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Recall that if A and B are sets, a function f : A → B is a rule which
assigns to each element a ∈ A a unique element f(a) ∈ B. In this course, we
will usually be concerned with complex-valued functions of a complex variable,
functions f : U → C, where U is an open subset of C. For such a function, we
will often write

w = f(z) = f(x+ iy) = u(x, y) + iv(x, y),

where u(x, y) and v(x, y) are the real and imaginary parts of f . We can think
of the complex-valued function f as specified by these two real-valued functions
u and v.

For example, if f : C→ C is defined by w = f(z) = z2, then

z2 = (x+ iy)2 = x2 − y2 + 2ixy ⇒

{
u(x, y) = x2 − y2,

v(x, y) = 2xy.

We can think of this as defining a transformation

u = x2 − y2, v = 2xy

from the (x, y)-plane to the (u, v)-plane.
Our goal is to study complex analytic functions f : U → C, functions which

have a complex derivative at each point of U . We will see that the existence of
a complex derivative at every point is far more restrictive than the existence of
derivatives of real valued functions. We will also see that a function f : U → C is
complex analytic if and only if its component functions u and v have continuous
partial derivatives and satisfy the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Moreover, u(x, y) and v(x, y) automatically have arbitrarily many derivatives
and satisfy Laplace’s equation:

∂2u

∂x2
+
∂2u

∂y2
= 0,

∂2v

∂x2
+
∂2v

∂y2
= 0.

These equations have many practical applications. For example, the real part of
an analytic function can be used to model steady-state temperature distributions
in regions of the plane.
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1 Convergence and continuity

To properly deal with complex-valued functions, we need to understand limits
and continuity. These are similar to the same concepts for real-valued functions
which are studied informally in calculus or more carefully in real analysis courses
such as Math 117 (see [5]). The simplest of the definitions is that of limit of a
complex sequence.

Definition 1. A sequence (zn) of complex numbers is said to converge to a
complex number z if for every ε ∈ R with ε > 0, there is an N ∈ N such that

n ∈ N and n > N ⇒ |zn − z| < ε.

In this case, we write z = lim zn. A sequence (zn) of real numbers which does
not converge to a real number is said to diverge.

Example 1. We claim that the sequence (zn) defined by zn = 1/n converges to
0. Indeed, given ε > 0, there exists N ∈ N such that N > 1/ε and thus 1/N < ε
by the so-called Archimedean property of the real numbers. It follows that

n > N ⇒ 0 <
1
n
<

1
N

⇒ |zn − 0| =
∣∣∣∣ 1n − 0

∣∣∣∣ < ε.

Using the same technique, you could show that the sequence (zn) defined by
zn = c/n converges to 0, whenever c is a complex number.

Example 2. On the other hand, the sequence (zn) defined by zn = in diverges.
We can prove this by contradiction. Suppose that this sequence (zn) were to
converge to z. We could then take ε = 1, and there would exist N ∈ N such
that

n > N ⇒ |zn − z| < 1.

But then if n > N and n is even, we would have zn+2 = (i2)zn = −zn. Since
|zn| = 1,

2 = |zn − zn+2| ≤ |zn − z|+ |z − zn+2| < 1 + 1 = 2,

a contradiction.

Example 3. Suppose that zn = an, where a ∈ R and 0 < a < 1. Then

1
a

= 1 + b, where b > 0,

and by the binomial formula(
1
a

)n

= (1 + b)n = 1 + nb+ · · ·+ bn ≥ nb,

so
an ≤ 1

bn
=
c

n
, where c =

1
b
.
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Now the argument for Example 1 can be applied with the result that

lim zn = lim(an) = 0.

Finally if c ∈ C and |c| < 1, then

|cn − 0| ≤ |c|n ⇒ lim cn = 0.

Proposition 1. Suppose that (zn) and (wn) are convergent sequences of com-
plex numbers with lim zn = z and limwn = w. Then

1. (zn + wn) converges and lim(zn + wn) = z + w,

2. (znwn) converges and lim(znwn) = zw,

3. (zn/wn) converges and lim(zn/wn) = z/w, provided wn 6= 0 for all n and
w 6= 0.

