
1. Complex Numbers

John Douglas Moore

July 1, 2011

These notes are intended to supplement the text, Fundamentals of complex
analysis, by Saff and Snider [5]. Other often-used references for the theory of
analytic functions of a complex variable are the alternate text by Churchill and
Brown [2], and the more advanced classic by Ahlfors [1]. For a history of the
development of complex numbers, we recommend relevant chapters of [3].

If we were to develop real and complex analysis from the foundation up, we
would start with set theory (as studied in Math 8). Using sets, we would build
up successively the natural numbers, the integers, the rational numbers and the
real numbers.

We would start by defining the set of natural numbers

N = {1, 2, 3, . . .} and ω = {0} ∪ N = {0, 1, 2, 3, . . .},

together with the usual operations of addition and multiplication in terms of
sets. We could then define an equivalence relation ∼ on the Cartesian product
ω × ω by

(m,n) ∼ (q, r) ⇔ m+ r = q + n.

The equivalence class [m,n] of the pair (m,n) ∈ ω × ω would be thought of as
the difference m− n, and the set of equivalence classes

Z = {. . . ,−2 = [0, 2],−1 = [0, 1], 0 = [0, 0], 1 = [1, 0], 2 = [2, 0], . . .}

would then be regarded as the set of integers. We would next define the usual
addition and multiplication on Z and show that these operations satisfy the
familiar properties. The advantage of Z over N is that subtraction is always
defined.

Next, we would define an equivalence relation ∼ on the Cartesian product
Z× (Z− {0}) by

(m,n) ∼ (q, r) ⇔ mr = qn,

and think of the equivalence class [m,n] are representing the fraction m/n. The
set of all such fractions is known as the set Q of rational numbers. We could
then define addition and multiplication by

m

n
+
q

r
=
mr + qn

nr
,

m

n
· q
r

=
mq

nr
,
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and establish all the usual rules of arithmetic with rational numbers, familiar
from grade school, including now division. A complete construction would be
long and time-consuming, and you might wonder whether it isn’t a bit pedantic
to carry this out with so much rigor. But it is important to understand that all
of the familiar rules of arithmetic for rational numbers can in fact be established
by deduction from the axioms of set theory.

The last stage is developing the real numbers R, which can be thought of as
limits of sequences of rational numbers. For example, the number π is the limit
of the sequence

(3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, . . . . , 3.14159265358979, . . .).

It is precisely the notion of defining the limit of such a sequence which is the ma-
jor difficulty in developing real analysis. It would take a long time just to define
the real numbers in this manner, so for a first treatment of real analysis, most
authors take a shortcut, and formulate a collection of axioms which characterize
the real numbers. One often assumes these axioms as the starting point of real
analysis, rather than just the axioms of set theory. (Since one does want to
use the properties of sets in discussing real numbers, a full formal development
of analysis in this shortened form would require both the axioms of set theory
and the axioms of real numbers. On the other hand, many authors, just use
set theory as a basic language whose basic properties are intuitively clear; this
is more or less the way mathematicians thought about set theory prior to its
study by Georg Cantor (1845-1918) and its later axiomatization.)

The rational numbers and the real numbers both satisfy the field axioms
that we next describe.

1 Field axioms

Definition. A field is a set F together with two operations (functions)

f : F × F → F, f(x, y) = x+ y

and
g : F × F → F, g(x, y) = xy,

called addition and multiplication, respectively, which satisfy the following field
axioms:

• F1. addition is commutative: x+ y = y + x, for all x, y ∈ F .

• F2. addition is associative: (x+ y) + z = x+ (y + z), for all x, y, z ∈ F .

• F3. existence of additive identity: there is a unique element 0 ∈ F such
that x+ 0 = x, for all x ∈ F .

• F4. existence of additive inverses: if x ∈ F , there is a unique element
−x ∈ F such that x+ (−x) = 0.
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• F5. multiplication is commutative: xy = yx, for all x, y ∈ F .

• F6. multiplication is associative: (xy)z = x(yz), for all x, y, z ∈ F .

• F7. existence of multliplicative identity: there is a unique element 1 ∈ F
such that 1 6= 0 and x1 = x, for all x ∈ F .

