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We next describe how the Bolzano-Weierstrass Theorem (which in turn is
an immediate consequence of the Heine-Borel Theorem) can be used to prove
the existence of limits for Cauchy sequences of real numbers. In addition to the
Cauchy Sequence Theorem described below, we also present two other very use-
ful theorems on convergence of sequences, the Monotone Convergence Theorem
and the Subsequence Theorem.

As we will see at the end of §2, we can construct the reals R from the rationals
Q by taking equivalence classes of Cauchy sequences of rational numbers.

1 Convergence of infinite sequences

A sequence of real numbers is simply a function s : N → R. We let sn denote
the value of the function s at n ∈ N and we sometimes use the notation (sn) for
the sequence. The key definition in the subject is:

Definition. A sequence (sn) of real numbers is said to converge to a real
number s if for every ε ∈ R with ε > 0, there is an N ∈ N such that

n ∈ N and n > N ⇒ |sn − s| < ε.

In this case, we write s = lim sn. A sequence (sn) of real numbers which does
not converge to a real number is said to diverge.

Example 1. We claim that the sequence (sn) defined by sn = 1/n converges to
0. Indeed, given ε > 0, there exists N ∈ N such that N > 1/ε and thus 1/N < ε
by the Archimedean property of the real numbers. It follows that

n > N ⇒ 0 <
1
n
<

1
N

⇒ |sn − 0| =
∣∣∣∣ 1n − 0

∣∣∣∣ < ε.

Using the same technique, you could show that the sequence (sn) defined by
sn = k/n converges to 0, whenever k is a real number.

Example 2. On the other hand, the sequence (sn) defined by sn = 1 + (−1)n

diverges. We prove this by contradiction. Suppose that this sequence (sn) were
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to converge to s. We could then take ε = 1, and there would exist N ∈ N such
that

n > N ⇒ |sn − s| < 1.

But then if n > N and n is even, we would have sn = 2 and sn+1 = 0. Hence,

2 = |sn − sn+1| ≤ |sn − s|+ |s− sn+1| < 1 + 1 = 2,

a contradiction.

Example 3. Suppose we want to investigate the convergence of the sequence
(sn) defined by

sn =
2n+ 3
n+ 5

.

We can rewrite this as

sn =
n+ 3/n
1 + 5/n

.

By Example 1, we expect that as n → ∞, (3/n) and (5/n) converge to zero.
Thus we expect (sn) to converge to 2/1 = 2. To construct an argument to
PROVE that this is the case we need to investigate the inequality∣∣∣∣2n+ 3

n+ 5
− 2
∣∣∣∣ < ε or

∣∣∣∣2n+ 3− 2(n+ 5)
n+ 5

∣∣∣∣ < ε.

We can rewrite this as ∣∣∣∣ −7
n+ 5

∣∣∣∣ < ε or
∣∣∣∣7ε
∣∣∣∣ < n+ 5.

Using the Archimedean property of the real numbers, we choose N ∈ N so that
N > 7/ε. Then

n > N ⇒ n >
7
ε
⇒ 7

n
< ε

⇒
∣∣∣∣2n+ 3
n+ 5

− 2
∣∣∣∣ < ε ⇒ |sn − 2| < ε.

Remark. We would also like to be able to show that the sequence (sn) defined
by

sn =
2n2 + 3n+ 6
n2 + 5n+ 3

(1)

converges, and with a little effort we can make a strong plausibility argument
that it should converge to 2. But a proof of convergence along the lines of Ex-
ample 3 would be a little lengthy. Fortunately, we can develop some convergence
theorems for sequences that helps avoid the long algebraic calculations.

Proposition 1. Suppose that (sn) is a sequence of real numbers which con-
verges to s ∈ R. Then (sn) is bounded.
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Proof: Choose N ∈ N such that

n > N ⇒ |sn − s| < 1,

and let
M = sup{|s1|, |s2|, . . . , |sN |, |s|}+ 1.