This theorem is proven in Math 117 for sequences of real numbers, and exactly
the same proof holds for sequences of complex numbers. For example, to prove
part I, we let ε > 0 be given. Since (zn) converges to z, there exists an N1 ∈ N
such that

n ∈ N and n > N1 ⇒ |zn − z| <
ε

2
.

Since (wn) converges to w, there exists an N2 ∈ N such that

n ∈ N and n > N2 ⇒ |wn − w| <
ε

2
.

Let N = max(N1, N2). Then using the triangle inequality, we conclude that

n ∈ N and n > N ⇒ |(zn+wn)−(z+w)| ≤ |zn−z|+|wn−w| <
ε

2
+
ε

2
= ε,

which is exactly what we needed to prove. Similar arguments are used to prove
the other parts of the Proposition.

Example 4. Suppose we want to investigate the convergence of the sequence
(zn) defined by

zn =
2n+ 3 + i

n+ 5− 4i
.

We can rewrite this as

zn =
2 + (3 + i)/n
1 + (5− 4i)/n

.

By Example 1, we see that as n→∞, (3+ i)/n and (5−4i)/n converge to zero.
We can then use the above Proposition to establish that

lim(2 + (3 + i)/n) = 2, lim(1 + (5− 4i)/n) = 1 and lim zn = 2.
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Similarly, we can use the Proposition to show that the sequence (zn) defined by

zn =
2n2 + (3 + 5i)n+ (6− i)
3n2 + (5 + i)n+ (2 + 3i)

converges to z = 2/3.

Example 5. Suppose that (zn) is the sequence of complex numbers defined by

z1 = 1.5, zn+1 = f(zn) =
zn

2
+

1
zn
, for n ∈ N. (1)

If this sequence has a limit, Proposition 1 tells us what the limit must be.
Indeed, by induction one sees that zn ∈ R and zn > 0 for all n ∈ N. Moreover,
using calculus, one can show that x ∈ R ⇒ f(x) ≥

√
2. Thus if z = lim zn, it

follows from Proposition 1 that

z = lim zn+1 =
lim zn

2
+

1
lim zn

=
z

2
+

1
z
⇒ z

2
=

1
z
⇒ z2 = 2.

Thus we see that z =
√

2. We remark that (1) provides a good numerical
method for finding the square root of two.

We next turn to the notion of limits of functions. If z0 is a complex number, a
deleted open ball about z0 is a set of the form

N(z0; ε)− {z0} = {z ∈ C : 0 < |z − z0| < ε},

for some ε > 0.

Definition 2. Let D ⊆ C and let z0 be a complex number such that some
deleted neighborhood of z0 lies within D. A complex number w0 is the limit of
a function f : D → C at z0 if

zn ∈ D, zn 6= z0 and lim zn = z ⇒ lim f(zn) = w0.

In this case, we write
lim

z→z0
f(z) = w0.

Some authors, including [6], prefer an alternate definition which turns out to be
equivalent:

Definition 2’. Let D ⊆ C and let z0 be a complex number such that some
deleted neighborhood of z0 lies within D. A complex number w0 is the limit of
a function f : D → C at z0 if for every ε > 0 there exists δ > 0 such that

0 < |z − z0| < δ ⇒ |f(z)− w0| < ε.

With either Definition 2 or 2’, it is important that the function f need be defined
only on a deleted open ball about z0. Indeed, we will often take limits at z0
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when f is not defined at z0. The following proposition follows immediately from
Definition 2 and Proposition 1:

Proposition 2. Let D ⊆ C and let z0 be a complex number such that some
deleted neighborhood of z0 lies within D. Suppose that f : D → C and g : D →
C are functions such that limz→z0 f(z) = w0 and limz→z0 g(z) = w1. Then

1. limz→z0(f(z) + g(z)) = w0 + w1,

2. limz→z0(f(z)g(z)) = w0w1,

3. if g(z) 6= 0 for z ∈ D and w1 6= 0, then limz→z0(f(z)/g(z)) = w0/w1.

