH0
α(b),

Thus we define the function Fα : E × T → R by

Fα(f, γ, g, ω) = Eα(f, ω) + 2
√

(α− 1)J(γ)πE(g) + Eβ
α(g), (113)

where J : Map([0, 1],M) → R is the action defined by

J(γ) =
1
2

∫ 1

0

‖γ′(t)‖2dt.

We note that since there is no energy loss in necks, Eβ
α(g) approaches E(g) as

α→ 1. A critical point for Fα consists of critical points for Eα and Eβ
α together

with a geodesic γ which is orthogonal to these critical points at its end points.
Then the αm-energy of (fm, ωm) is close to Fαm

(f ′m, γm, gm), where f ′m :
Σ → M is the map obtained from fm by replacing the restriction of fm to
Dm(p) by a disk minimizing α-energy. Thus

f ′m|(Σ−Dm(p)) = fm|(Σ−Dm(p))

and f ′m|Dm(p) minimizes α energy subject to the boundary condition

f ′m|∂Dm(p) = fm|∂(Σ−Dm(p)).

Indeed, it follows from the estimates given in §4.3 that for any given ε > 0, there
is an α0 ∈ (1,∞) such that when αm ∈ (1, α0],

|Eαm
(fm, ωm)− Fαm

(f ′m, γm, gm)| ≤ εEαm
(fm, ωm). (114)

We can regard (114) as stating the two functions Eα and Fα approach each
other asymptotically as α→ 1.

Note that as α → 1 the contribution of J(γ) to Fα goes to zero. Indeed,
formula (113) gives a quantitative refinement of the assertion that no energy is
lost in the neck.

5.2 Stretching part of one neck

Finally, we provide a slightly different version of the Scaling Theorem, which
allows us to focus on the stretching of part of one of the necks, ignoring the
structure of the remaining portion of the maps. Recall that the Scaling Theorem
implies that necks between bubbles stretch to infinite conformal length as α→ 1.

The idea is to apply the argument for the Scaling Theorem to the third of the
three cases described in §4.2. Our goal is to study the restriction of a collection
of ωm-harmonic maps fm : Σ →M to annuli Am ⊂ Σ of the form

Am = Dεm
−Dηm

,

where
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1. Dεm is one of the disks Di1,...,ik;m appearing in the bubble tree construc-
tion, and

2. Dηm
contains Bi1,...,ik;m, and ηm is chosen so that the corresponding

rescaled maps of the annulus, hm : [0, 1] × S1 → M , converge to a
parametrization of a curve of length L.

Thus the inner disk Dη may parametrize a collection of bubbles connected
by annuli converging to geodesics, and the complement of the outer disk Σ−Dε

may parametrize not only the base in the Parker-Wolfson bubble tree, but also
several of the bubbles connected by annuli converging to geodesics. Our goal is
to understand the behavior of the function

ζ : (0,∞) −→ Mapε,η0
(Σ,M), ζ(b) = (fb, p, η(b)), η(b) = e−bε,

described in in the paragraph containing (72). We let

bm = −(log εm − log ηm).

Neck Stretching Theorem. Suppose that M be a compact Riemannian
manifold, that Σ is a closed surfaces of genus g ≥ 1 and that {(fm, ωm)} is a
sequence of (αm, ωm)-harmonic maps from Σ into M with ωm converging to a
limit conformal structure ω∞. If σ = 1/2α and bm is defined as above, then

bm(αm − 1)σ > c1L ⇒ d

db
(Eαm,h(ζ(b))

∣∣∣∣
bm

< 0,

and

bm(αm − 1)σ < c0L ⇒ d

db
(Eαm,h(ζ(b))

∣∣∣∣
bm

> 0,

when αm is sufficiently close to one.

The proof is a straightforward modification of the proof given in §4 for the
Scaling Theorem.
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