• F8. existence of multliplicative inverses: if x ∈ F and x 6= 0, there is a
unique element (1/x) ∈ F such that x · (1/x) = 1.

• F9. distributivity: x(y + z) = xy + xz, for all x, y, z ∈ F .

Note the similarity between axioms F1-F4 and axioms F5-F8. In the language of
algebra, axioms F1-F4 state that F with the addition operation f is an abelian
group. (The group axioms are studied further in the first part of abstract
algebra, which is devoted to group theory.) Axioms F5-F8 state that F − {0}
with the multiplication operation g is also an abelian group. Axiom F9 ties the
two field operations together.

Among the most important examples of fields are the set of rational numbers
Q and the set of real numbers R. In both cases we take f and g to be the usual
addition and multiplication operations. On the other hand, the set of integers
Z is NOT a field, because integers do not always have multiplicative inverses.

The field of reals R is much larger than the field Q of rationals. Indeed,
as you have most likely seen in Math 8, Georg Cantor proved that the field Q
of rational numbers is countable, that is, in one-to-one correspondence with N,
while the field R is uncountable.

Another example. We can define a field Z/pZ, where p is a prime ≥ 2, which
consists of the elements {0, 1, 2, . . . , p − 1}. In this case, we define addition
or multiplication by first forming the sum or product in the usual sense and
then taking the remainder after division by p, so as to arrive back in the set
{0, 1, 2, . . . , p−1}. This is often referred to as mod p addition and multiplication.
Thus for example,

Z/5Z = {0, 1, 2, 3, 4}

and within Z/5Z,

3 + 4 = 7 mod 5 = 2, 3 · 4 = 12 mod 5 = 2.

One can use theorems on prime factorization to show that Z/pZ satisfies all the
field axioms. On the other hand, if n is not a prime, then Z/nZ with mod n
addition and multiplication is NOT a field. Indeed, in Z/4Z,

2 + 2 = 4 mod 4 = 0,

so 2 does not have a multiplicative inverse in Z/4Z, contradicting Axiom F8.
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2 Complex numbers

Unfortunately, it is not possible to take the square roots of a negative real
number and get a real number as a result. This defect makes it impossible to
find solutions to polynomial equations like

x2 + 1 = 0

when using just real numbers. In order to remedy this problem, we introduce
the complex numbers C. There are two common ways of doing this:

Method I. We can utilize the theory of matrices, and regard the space C of
complex numbers to be the set of 2× 2 matrices of the form(

a −b
b a

)
,

where a and b are real numbers. One can check that the sum or product of two
elements of C is again an element of C. Although matrix do not commute in
general, it is the case that(

a −b
b a

)(
c −d
d c

)
=
(
c −d
d c

)(
a −b
b a

)
,

for any choice of a, b, c and d, as you can easily verify by direct multiplication.
We often use the notation

1 =
(

1 0
0 1

)
, i =

(
0 −1
1 0

)
so that (

a −b
b a

)
= a+ bi.

The set C of matrices we have described, together with the operations of matrix
addition and multiplication, satisfies the field axioms, and we can call it the
field of complex numbers.

Method II. We can also think of the space C of complex numbers as the space
R2 of ordered pairs of real numbers (a, b) using vector addition for addition,
with the additional structure of a multiplication defined by the formula

(a, b)(c, d) = (ac− bd, ad+ bc). (1)

Alternatively, we can set

1 = (1, 0), i = (0, 1), so (a, b) = a+ bi,

and the formula (1) then shows that i2 = −1. Once again, the set C of complex
numbers is a field under the addition and multiplication operations that we
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have defined. Thus all of the usual rules of arithmetic (such as the associative,
commutative and distributive laws) can be applied to complex numbers.

The second approach is the one adopted by the text [5], and suggests an impor-
tant way of visualizing complex numbers. A complex number

z = x+ iy

can be thought of as representing a point in the (x, y)-plane. We say that x is
the real part of z, while y is the imaginary part , and we write

x = Re(z), y = Im(z).

Using the Pythagorean law, we can define the length or modulus of the complex
number z = x+ iy by

|z| =
√
x2 + y2.

Of the main operations on complex numbers, only division might provide a
challenge for calculation when starting out. If a + ib is a complex number, its
conjugate is

a+ ib = a− ib.