Definition 3. Suppose that D ⊆ C, that f : D → C, and z0 is a point of D
such that N(z0; ε) ⊆ D for some ε > 0. Then f is continuous at z0 if

lim
z→z0

f(z) = f(z0).

The following proposition follows immediately from this definition and Propo-
sition 2:

Proposition 3. Suppose that D ⊆ C and that f : D → C and g : D → C are
continuous at z0 ∈ D. Then the functions f + g and f · g are also continuous at
z0. Moreover, if g(z) 6= 0 for z ∈ D, then the quotient f/g is also continuous at
z0.

It is quite easy to show that the function f : C → C defined by f(z) = z
is continuous at every z0 ∈ C. It then follows from Proposition 3 that every
polynomial function

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

with complex coefficients a0, a1, . . . , an−1, an, is continuous at every z0 ∈ C.
Suppose that

Q(z) = bmz
m + bm−1z

m−1 + · · ·+ b1z + b0 = 0

is a second polynomial with complex coefficients and that S be the finite set
of points at which Q(z) vanishes. Let D = C − S. Then it also follows from
Proposition 3 that the rational function R : D → C defined by

R(z) =
P (z)
Q(z)

is continuous at every point of D. Thus we can construct many examples of
continuous functions. Moreover, it is easy to calculate the limits of continuous
functions, because if f is continuous at z0 then

lim
z→z0

f(z) = f(z0).
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But there are also numerous cases in which limits do not exist. For an
important example, suppose that D = C − {0} and that f : D → C is defined
by

f(x+ iy) = f(z) =
z̄

z
=
x− iy
x+ iy

=
(x− iy)2

x2 + y2
=
x2 − y2 − 2xyi

x2 + y2
.

Then if (zn = xn + iyn) is a sequence in D which lies on the x-axis, yn = 0 ⇒
f(zn) = 1, while if (zn = xn + iyn) is a sequence in D which lies on the y-axis,
xn = 0 ⇒ f(zn) = −1. Thus limz→0 f(z) does not exist.

Here is another example. Recall that Arg(z) is the unique value of the
multivalued angle function arg(z) which lies in the interval (−π, π]. This defines
a function

Arg : C− {0} → (−π, π]

which we use to define the logarithm

Log : C− {0} → C by Log(z) = Log|z|+ iArg(z). (2)

As we saw in the notes on Complex numbers, if ex : C → C is the function
defined by ex(z) = ez, then

exp ◦ Log(z) = z, Log ◦ exp(w) = w,

when the composition is defined. If (zn = xn + iyn) is a sequence of complex
numbers such that yn > 0 and lim zn = −1, then lim Log(zn) = π, while
if (zn = xn + iyn) is a sequence such that yn < 0 and lim zn = −1, then
lim Log(zn) = −π. Thus

lim
z→−1

Log(z)

does not exist, and the function Log defined by (2) fails to be continuous at
z = −1.

On the other hand, one can show that the restricted function

Log : C− {x ∈ R : x ≤ 0} → C, defined by Log(z) = Log|z|+ iArg(z),

is in fact continuous, because we have excised the points of discontinuity from
the domain.

2 Complex derivatives and analyticity

The notion of derivative for a complex-valued function looks superficially similar
to the similar definition for real-valued functions, but we will see that it has far
stronger implications:

Definition 1. Suppose that f : U → C is a complex valued function, where U
is an open subset of C and z0 ∈ U . Then the complex derivative of f at z0 is

df

dz
(z0) = f ′(z0) = lim

∆z→0

f(z0 + ∆z)− f(z0)
∆z

, (3)
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if this limit exists. We say that f is differentiable at z0 if it has a complex
derivative at z0.

Definition 2. A function f : U → C, where U is an open subset of C, is said
to be complex analytic or holomorphic if it has a derivative at every z0 ∈ U . If
U = C, we say that the function is entire.

Example 1. If f : C→ C is the function defined by f(z) = zn, then it follows
from the binomial formula that

f(z0 + ∆z) = zn
0 + nzn−1

0 ∆z +
(
n

2

)
zn−2

0 (∆z)2 + · · ·+ (∆z)n,

so

f(z0 + ∆z)− f(z0) = nzn−1
0 ∆z +

(
n

2

)
zn−2

0 (∆z)2 + · · ·+ (∆z)n

and

f(z0 + ∆z)− f(z0)
∆z

= nzn−1
0 +

(
n

2

)
zn−2

0 (∆z) + · · ·+ (∆z)n−1.