If n ≤ N , then |sn| ≤M , while if n ≥ N + 1,

|sn| ≤ |sn − s|+ |s| ≤ 1 + |s| ≤M.

Thus |sn| < M for all n ∈ N, and (sn) is bounded.

Proposition 2. Suppose that (sn) and (tn) are convergent sequences of real
numbers with lim sn = s and lim tn = t. Then

1. (sn + tn) converges and lim(sn + tn) = s+ t,

2. (sntn) converges and lim(sntn) = st,

3. (sn/tn) converges and lim(sn/tn) = s/t, provided tn 6= 0 for all n and
t 6= 0.

Before proving this let us consider the following application. Consider the se-
quence (sn) defined by (1), which can be rewritten as

sn =
2 + 3/n+ 6/n2

1 + 5/n+ 3/n2
,

or equivalently,

sn =
tn
un

where tn = 2 +
3
n

+
6
n2

and un = 1 +
5
n

+
3
n2
.

Using parts 1 and 2 of Proposition 2, it is easy to prove that (tn) converges to 2
and (un) converges to 1. Thus it follows from part 3 of Proposition 2 that (sn)
converges to 2/1 or 2.

Proof of Proposition 2, Part 1: Let ε > 0 be given. Since (sn) converges to s,
there exists an N1 ∈ N such that

n ∈ N and n > N1 ⇒ |sn − s| <
ε

2
.

Since (tn) converges to s, there exists an N2 ∈ N such that

n ∈ N and n > N2 ⇒ |tn − t| <
ε

2
.

Let N = max(N1, N2). Then using the triangle inequality, we conclude that

n ∈ N and n > N ⇒ |(sn + tn)−(s+ t)| ≤ |sn−s|+ |tn− t| <
ε

2
+
ε

2
= ε,
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which is exactly what we needed to prove.

Remark. The technique used to prove Part 1 is called the ε/2 trick. It is used
repeatedly in constructing proofs of theorems about series. For example, we use
it also in Part 2.

Proof of Proposition 2, Part 2: As a preliminary step, we divide |sntn− st| into
a sum of two terms,

|sntn − st| = |(sntn − snt) + (snt− st)|
≤ |sntn − snt|+ snt− st| ≤ |sn||tn − t|+ |t||sn − s|. (2)

By Proposition 1, the sequence (sn) is bounded, which means there exists a real
number M1 such that |sn| ≤M1 for all n ∈ N. If we set M = sup(M1, |t|), then
it follows from (2) that

|sntn − st| ≤M |tn − t|+M |sn − s|. (3)

Now we proceed just as in Part 1. Let ε > 0 be given. There exists an N1 ∈ N
such that

n ∈ N and n > N1 ⇒ |sn − s| <
ε

2M
,

and there exists an N2 ∈ N such that

n ∈ N and n > N2 ⇒ |tn − t| <
ε

2M
.

Let N = max(N1, N2). Then it follows from (3) that

|sntn − st| ≤M |tn − t|+M |sn − s| ≤M
ε

2M
+M

ε

2M
= ε,

which is exactly what we needed to show.

Proof of Proposition 2, Part 3: See page 167 of the text [1].

Fundamental Problem of Analysis. Various algorithms will provide a se-
quence (sn) of real numbers. The problem that often arises is that of showing
that the sequence converges to some limit. For example, suppose we consider
the sequence (sn) defined by

sn =
(

1 +
1
n

)n

. (4)

We would like to show that this sequence converges. Then we can call the limit
of the sequence e.

The simplest case in which this problem can be solved is that of monotone
sequences. A sequence (sn) of real numbers is said to be increasing if sn ≤ sn+1

for all n. It is decreasing if sn ≥ sn+1 for all n. A sequence (sn) of real numbers
is monotone if it is either increasing or decreasing.
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Monotone Convergence Theorem. A bounded monotone sequence (sn) of
real numbers must converge.