The division of complex numbers is then obtained by multiplying both numer-
ator and denominator by the conjugate of the denominator:

3 + 5i
2 + 3i

=
3 + 5i
2 + 3i

2− 3i
2− 3i

=
21 + i

13
.

The complex numbers provide an important extension of the real numbers,
because within the complex numbers, one can always solve quadratic equations.
Recall that if a, b, c ∈ R, the roots of the quadratic equations

az2 + bz + c = 0 are z =
−b±

√
b2 − 4ac

2a
. (2)

The solutions can always be written as complex numbers, because we can always
find a square root of b2 − 4ac, even if it is negative.

It is with the quadratic formula (2) that students often encounter complex
numbers for the first time. Although they at first appear strange, it soon be-
comes apparent that the complex numbers often pay for themselves many times
over in finding a solution within the real numbers to a problem expressed in
terms of the real numbers.

Of course, one might try to find a similar formula for zeros of the cubic

az3 + bz2 + cz + d = 0.

Finding such a formula was one of the successes of the Renaissance mathe-
maticians in Italy, a solution in terms of radicals being found by Tartaglia and
Cardano in 1545. Although these Italian mathematicians did not use complex
numbers, their cumbersome methods are far easier to understand with complex
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numbers. An even more complicated formula was found for zeros of quartics.
Évariste Galois (1811-32) was able to show that there is no formula in terms of
radicals for zeros to the most general quintic polynomials.

Nevertheless, a far-reaching existence theorem on roots to polynomials is
often attributed to Carl Friedrich Gauss (1777-1855):

Fundamental Theorem of Algebra. Every nonconstant polynomial with
complex coefficients has at least one complex zero.

When the degree of the polynomial is large, one is usually forced to use numer-
ical methods to find approximations to the zeros. The Fundamental Theorem
provides one of the main reasons for the importance of complex analysis. Hope-
fully, we will give a proof of this important result later in the course.

Quaternions. One might wonder whether it is possible to extend the notion
of complex numbers yet again to a larger field. This was tried by Sir William
Rowen Hamilton (1805-65) who developed the quaternions as a result; see [3],
776-782. In modern notation, we would define the space H of quaternions to be
the set of 2× 2 matrices of the form(

z −w̄
w z

)
,

where z and w are complex numbers with conjugates z̄ and w̄. Once again,
one can check that the sum or product of two elements of H is again in H. The
operations of matrix addition and multiplication satisfy all of the field operations
except for commutativity of multiplication F5. Indeed, one can check that if

i =
(

0 1
−1 0

)
, j =

(
0 −i
−i 0

)
, k =

(
i 0
0 −i

)
,

then
ij = k, while ji = −k,

in analogy with the cross product. Thus the sets of quaternions H is not quite
a field, but only a skew field . In spite of that limitation, quaternions have
become increasingly important in modern physics. Just like complex numbers,
quaternions can also be thought of as elements

q = a · 1 + bi + cj + dk

in R4 with a special product.

Exercise A. a. Prove Pascal’s rule:(
n+ 1
k

)
=
(
n

k

)
+
(

n

k − 1

)
.

Hint: Write out the right-hand side in terms of factorials, put over a common
denominator and simplify.
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b. Use Pascal’s rule and mathematical induction on n to prove the binomial
formula for complex numbers:

(z + w)n = zn +
(
n

1

)
zn−1w + · · ·+

(
n

k

)
zn−kwk

+ · · ·+
(

n

n− 1

)
zwn−1 + wn.

In proving this formula, it might be helpful to first write it in summation nota-
tion:

(z + w)n =
n∑
k=0

(
n

k

)
zn−kwk.

3 Polar coordinates

Complex addition is just vector addition, but complex multiplication is a little
harder to visualize. To fully understand complex multiplication, it is convenient
to use polar coordinates in the complex plane:

x = r cos θ, y = r sin θ.

We can then write

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ).

We call r the modulus and θ the argument of the complex number z; note that
the argument θ = arg(z) is only defined up to the addition of an integer multiple
of 2π. We let Arg(z) denote the unique value of arg(z) which lies in the interval
(−π, π], and call it the principal value of the argument.