Taking the limit as ∆z → 0 yields

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

= nzn−1
0 .

Thus in this case, the derivative of f exists at every z0 ∈ C and is given by the
familiar formula

f ′(z0) = nzn−1
0 .

Thus f is complex analytic on the entire complex plane, that is, it is an entire
function.

Example 2. If f : C→ C is the function defined by f(z) = z̄, then

f(z0 + ∆z)− f(z0) = (z0 + ∆z)− z̄0 = ∆z.

Thus
f(z0 + ∆z)− f(z0)

∆z
=

∆z
∆z

.

But

∆z ∈ R ⇒ ∆z
∆z

= 1 while ∆z ∈ iR ⇒ ∆z
∆z

= −1,

so

lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

cannot exist in this case, so f is not differentiable at any z0 ∈ C, even though
if we divide f into real and imaginary parts,

f(z) = f(x+ iy) = u(x, y) + iv(x, y), then

{
u(x, y) = x,

v(x, y) = −y

7



and the component functions u and v have continuous partial derivatives of
arbitrarily high order.

One can use Proposition 2 from §1 as the foundation for proving:

Proposition 1. If f : D → C and g : D → C are differentiable at z0 ∈ D, then

1. f + g is differentiable at z0, and (f + g)′(z0) = f ′(z0) + g′(z0),

2. cf is differentiable at z0 for any constant c, and (cf)′(z0) = cf ′(z0),

3. fg is differentiable at z0, and (fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0),

4. if g(z) 6= 0 for z ∈ D, then f/g is differentiable at z0. and(
f

g

)′
(z0) =

g(z0)f ′(z0)− f(z0)g′(z0)
g(z0)2

. (4)

Using Example 1 and this Proposition, it becomes straightforward to show that
any polynomial

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

with complex coefficients a0, a1, . . . , an−1, an is differentiable at every point
z0 ∈ C, with complex derivative given by the formula

P ′(z0) = nanz
n−1
0 + n(n− 1)an−1z

n−2
0 + · · ·+ a1.

Moreover, if

Q(z) = bmz
m + bm−1z

m−1 + · · ·+ b1z + b0 = 0

is a second polynomial with complex coefficients and S is the finite set of points
at which Q(z) vanishes. It also follows from Proposition 1 that the rational
function

R(z) =
P (z)
Q(z)

is differentiable at every point of D = C − S. In this case, we would say that
R is complex analytic except at the points of S, and we can use (4) to find the
derivative at any point of C− S.

We can also prove a version of the chain rule for complex derivatives:

Proposition 2. Suppose that U and V are open subsets of the complex plane
C and that f : U → V and g : V → C are differentiable at z0 ∈ U and f(z0) ∈ V
respectively. Then the composition g ◦ f : U → C is differentiable at z0 and

(g ◦ f)′(z0) = g′(f(z0))f ′(z0).
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Here is a simple application of the chain rule: We will see in the next section
that the function

g : C→ C defined by g(x+ iy) = ez = ex(cos y + i sin y)

is differentiable at every point of C and g′(z) = ez. If f : C → C is defined by
f(w) = aw, where a ∈ C, then g ◦ f(z) = eaz, and it follows from the chain rule
that

(g ◦ f)′(z) = g′(f(z))f ′(z) = eaza = aeaz.

Finally, just as in the real case, it turns out that a function which has a
complex derivative at a point automatically is continuous at that point:

Proposition 3. If f : D → C is differentiable at z0 ∈ D, then f is continuous
at z0 as well.

To prove this, we let z = z0 + ∆z in (3) so that ∆z = z − z0. Then

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

.

Thus

lim
z→z0

(f(z)− f(z0)) = lim
z→z0

f(z)− f(z0)
z − z0

lim
z→z0

(z − z0)

= f ′(z0) lim
z→z0

(z − z0) = 0.