Proof: We first consider the case in which (sn) is increasing. By hypothesis,
S = {sn : n ∈ N} is bounded. By the completeness axiom, it must therefore
have a supremum s. Let ε > 0. Since s = supS, there exists N ∈ N such that
sN > s− ε. Then

n > N ⇒ sn ≥ sN > s− ε and sn ≤ s ⇒ |sn − s| < ε.

Hence s = lim sn.
The case where (sn) is decreasing is proven in a similar fashion.

Definition. A sequence (sn) of real numbers is said to diverge to ∞ (and we
write lim sn =∞) if for every M ∈ R, there is an N ∈ N such that

n > N ⇒ sn > M.

A sequence (sn) of real numbers is said to diverge to −∞ (and we write lim sn =
−∞) if for every M ∈ R, there is an N ∈ N such that

n > N ⇒ sn < M.

It is not difficult to show that if an increasing sequence (sn) is not bounded, the
sequence diverges to∞. Similarly, if a decreasing sequence (sn) is not bounded,
the sequence diverges to −∞.

2 Cauchy sequences

It is often useful to consider sequences from more general spaces than just R. A
sequence of elements from a metric space (X, d) is just a function x : N → X;
we will denote such a sequence by (xn).

Definition. A sequence (xn) of elements in a metric space (X, d) is said to
converge to an element x ∈ X if for every ε > 0, there is an N ∈ N such that

n > N ⇒ d(xn, x) < ε.

A sequence (xn) of elements in (X, d) is called a Cauchy sequence if for every
ε > 0 there exists an N ∈ N such that

n,m ∈ N and n,m > N ⇒ d(xn, xm) < ε.

For us, the most important cases are the cases in which X = R or X = Rn. In
the case of Rn,

d(x,y) = |x− y|.
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Note that a sequence (xn) in Rn is a Cauchy sequence if for every ε > 0 there
exists an N ∈ N such that

n,m ∈ N and n,m > N ⇒ |xn − xm| < ε.

Cauchy Theorem. A Cauchy sequence in Rn must converge.

Note. It is not true that a Cauchy sequence in an arbitrary metric space is
convergent. It is true in R or in Rn with the standard metric, because the
Heine-Borel theorem and the Bolzano-Weierstrass Theorem are available.

Proof: We first prove a lemma:

Lemma. If (xn) is a Cauchy sequence in Rn, then

S = {xn : n ∈ N}

is bounded.

Proof of Lemma: Use the fact that (xn) is a Cauchy sequence to choose N ∈ N
such that

n,m ∈ N and n,m > N ⇒ |xn − xm| < 1.

We then let
M = sup{|x1|, |x2|, . . . , |xN |, |xN+1|}+ 1.

If n ≤ N , then |xn| ≤M , while if n ≥ N + 1|,

|xn| ≤ |xn − xN+1|+ |xN+1| ≤ 1 + |xN+1| ≤M.

Thus |xn| < M for all n ∈ N.

Proof of Cauchy Sequence Theorem: Suppose that (xn) and let

S = {xn : n ∈ N}.

We divide into two cases.

Case I: S is finite. In this case, we can set

ε = min {|xn − xm)| : xn 6= xm, n,m ∈ N} ,

a positive number, since there are only finitely many distances between distinct
elements of S. By definition of Cauchy sequence, there exists an element N ∈ N
such that

n,m ∈ N and n,m > N ⇒ |xn − xm| < ε.

But this implies that xn = xm for n,m > N , and hence the Cauchy sequence
converges.

Case II: S is infinite. In this case, S is infinite and bounded by the Lemma,
so it follows from the Bolzano-Weierstrass Theorem that S has an accumulation
point x. We claim that the Cauchy sequence (xn) converges to x.
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To prove the claim, we note that there exists N ∈ N such that

n,m > N ⇒ |xn − xm| < ε/2.