We often write
cos θ + i sin θ = eiθ, (3)

and often call this Euler’s identity . To give a rigorous version of this identity,
we would need to investigate convergence of power series, which indeed is done
in Math 117 or in Chapter 5 of [5]. However, the reader has probably seen power
series already in calculus courses, sufficient to at least motivate the expression for
eiθ. To see how Euler’s identity arises, we start with the McClaurin expansions
for ex, sinx and cosx:

ex = 1 + x+
1
2!
x2 +

1
3!
x3 +

1
4!
x4 · · ·+ · · ·+ 1

n!
xn + · · · ,

cosx = 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 + · · · ,

sinx = x− 1
3!
x3 +

1
5!
x5 − 1

7!
x7 + · · · .

7



Then substituting iθ for x and assuming that the power series converge, we
obtain

eiθ = 1 + iθ +
i2θ2

2!
x2 +

i3θ3

3!
x3 +

i4θ4

4!
x4 · · ·+ · · ·

=
(

1− 1
2!
θ2 +

1
4!
θ4 − · · ·

)
+ i

(
θ − 1

3!
θ3 +

1
5!
θ5 − · · ·

)
= cos θ + i sin θ,

which is exactly the identity we needed to establish. For the time being, the
reader can simply think of (3) as defining eiθ. Once we have Euler’s identity at
our disposal, we can write the polar form of a complex number as

z = reiθ.

It is the polar form of complex numbers which makes complex multiplication
easy to visualize. Indeed, if

z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2),

then

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)
= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)]

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)),

where we have used the familiar formulae for the cosine and sine of the sum of
two angles. Thus to multiply two complex numbers together, we multiply the
moduli and add the arguments, which is expressed in terms of Euler’s identity
as

(r1eiθ1)(r2eiθ2) = (r1r2)ei(θ1+θ2).

An important special case of this calculation is

eiθ1eiθ2 = ei(θ1+θ2). (4)

This interpretation of complex multiplication makes it relatively easy to
calculate square roots; indeed,

√
reiθ = ±

√
reiθ/2.

For example,

√
i =

√
eiπ/2 = ±eiπ/4 = ±(cos(π/4) + i sin(π/4)) =

√
2

2
+
√

2
2
i.

More generally, suppose that we want to calculate the m-th root of a complex
number z. There are actually m such m-th roots. Indeed, the m-th roots of
unity are simply

ωm = e2πi/m = cos
(

2π
m

)
+ i sin

(
2π
m

)

8



and all of its powers. We can visualize the distinct m-th roots of unity,

ωm, ω
2
m, . . . , ω

m−1
m , 1,

as equally spaced points around the unit circle. To find the m-th roots of a
real number, we find the positive real m-th root and multiply it by all the m-th
roots of unity.

For example, the three cube roots of unity are just

ω3 = cos
(

2π
m

)
+ i sin

(
2π
m

)
= −1

2
+
√

3
2
i. ω2

3 = −1
2
−
√

3
2
i, ω3

3 = 1,

and so the three complex cube roots of 8 are just

2ω3 = −1 +
√

3i, 2ω2
3 = −1−

√
3i, 2ω2

3 = 2.

4 The complex exponential

The main goal of Math 122A is to study complex-valued functions of a com-
plex variable z. One of the most important of these functions is the complex
exponential f : C→ C defined by

f(z) = ez = ex+iy = exeiy = ex(cos y + i sin y) = ex cos y + iex sin y,

where we have used Euler’s identity (3) to express eiy in terms of cos y and sin y.
It is often convenient to write

f(z) = f(x, y) = u(x, y) + iv(x, y),

where
u(x, y) = ex cos y, v(x, y) = ex sin y

are smooth functions of x and y, called the real and imaginary parts of the
complex-valued function f .

Note that since

f(z + 2πin) = f(z), for n ∈ Z,

the function f is not one-to-one. It is also not onto, because there is no z ∈ C
such that f(z) = 0. Nevertheless, we can define a partial inverse function

Log : C− {x ∈ R : x ≤ 0} → C by Log(z) = Log|z|+ iArg(z),

where the logarithm on the right is the usual natural logarithm of a real number.
Note that the function Log is defined everywhere except on the negative x-axis.
If we tried to extend it over the negative x-axis, we would have to introduce a
jump discontinuity.
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From (4), we easily conclude that the exponential function has an important
special property

ez1+z2 = ez1ez2 .