But this immediately implies that f is continuous at z0.

Thus if D is an open subset of C and f : D → C is complex analytic, then f is
continuous. It is a little harder (theorem of Goursat) to show that a complex
analytic function f : D → C automatically has a continuous derivative f ′ : D →
C. Later we will see via the Cauchy integral theorem that in fact a complex
analytic function has continuous derivatives of arbitrarily high order. Thus
existence of complex derivatives is far stronger than the existence of ordinary
derivatives of real valued functions.

3 The Cauchy-Riemann equations

Suppose that the function f : D → C has a complex derivative at z0 = x0+iy0 ∈
D. In the definition of complex derivative, we can let ∆z approach zero along
the x-axis, that is, we can set ∆z = h ∈ R. In that case, (3) becomes

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)
h

,

where h ranges only over R. We recognize that this is just the partial derivative
of the vector valued function f(x+ iy) = u(x, y) + iv(x, y) with respect to x:

f ′(z0) =
∂f

∂x
(x0, y0) =

∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (5)
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On the other hand, we can also let ∆z approach zero along the y-axis, that is,
we can set ∆z = ik, where k ∈ R. In this case, we find that

f ′(z0) = lim
k→0

f(z0 + ik)− f(z0)
ik

=
1
i

∂f

∂y
(x0, y0)

=
1
i

∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0) = −i∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0). (6)

Since the two expressions (5) and (6) must be equal, we must have

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

These are known as the Cauchy-Riemann equations in honor of Augustin Cauchy
(1789-1859) and Bernard Riemann (1826-1866), although these equations had
actually appeared earlier in work of d’Alembert and Euler on fluid motion (as
explained in Chapter 26 of [4]).

Conversely, we have the following key theorem:

Cauchy-Riemann Theorem. Suppose that U is an open subset of C and
the complex-valued function f : U → C can be expressed in terms of real and
imaginary parts as

f(z) = f(x+ iy) = u(x, y) + iv(x, y),

where u(x, y) and v(x, y) have continuous first order partial derivatives on U
which satisfy the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (7)

Then f is a complex analytic function on U and its derivative is given by the
formula

f ′(z) =
∂u

∂x
− i∂u

∂y
. (8)

We sketch a proof of this following Ahlfors [1], page 26. It is proven in calculus
courses (or more rigorously in real analysis courses) that when u(x, y) and v(x, y)
have continuous partial derivatives,

u(x+ h, y + k)− u(x, y) =
∂u

∂x
(x, y)h+

∂u

∂y
(x, y)k + ε1

and
v(x+ h, y + k)− v(x, y) =

∂v

∂x
(x, y)h+

∂v

∂y
(x, y)k + ε2,

where
ε1√

h2 + k2
→ 0 and

ε2√
h2 + k2

→ 0 as
√
h2 + k2 → 0.

10



Using (7), we can rewrite the above equations as(
u(x+ h, y + k)
v(x+ h, y + k)

)
−
(
u(x, y)
v(x, y)

)
=
(
∂u/∂x ∂u/∂y
∂v∂x ∂v/∂y

)
(x, y)

(
h
k

)
+
(
ε1

ε2

)
. (9)

The key point now is that the Jacobian matrix(
∂u/∂x ∂u/∂y
∂v∂x ∂v/∂y

)
(x, y) represents a complex matrix

(
a −b
b a

)
if and only if the Cauchy-Riemann equations are satisfied. Thus if the Cauchy-
Riemann equations are satisfied, we can rewrite (9) as(

u(x+ h, y + k)
v(x+ h, y + k)

)
−
(
u(x, y)
v(x, y)

)
=
(
∂u/∂x ∂u/∂y
−∂u/∂y ∂u/∂x

)
(x, y)

(
h
k

)
+
(
ε1

ε2

)
.

One can check that the two components of this last equation are the real and
imaginary parts of the complex equation

f(z + (h+ ik))− f(z) =
(
∂u

∂x
− i∂u

∂y

)
(h+ ik) + ε1 + iε2.

But this implies that

lim
h+ik→0

(
f(z + (h+ ik))− f(z)

h+ ik

)
=
∂u

∂x
− i∂u

∂y
(x, y),

so f is analytic and its derivative is given by (8).