Since x is an accumulation point, infinitely many points of S must lie in the
deleted neighborhood N∗(x; ε/2). Thus there exists an n > N such that xn ∈
N(x; ε/2). Then

m ∈ N and m > N ⇒ |xm − x| < |xm − xn|+ |xn − x| < ε

2
+
ε

2
= ε.

Thus (xn) converges to x, verifying the claim and finishing the proof of the
Theorem.

Many algorithms in analysis produce Cauchy sequences, so the preceding theo-
rem is extremely useful.

We say that a metric space (X, d) is complete if every Cauchy sequence in X
converges. Thus the above theorem states that (Rn, d) is complete when d is
the standard metric on Rn.

Digression: Constructing the reals from the rationals. Suppose we have
constructed the rationals Q via set theory but want to develop real numbers
from scratch without assuming that a complete ordered field exists. Cauchy
sequences provide the technique needed for doing this. We say that a sequence
(xn) of rational numbers is a Cauchy sequence of rational numbers if for every
rational number ε such that ε > 0 there exists an N ∈ N such that

n,m ∈ N and n,m > N ⇒ |xn − xm| < ε.

Two such sequences (xn) and (yn) are said to be equivalent for every rational
number ε such that ε > 0 there exists an N ∈ N such that

n ∈ N and n > N ⇒ |xn − yn| < ε.

If two Cauchy sequence of rational numbers (xn) and (yn) are equivalent we
write (xn) ∼ (yn). We can show that ∼ is an equivalence relation. The set of
equivalence classes is then identified with the real numbers R.

Thus for example, the decimal expansion of π provides a Cauchy sequence
of rational numbers

x1 = 3, x2 = 3.1, x3 = 3.14, x4 = 3.141,
x5 = 3.1415, x6 = 3.14159, x7 = 3.141592, . . .

and its equivalence class will be the real number π.
We identify an element x ∈ Q with the Cauchy sequence (xn) of rational

numbers such that xn = x for all n ∈ N, thereby realizing Q as a subset of R.
We can next define addition, multiplication and order of equivalence classes, and
check that these operations satisfy the axioms for complete ordered fields. When
we do all this, we find that if (xn) is a Cauchy sequence of rational numbers,
its limit is just its equivalence class. Of course, the details of the construction
are lengthy and there are many details to check. But these techniques are very
useful to analysts when studying completions of metric spaces.
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3 Subsequences

Suppose that (sn) is a sequence of real numbers. If n1 < n2 < · · · < nk < . . .
is an increasing sequence of natural numbers, then the sequence (tk) where
tk = snk

is called a subsequence of (sn). For example, suppose that sn = (−1)n,
a sequence that we know diverges. Then we can define a subsequence (tk) by
tk = s2k. Then tk = 1 for all k so this subsequence (tk) does converge.

Even though a bounded sequence of real numbers need not converge, we do
have the following remarkable fact regarding subsequences:

Subsequence Theorem. A bounded sequence in Rn has a convergent subse-
quence.

As in the Cauchy theorem, the proof rests on the Bolzano-Weierstrass Theorem.
Suppose that (xn) is a bounded sequence in Rn. We divide into two cases.

Case I: S = {xn : n ∈ N} is finite. In this case, xn must be a fixed element
x0 of S for infinitely many n ∈ N. We can let n1 be the smallest element of N
such that xn1 = x0, n2 be the second smallest element of N such that xn2 = x0,
and so forth. We thereby obtain a subsequence (xnk

) of (xn) which converges
to x0.

Case II: S = {xn : n ∈ N} is infinite. Since S is bounded, it follows from the
Bolzano-Weierstrass Theorem that S has an accumulation point x.

We choose n1 so that xn1 ∈ N∗(x; 1) and let

ε1 = min
(
|xn1 − x|, 1

2

)
.

We next choose n2 so that xn2 ∈ N∗(x; ε1) and let

ε2 = min

(
|xn2 − x|,

(
1
2

)2
)
.