The exponential function and its inverse are examples which will recur through-
out the course.

Of course, when we let z = iθ, where θ is real, the complex exponential just
reduces to Euler’s identity (3). The conjugate of Euler’s identity is

cos θ − i sin θ = e−iθ, (5)

and we can solve (3) and (5) for cosine and sine, obtaining

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
. (6)

More generally, we can replace θ by an arbitrary complex number:

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Thus over the complex numbers, the trigonometric functions can be defined in
terms of the exponential. This fact can often be exploited to advantage.

For example, suppose that we want to calculate the integral∫ 2π

0

sin4 θdθ.

Although this might appear to be difficult to do directly, it is easy if we substi-
tute from (6) and expand using the binomial theorem:

sin4 θ =
1
2i

4 (
eiθ − e−iθ

)4
=

1
24

(
e4iθ − 4e2iθ + 6− 4e−2iθ + e4iθ

)
=

1
24

(2 cos(4θ)− 8 cos(2θ) + 6) .

Since cos(2θ) and cos(4θ) integrate to zero, we see that∫ 2π

0

sin4 θdθ =
∫ 2π

0

3
8
dθ =

3π
4
.

Conversely, we can express cos(nθ) and sin(nθ) in terms of powers of cos θ
and sin θ by means of de Moivre’s formula:

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n.

For example, suppose that we want to cos(4θ) in terms of powers of cos θ and
sin θ. We can write

cos(4θ) + i sin(4θ) = (cos θ + i sin θ)4,
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expand the right-hand side using the binomial formula, and compare the real
parts of the two sides. Since

cos(4θ) + i sin(4θ)

= cos4 θ + 4i cos θ sin θ − 6 cos2 θ sin2 θ − 4i cos3 θ sin θ + sin4 θ,

we can take the real parts of both sides, and conclude that

cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ.

5 Subsets of the complex plane

We have seen that the complex plane C is just the Euclidean plan R2 together
with two operations which make it into a field, vector addition and complex
multiplication. It is therefore not too surprising that much of the terminology
from Rn (as described in [4] for example) carries over directly to the complex
plane.

In particular, the distance between two points z0 = x0+iy0 and z1 = x1+iy1
within C is given by the Pythagorean formula

d(z0, z1) = |z0 − z1| =
√

(x0 − x1)2 + (y0 − y1)2.

This distance function satisfies all of the usual axioms which make C into what
is called a metric space:

1. d(z0, z1) ≥ 0 and d(z0, z1) = 0⇔ z0 = z1,

2. d(z0, z1) = d(z1, z2), and

3. d(z0, z2) ≤ d(z0, z1) + d(z1, z2),

whenever z0, z1 and z2 are elements of C.
It is possible to describe many interesting subsets of C in terms of the dis-

tance function. Thus for example,

S = {z ∈ C : |z − (2 + i)| = 4} = {z ∈ C : d(z, (2 + i)) = 4} (7)

is just the set of points which are four units away from 2 + i, which is of course
the circle of radius 4 centered at 2 + i. Similarly,

S = {z ∈ C : |z − (3 + i)| = |z − (5 + 2i)|} (8)

is just the set of points which are equidistant from the two points 3 + i and
5 + 2i, which is the straight line which bisects the line segment from 3 + i to
5 + 2i.

There is much terminology associated with distance functions from metric
spaces which has become part of the fabric of contemporary mathematics. We
will need this terminology for our study of complex analysis.
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Definition. If ε is a positive number, the open disk of radius ε about the point
z0 ∈ C is the subset

N(z0; ε) = {z ∈ C : |z − z0| < ε}.

We sometimes also call this an ε-neighborhood about z0.

Definition. A subset U ⊆ C is said to be open if whenever z ∈ U , there is an
open disk N(z; ε) of some positive radius ε about z such that N(z; ε) ⊆ U .

Roughly speaking, a subset U ⊆ C is open if whenever z ∈ U , any point
sufficiently close to z is also in U . Thus, for example, the set {z ∈ C : |z| < 1}
is open while the set {z ∈ C : |z| ≤ 1} is not.