Application 1. Suppose that f : C→ C is the exponential function defined by

f(x+ iy) = ez = ex(cos y + i sin y) = u(x, y) + iv(x, y),

where u(x, y) = ex cos y and v(x, y) = ex sin y. Then the real and imaginary
parts of f are continuously differentiable, and

∂u

∂x
= ex cos y =

∂v

∂y
and

∂u

∂y
= −ex sin y =

∂v

∂x
,

so the theorem implies that f is a complex analytic function. Moreover,

df

dz
=
∂u

∂x
− i∂u

∂y
= ex cos y + iex sin y, so

d

dz
(ez) = ez..

Exercise B. a. Use the chain rule to express the partial derivatives of u and v
with respect to x and y in terms of the partial derivatives with respect to the
polar coordinates (r, θ), where

x = r cos θ, y = r sin θ.
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b. Use the expressions you obtained to rewrite the Cauchy-Riemann equations
in terms of polar coordinates:

∂u

∂r
=

1
r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
. (10)

Application 2. Suppose that

f = Log : C−{x ∈ R : x ≤ 0} → C, is defined by Log(z) = Log|z|+iArg(z),

In this case,

u(x, y) = Log
(√

x2 + y2
)
, v(x, y) = arg(x+ iy).

In terms of polar coordinates,

u(r, θ) = Log(r), v(r, θ) = θ,

so
∂u

∂r
=

1
r
,

∂u

∂θ
= 0,

∂v

∂r
= 0,

∂u

∂θ
= 1.

It therefore follows from the polar coordinate form of the Cauchy-Riemann
equations (10), together with the Theorem, that f = Log is a complex analytic
function of z, and using (8) we find its derivative:

f ′(z) =
∂

∂x
Log

(√
x2 + y2

)
− i ∂

∂y
Log

(√
x2 + y2

)
=

1√
x2 + y2

∂

∂x

(√
x2 + y2

)
− i√

x2 + y2

∂

∂y

(√
x2 + y2

)
=

x− iy
x2 + y2

=
z̄

z̄z
=

1
z
.

The following Proposition follows from Proposition 2 in §5 of the notes on
complex numbers:

Proposition 1. Suppose that D is a connected open subset of C and that
f : D → C is a complex analytic function such that f ′ : D → C is continuous.
Then

f ′(z) = 0 for all z ∈ D ⇒ f(z) ≡ c,
where c is a constant.

Indeed, if f ′(z) = 0 for all z ∈ D, then it follows from (8) and the Cauchy-
Riemann equations that

∂u

∂x
=
∂u

∂y
= 0,

∂v

∂x
=
∂v

∂y
= 0.

Since D is connected, it follows from Proposition 2 in the Notes on Complex
Numbers (or from Theorem 1, page 40 in [6]) that u and v are both constant.

12



Many properties of complex analytic functions can be derived from the Cauchy-
Riemann equations. For example:

Proposition 2. Suppose that D is a connected open subset of |mathbbC and
that f : U → C is a complex analytic function such that f ′ : D → C is
continuous. If the real part of f is constant, then f itself is constant.

Proof: Suppose that f(x+ iy) = u(x, y) + iv(x, y), so that u is the real part of
f . Then

u constant ⇒ ∂u

∂x
=
∂u

∂y
= 0.

It then follows from the Cauchy-Riemann equations that

∂v

∂x
= −∂v

∂y
= 0,

∂v

∂y
=
∂u

∂y
= 0.

It therefore follows from Proposition 2 in the Notes on Complex Numbers that
v is constant. Thus f itself is constant. QED

4 Fluid motion in the plane

In his research on complex analysis, Riemann utilized physical models to but-
tress his intuition, as emphasized by Felix Klein in his classic treatise [3] on
Riemann’s theory of complex functions. One of the models Riemann used was
that of a fluid flow tangent to an electric field in the (x, y)-plane, a flow which
turns out to be both incompressible and irrotational.