Continuing in this fashion, we obtain a subsequence (xnk
) of (xn) such that

|xnk
− x| <

(
1
2

)k

.

The subsequence (xnk
) converges to x.

Definition. Let (sn) be a sequence of real numbers, and let

Mn = sup{sn, sn+1, sn+2, . . .}, mn = inf{sn, sn+1, sn+2, . . .}.

Then (Mn) is a monotone decreasing sequence, while (mn) is a monotone in-
creasing sequence. We let

lim sup(sn) = limMn, lim inf(sn) = limmn.
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Note that lim inf(sn) ≤ lim sup(sn), with equality holding if and only if (sn)
converges.

Proposition. Suppose that (sn) is a sequence of real numbers and let

S = { all limits of subsequences of (sn) }.

Then supS = lim sup(sn) and inf S = lim inf(sn).

The proof is beyond the scope of the course; we refer to [1], §19 for many
examples.

4 Infinite series

Definition. An infinite series is a sum of the form

∞∑
n=0

an,

where the an’s are real numbers. The infinite series is said to converge to a real
number s if the partial sum

sn =
n∑

m=0

am

converges to s. In this case, we write

s =
∞∑

n=0

an.

An infinite series which does not converge to a real number is said to diverge.

Example. One of the most important infinite series is the geometric series

∞∑
n=0

xn, where |x| < 1.

In this case, we have the partial sum

sn =
n∑

m=0

xm = 1 + x+ · · ·+ xn.

Since
xsn = x+ x2 + · · ·+ xn+1,

we find that

sn − xsn = 1− xn+1, or sn =
1− xn+1

1− x
.
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Under the assumption that 0 < x < 1, limxn+1 = 0, from which one can
conclude that

lim sn =
1

1− x
or

∞∑
m=0

xm =
1

1− x
.

Defining exponentials. One way of defining the real number e is by means
of the infinite series,

∞∑
n=0

1
n!
.

To see that this infinite series converges, one can compare its partial sums with
those of a geometric series,

sn = 1 + 1 +
1
2

+
1

3 · 2
+ · · ·+ 1

n!
≤ 1 + 1 +

1
2

+
(

1
2

)2

+ · · ·+
(

1
2

)n

≤ 3.

We see that the increasing sequence (sn) is bounded by the sum of the geometric
series. It therefore follows from the Monotone Convergence Theorem that (sn)
is a convergent series. We are therefore justified in letting e denote the limit,

e =
∞∑

m=0

1
m!
. (5)

Theorem. lim (1 + (1/n))n = e.

In other words, we could define e by either (5) or as the limit of the sequence
(sn) defined by (4).

Our proof follows Rudin [2], 3.31. We let

sn =
n∑

m=0

1
m!

and tn =
(

1 +
1
n

)n

.

Then by the binomial theorem

tn = 1 + n
1
n

+
n(n− 1)

2!

(
1
n

)2

+
n(n− 1)(n− 2)

3!

(
1
n

)3

+ · · ·

= 1 + 1 +
1
2!

(
1− 1

n

)
+

1
3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)
· · ·
(

1− n− 1
n

)
.

It follows tn ≤ tn+1, so that (tn) is an increasing sequence, and it also follows
from the above expressions that tn ≤ sn. Hence (tn) is a bounded increasing
sequence and lim tn exists and lim tn ≤ e.
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On the other hand, if n ≥ m,

tn ≥ 1 + 1 +
1
2!

(
1− 1

n

)
+

1
3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

m!

(
1− 1

n

)
· · ·
(

1− m− 1
n

)
.

If we fix m and let n→∞, we obtain

lim tn ≥ 1 + 1 +
1
2!

+ · · ·+ 1
m!
.

Letting m→∞ now yields lim tn ≥ e. Thus tn converges and its limit is e.

More generally, if x ∈ R, we can define ex by means of the infinite power series

ex =
∞∑

n=0

xn

n!
. (6)

To see that this infinite series converges, we find it useful to make use of the
following:

Proposition. Suppose that |an| ≤ bn, where bn > 0, for each n ∈ N. If∑∞
n=0 bn converges, then

∑∞
n=0 an converges.