Proposition 1. The empty set ∅ and the whole space C are open subsets of C.
The union of an arbitrary collection of open sets is open. The intersection of a
finite collection of open sets is open.

For completeness, we include a proof, although some may prefer to accept the
theorem on faith. In particular, we leave it to the reader to check that the
empty set ∅ and the whole space C are open subsets of C. To prove that an
arbitrary union of open sets is open, we could suppose that {Uα : α ∈ A} is a
collection of open sets and that

U =
⋃
{Uα : α ∈ A}.

If z ∈ U , then z ∈ Uα for some α ∈ A. Hence there is an ε > 0 such that
N(z; ε) ⊆ Uα. But then N(z; ε) ⊆ U , and this shows that U is open.

On the other hand, suppose that {U1, . . . , Um} is a finite collection of open
sets and that

U = U1 ∩ · · · ∩ Um.

If z ∈ U , then z ∈ Ui for every i, 1 ≤ i ≤ m. Hence for each i, 1 ≤ i ≤ m, there
exists εi > 0 such that N(z; εi) ⊆ Ui. Let

ε = min(ε1, . . . , εm),

and note that ε > 0 since the minimum of a finite number of positive numbers
is positive. Then N(z; ε) ⊆ Ui for every i, 1 ≤ i ≤ m. Hence N(z; ε) ⊆ U and
the finite intersection U is open, finishing our proof.

Definition. A subset S ⊆ C is said to be closed if C− S is open.

For example, the circle (7) and the line (8) are closed subsets of C which are
not open. Any finite subset of C is closed. By an argument similar to that of
the Proposition, one can show that the empty set ∅ and the whole space C are
closed, the intersection of an arbitrary collection of closed sets is closed, and the
union of a finite collection of closed sets is closed.

Particular types of open and closed sets are also important.
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Definition. An open subset U ⊆ C is said to be connected if whenever z0, z1 ∈
U , there is a smooth path from z0 to z1 which lies entirely within U .

In this definition, one can replace “smooth path” by “polygonal path,” and in
fact this is done by Saff and Snider in §1.6 of [5]. Connected open sets are quite
important within complex analysis, so Saff and Snider have a special name such
set; connected open sets are called domains.

Proposition 2. Suppose that U is a connected open subset of C. If u : U → R
is a function with continuous partial derivatives such that

∂u

∂x
=
∂u

∂y
= 0, (9)

then u is constant.

A proof, using ideas from calculus, follows from the chain rule. Indeed, if z0, z1 ∈
U and γ : [a, b]→ U is a smooth path such that γ(a) = z0 and γ(b) = z1, say

γ(t) = x(t) + iy(t), for t ∈ [a, b],

then

u(z1)− u(z0) =
∫ b

a

d

dt
(u ◦ γ)(t)dt =

∫ b

a

(
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

)
dt = 0,

so u(z1) = u(z0). Thus u has the same value at any two points of U , which is
exactly what we needed to prove.

Example. Suppose that U = {z = x + iy ∈ C : x 6= 0}. Then the function
u : U → R defined by

u(x+ iy) =

{
3, if x < 0,
5, if x > 0,

satisfies (9) yet is not constant. Of course, in this case, U is open but not
connected.

Among the most important closed sets are those which are bounded.

Definition. A subset S ⊆ C is said to be bounded if there is a positive real
number R such that

z ∈ S ⇒ |z| ≤ R.

A subset K ⊆ C is compact if it is both closed and bounded

One of the key theorems from real analysis ([4], Corollary 24.10) states that a
continuous real-valued function defined on a compact set K ⊆ C must achieve
its maximum and minimum values at some points of K.
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6 The Riemann sphere

The Riemann sphere is the space obtained from the complex plane C by adding
a point at infinity, which we denote by ∞. It is most often visualized, however,
via stereographic projection from the (x1, x2)-plane to the unit sphere

S2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}

If N = (0, 0, 1) is the north pole on S2, stereographic projection is a one-to-one
onto function

Φ : C −→ S2 − {N},

where C is thought of as the (x1, x2)-plane
We can follow the calculations in §1.6 of [5] to define the stereographic pro-

jection. We consider the line L containing N = (0, 0, 1) on S2 and the point
(x, y, 0) in the plane x3 = 0. This line L can be parametrized by

γ : R→ R3 where γ(t) = (x1(t), x2(t), x3(t)) = t(x, y, 0) + (1− t)(0, 0, 1),

or alternatively, we can write this as

x1(t) = tx, x2(t) = ty, x3(t) = 1− t. (10)

There is a unique nonzero value for t such that γ(t) lie on S2 − {N}, and it
occurs when

1 = x2
1 + x2

2 + x2
3 = t2x2 + t2y2 + (1− t)2.