One can represent the velocity of a fluid in an open subset U of the (x, y)-
plane by a vector field

V(x, y) = M(x, y)i +N(x, y)j : U −→ R,

where i and j are the perpendicular unit-length vectors pointing in the x and y
coordinate directions. We say that V has continuous first-order partial deriva-
tives if its component functions M and N have continuous first-order partial
derivatives. Such a vector field V (or the corresponding fluid) is said to be
incompressible if

∂M

∂x
+
∂N

∂y
= 0, (11)

and irrotational if
∂N

∂x
− ∂M

∂y
= 0. (12)

An important fact is that we can rotate the vector field V counterclockwise
through 90 degrees, obtaining

?V = −N(x, y)i +M(x, y)j, (13)

13



and one can check that

V is irrotational ⇔ ?V is incompressible,

V is incompressible ⇔ ?V is irrotational.

We will see later that the velocity field for a steady-state fluid of constant
density is incompressible so long as no fluid is being created or destroyed. On
the other hand, if U is either C or an open ball in C then a vector field is
irrotational if and only if it is the gradient of a function:

Poincaré Lemma. Suppose that U = C or

U = N((x0, y0);R) = {x+ iy ∈ C : d((x, y), (x0, y0)) < R},

for some (x0, y0) ∈ C and some R > 0, and that V is is a vector field on U with
continuous first-order partial derivatives. Then

V = ∇u, for some u : U → R ⇔ ∂N

∂x
− ∂M

∂y
= 0.

Here the condition V = ∇u means that

∂u

∂x
(x, y) = M(x, y),

∂u

∂y
(x, y) = N(x, y). (14)

One direction of the proof is easy. If V = ∇u, then (14) and equality of mixed
partials yields

∂N

∂x
− ∂M

∂y
=

∂

∂x

(
∂u

∂y

)
− ∂

∂y

(
∂u

∂x

)
= 0.

We will defer the proof of the other direction of the Poincaré Lemma until we
have discussed contour integrals. For now we simply note that one constructs
the function u : U → R such that V = ∇u by the method of exact differentials.
To express this in the language of differentials, we let

dx = dxi + dyj, so that ∇u · dx =
∂u

∂x
dx+

∂u

∂y
dy = du

and V(x, y) · dx = (M i +N j) · (dxi + dyj) = Mdx+Ndy,

and hence
V = ∇u ⇔ Mdx+Ndy = du.

Example 1. Suppose that

V(x, y) = (4x3 − 12xy2)i + (−12x2y + 4y3)j

so that Mdx+Ndy = (4x3 − 12xy2)dx+ (−12x2y + 4y3)dy.
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Then
∂N

∂x
= −12x2 + 12y2 =

∂M

∂y
,

so V = ∇u, for some function u. But then

∂u

∂x
= 4x3 − 12xy2 ⇒ u(x, y) = x4 − 6x2y2 + g(y),

where g(y) is a function of y alone, while

∂u

∂y
= −12x2y + 4y3 ⇒ u(x, y) = x4 − 6x2y2 + y4 + c,

where c is a constant. Thus V determines u up to a constant. We call u a
potential for the fluid flow V.

Suppose now that V : U → R is both incompressible and irrotational. If U is
the entire plane or an open ball, it follows from the Poincaré Lemma that V
has a potential u and substituting (14) into (11) yields the Laplace equation:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0. (15)

Definition. A function u : U → R with continuous first and second order
partial derivatives is said to be harmonic if u satisfies (15).

Thus harmonic functions are exactly the potentials for irrotational incompress-
ible fluid flows in the plane. What is important for complex analysis is that
if

f(x+ iy) = u(x, y) + iv(x, y)

is a complex analytic function defined on an open subset U of the complex
plane C, then u and v are harmonic functions. Not only that, but a harmonic
function u : U → C is the real part of a complex analytic function, at least if U
is the entire complex plane or an open ball in the complex plane. Indeed, if u
is harmonic, then its gradient

V = ∇u =
∂u

∂x
i +

∂u

∂y
j

is both irrotational and incompressible. But then

?V = −∂u
∂y

i +
∂u

∂x
j

is also both irrotational and incompressible. If U is the entire complex plane
or an open ball in the complex plane, we can apply the Poincarë Lemma and
construct a potential v : U → R for ?V, so that

−∂u
∂y

i +
∂u

∂x
j = ?V =

∂v

∂x
i +

∂v

∂y
j.
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But then u and v satisfy the Cauchy-Riemann equations, and we have proven:

Theorem. Suppose that U = C or an open ball within U and that u : U → R is
a harmonic function on U . Then up to addition of a constant, there is a unique
harmonic function v(x, y) such that

f(x+ iy) = u(x, y) + iv(x, y), for (x, y) ∈ U .