Proof: To prove this, suppose that
∑∞

n=0 bn converges, and let ε > 0 be given.
Then

∃N ∈ N such that n > m > N ⇒
n∑

k=m

bk < ε.

It follows that when n > m > N ,∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤
n∑

k=m

|ak| ≤
n∑

k=m

bk < ε.

Thus if

sn =
n∑

k=0

ak, n > m > N ⇒ |sn − sm| < ε,

which implies that (sn) is a Cauchy sequence. By the Cauchy Theorem, (sn)
converges and hence

∑∞
n=0 an converges.

We can apply this to show that this series (6) converges for |x| < M , where
M ∈ N is given. Indeed, we can write

∞∑
n=0

xn

n!
=

M−1∑
n=0

xn

n!
+ xM

∞∑
k=0

ak, where ak =
xk

(M + k)!
.
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We can compare the last sum on the right with

∞∑
k=0

ck, where ck =
1

(M)!

(
|x|
M

)k

,

a constant multiple of a convergent geometric series with positive terms. The
preceding proposition shows that the series (6) converges.

By modifying the proof of the preceding theorem, one could now establish
the following limit:

lim
(

1 +
x

n

)n

= ex, for x ≥ 0.

Moreover, by expanding the power series on the two sides, one could prove the
important formula

ex+y = exey.

5 The Contraction Mapping Theorem*

We now discuss a slightly more advanced topic, that some readers may want to
skip on a first reading. Recall that a metric space (X, d) is said to be complete
if every Cauchy sequence in (X, d) converges. Thus, for example, it follows from
the Cauchy Sequence Theorem that R and Rn are complete when they are given
the usual metric.

A function f : X → X is called a contraction if for all x, y ∈ X,

d(f(x), f(y)) < αd(x, y), where 0 < α < 1. (7)

A point x ∈ X is said to be a fixed point of the contraction if f(x) = x. Often,
one uses contractions to construct Cauchy sequences. In fact, here is one of the
most useful applications of Cauchy sequences:

Contraction Mapping Theorem. If (X, d) is a complete metric space and
f : X → X is a contraction, then f has a unique fixed point.

Sketch of proof: We start by picking a point x0 ∈ X, and for n ∈ N , let xn =
f(xn−1). This gives a sequence of points (xn) in X. Suppose that d(x0, x1) = β.
Then it follows from (7) that

d(x1, x2) < αβ, d(x2, x3) < α2β, . . . , d(xn, xn+1) < αnβ, . . . .

Hence if k > 0,

d(xn, xn+k) ≤ d(xn, xn+1) + · · · d(xn+k−1, xn+k)

< αnβ(1 + α+ · · ·+ αk−1) < αn β

1− α
,
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where we have used the formula for the sum of a geometric series. Given ε > 0,
we can choose N sufficiently large that when n > N ,

αn < ε
1− α
β

and hence αn β

1− α
< ε.

Hence for n,m > N , d(xn, xm) < ε and (xn) is a Cauchy sequence.
Since (X, d) is complete, the Cauchy sequence (xn) converges to an element

x ∈ X.
Let ε > 0 be given. If N ∈ N is sufficiently large,

n > N ⇒ d(xn, x) <
ε

2
⇒ d(f(xn), f(x)) < α

ε

2
<
ε

2
.

Hence

m > N + 1 ⇒ d(xm, f(x)) <
ε

2
, so d(x, f(x)) <

ε

2
+
ε

2
= ε.

Since ε > 0 was arbitrary, we see that d(x, f(x)) = 0 and x must be a fixed
point of f .

Finally, if x and y are two fixed points of f , then it follows from (7) that

d(x, y) = d(f(x), f(y)) < αd(x, y) ⇒ x = y,

so the fixed point is unique.
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