We can expand and solve for t:

1 = t2(x2 + y2) + 1− 2t+ t2 = t2(x2 + y2 + 1)− 2t+ 1,

2t = t2(x2 + y2 + 1), 2 = t(x2 + y2 + 1), t =
2

x2 + y2 + 1
.

Substitution into (10) then yields the point on S2 which corresponds to the
point (x, y, 0), corresponding to x+ iy ∈ C:

x1 =
2x

x2 + y2 + 1
, x2 =

2y
x2 + y2 + 1

, x3 = 1− 2
x2 + y2 + 1

.

We can then simplify this to

x1 =
2x

x2 + y2 + 1
, x2 =

2y
x2 + y2 + 1

, x3 =
x2 + y2 − 1
x2 + y2 + 1

, (11)

which gives an explicit formula for stereographic projection

Φ : C −→ S2 − {N}, Φ(z) =
(

2Re(z)
|z|2 + 1

,
2Im(z)
|z|2 + 1

,
|z|2 − 1
|z|2 + 1

)
,

where Re(z) and Im(z) are the real and imaginary parts of z.
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To see that Φ is one-to-one and onto, we can construct an explicit inverse.
Indeed, eliminating t from equations (10) gives first t = 1− x3 and then

x =
x1

t
=

x1

1− x3
, y =

x2

t
=

x2

1− x3
.

Thus we can define a function

φ : S2 − {N} → C by φ(x1, x2, x3) =
x1 + ix2

1− x3
.

which is exactly the inverse of Φ. Note that the inverse map φ is well-behaved
except when x3 = 1, that is, it is well-behaved except at the north pole N on
S2.

These explicit formulae may seem confusing at first. The important point
to note is that as the modulus of z gets larger and larger, Φ(z) approaches the
north pole on S2. Thus if we think of using Φ to identify points of C with points
on S2−{N}, then the north pole N should be identified with a point at infinity.
Indeed we might think of extending Φ to a map

Φ̃ : C ∪ {∞} −→ S2.

This idea of adding a point at infinity to the complex plane, thereby obtaining
what is sometimes called the extended complex plane or the one-point compact-
ification of C, has turned out to be extremely useful in understanding functions
of a complex variable.

Example. Supppose that U = C− {3} and

f : U → C by f(z) =
1

z − 3
.

Since f(z) gets larger and larger as z approaches 3, it is often useful to extend
f to a map

f̂ : C→ C ∪ {∞} so that f(z) =

{
1/(z − 3), if z 6= 3,
∞, if z = 3.

Unfortunately, there is no way of defining addition and multiplication with ∞
so that C ∪ {∞} satisfies the field axioms.

We can think of φ as defining a coordinate z on S2, which is well-behaved
everywhere except at the north pole N . But sometimes we want a coordinate
w that might be well-behaved near ∞. We might try to take

w =
1
z

as such a coordinate. Can we think of this also as a complex coordinate on part
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of S2? We find that

z =
x1 + ix2

1− x3

⇒ w =
1
z

=
1− x3

x1 + ix2
=

(1− x3)(x1 − ix2)
x2

1 + x2
2

=
(1− x3)(x1 − ix2)

1− x2
3

=
x1 − ix2

1 + x3

Thus if we let S denote the south pole (0, 0,−1), we can define

ψ : S2 − {S} → C by w = ψ(x1, x2, x3) =
x1 − ix2

1 + x3
.

It tuns out that conjugation followed by the inverse of ψ is then stereographic
projection with the north pole replaced by the south pole.

These constructions give two complex coordinate systems on S2,

φ : S2 − {N} → C and ψ : S2 − {S} → C

which are related by

ψ ◦ φ−1(z) = w =
1
z
.

These complex coordinate systems make S2 into what is called a Riemann sur-
face.
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