We call v the harmonic conjugate of u.

Example 2. Suppose that

u(x, y) = x4 − 6x2y2 + y4,

a function which is easily verified to be harmonic. Then

V = ∇u = (4x3 − 12xy2)i + (−12x2y + 4y3)j,

so that
?V = (12x2y − 4y3)i + (4x3 − 12xy2)j,

and we can find the harmonic conjugate v as follows:

∂v

∂x
= 12x2y − 4y3 ⇒ v(x, y) = 4x3y − 4xy3 + g(y),

where g(y) is a function of y alone. Then

∂v

∂y
= 4x3 − 12xy2 ⇒ u(x, y) = 4x3y − 4xy3 + c,

where c is a constant. Thus if we set c = 0,

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

= x4 − 6x2y2 + y4 + i(4x3y − 4xy3) = (x+ iy)4 = z4.

We have seen that the study of irrotational incompressible fluid motion in the
plane inexorably leads to the Cauchy-Riemann equations of complex analysis.
Following Klein [3], we can imagine an electric field V(x, y) in the (x, y)-plane
produced by a finite number of charges located at the points {z1, . . . , zk} (which
will be singular points for V). Maxwell’s equations from electricity and mag-
netism imply that V is an incompressible irrotational flow on the open set

U = C− {z1, . . . , zk}.

However, even if we assume that V has a potential u, U is not an open ball
within C, so we cannot apply the Poincaré Lemma to construct a harmonic
conjugate v. This raises the question: Can we extend the Poincaré Lemma to
more general connected open sets U?
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Exercise C. Using Exercise B, show that we can write Laplace’s equation in
polar coordinates as

∇2u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
= 0.

Example 3. It follows from Exercise C, that the only solutions to Laplace’s
equation which are radially symmetric are the solutions to the ordinary differ-
ential equation

d2u

dr2
+

1
r

du

dr
= 0.

If we set w = du/dr, this yields

dw

dr
+
w

r
= 0 which has the solutions w =

a

r
,

where a is a constant. This in turn implies that

u = a Log r + b = a Log|z|+ b, (16)

where a and b are constants; if b = 0 and a > 0, this is interpreted as a source
at the origin z = 0 of strength a. In the electrostatic model, u is the potential
produced by an electric charge placed at the origin.

But now we can ask the question: Does u have a harmonic conjugate? If we
let

U = C− {x ∈ R : x ≤ 0},
then the harmonic conjugate to u must be the imaginary part of the function
Log we described before, which is given by

v(x, y) = Arg(x+ iy),

while if U = C−{0}, there is no continuous harmonic conjugate. (The harmonic
conjugate would have to be the “multivalued function” arg, but that of course
is not a genuine function.) We will return to the question of when the harmonic
conjugate to a given harmonic function exists when we study contour integrals.

Remark: The stereographic projection Φ : C → S2 − {N} ⊆ R3 allows us
to extend this model of fluid flow to the surface of the sphere S2. Indeed, if
φ : S2 − {N} → C is the inverse to stereographic projection,

u ◦ φ : S2 − {N} −→ C

can be thought of as the potential for a fluid on S2−{N}, and the best behaved
potentials are those which extend to the north pole N .

For example, we could take the harmonic function u = a Log|z| of Example 3.
How does this fluid flow behave near the north pole N? To answer that question,
we write u in terms of the coordinate w = 1/z which is well behaved near N :

u = a Log|z| = a Log|1/w| = −a Log|w|.

Thus if a > 0 a source of strength a at the origin z = 0 is balanced by a sink of
strength a at z =∞.
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