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Chapter 1

Complex Numbers

These notes are intended to supplement the text, Fundamentals of complex
analysis, by Saff and Snider [10]. Other often-used references for the theory of
analytic functions of a complex variable are the alternate text by Brown and
Churchill [2], and the more advanced classic by Ahlfors [1]. For a history of the
development of complex numbers, we recommend relevant chapters of [5].

If we were to develop real and complex analysis from the foundation up, we
would start with set theory (as studied in Math 8). Using sets, we would build
up successively the natural numbers, the integers, the rational numbers and the
real numbers.

We would start by defining the set of natural numbers

N = {1, 2, 3, . . .} and ω = {0} ∪ N = {0, 1, 2, 3, . . .},

together with the usual operations of addition and multiplication in terms of
sets. We could then define an equivalence relation ∼ on the Cartesian product
ω × ω by

(m,n) ∼ (q, r) ⇔ m+ r = q + n.

The equivalence class [m,n] of the pair (m,n) ∈ ω × ω would be thought of as
the difference m− n, and the set of equivalence classes

Z = {. . . ,−2 = [0, 2],−1 = [0, 1], 0 = [0, 0], 1 = [1, 0], 2 = [2, 0], . . .}

would then be regarded as the set of integers. We would next define the usual
addition and multiplication on Z and show that these operations satisfy the
familiar properties. The advantage of Z over N is that subtraction is always
defined.

Next, we would define an equivalence relation ∼ on the Cartesian product
Z× (Z− {0}) by

(m,n) ∼ (q, r) ⇔ mr = qn,

and think of the equivalence class [m,n] are representing the fraction m/n. The
set of all such fractions is known as the set Q of rational numbers. We could
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then define addition and multiplication by

m

n
+
q

r
=
mr + qn

nr
,

m

n
· q
r

=
mq

nr
,

and establish all the usual rules of arithmetic with rational numbers, familiar
from grade school, including now division. A complete construction would be
long and time-consuming, and you might wonder whether it isn’t a bit pedantic
to carry this out with so much rigor. But it is important to understand that all
of the familiar rules of arithmetic for rational numbers can in fact be established
by deduction from the axioms of set theory.

The last stage is developing the real numbers R, which can be thought of as
limits of sequences of rational numbers. For example, the number π is the limit
of the sequence

(3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, . . . . , 3.14159265358979, . . .).

It is precisely the notion of defining the limit of such a sequence which is the ma-
jor difficulty in developing real analysis. It would take a long time just to define
the real numbers in this manner, so for a first treatment of real analysis, most
authors take a shortcut, and formulate a collection of axioms which characterize
the real numbers. One often assumes these axioms as the starting point of real
analysis, rather than just the axioms of set theory. (Since one does want to
use the properties of sets in discussing real numbers, a full formal development
of analysis in this shortened form would require both the axioms of set theory
and the axioms of real numbers. On the other hand, many authors, just use
set theory as a basic language whose basic properties are intuitively clear; this
is more or less the way mathematicians thought about set theory prior to its
study by Georg Cantor (1845-1918) and its later axiomatization.)

The rational numbers and the real numbers both satisfy the field axioms
that we next describe.

1.1 Field axioms

Definition. A field is a set F together with two operations (functions)

f : F × F → F, f(x, y) = x+ y

and
g : F × F → F, g(x, y) = xy,

called addition and multiplication, respectively, which satisfy the following field
axioms:

• F1. addition is commutative: x+ y = y + x, for all x, y ∈ F .

• F2. addition is associative: (x+ y) + z = x+ (y + z), for all x, y, z ∈ F .
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• F3. existence of additive identity: there is a unique element 0 ∈ F such
that x+ 0 = x, for all x ∈ F .

• F4. existence of additive inverses: if x ∈ F , there is a unique element
−x ∈ F such that x+ (−x) = 0.

• F5. multiplication is commutative: xy = yx, for all x, y ∈ F .

• F6. multiplication is associative: (xy)z = x(yz), for all x, y, z ∈ F .

• F7. existence of multliplicative identity: there is a unique element 1 ∈ F
such that 1 6= 0 and x1 = x, for all x ∈ F .

• F8. existence of multliplicative inverses: if x ∈ F and x 6= 0, there is a
unique element (1/x) ∈ F such that x · (1/x) = 1.

• F9. distributivity: x(y + z) = xy + xz, for all x, y, z ∈ F .

Note the similarity between axioms F1-F4 and axioms F5-F8. In the language of
algebra, axioms F1-F4 state that F with the addition operation f is an abelian
group. (The group axioms are studied further in the first part of abstract
algebra, which is devoted to group theory.) Axioms F5-F8 state that F − {0}
with the multiplication operation g is also an abelian group. Axiom F9 ties the
two field operations together.

Among the most important examples of fields are the set of rational numbers
Q and the set of real numbers R. In both cases we take f and g to be the usual
addition and multiplication operations. On the other hand, the set of integers
Z with the usual addition and multiplication is NOT a field, because integers
do not always have multiplicative inverses.

The field of reals R is much larger than the field Q of rationals. Indeed,
as you have most likely seen in Math 8, Georg Cantor proved that the field Q
of rational numbers is countable, that is, in one-to-one correspondence with N,
while the field R is uncountable.

Another example. We can define a field Z/pZ, where p is a prime ≥ 2, which
consists of the elements {0, 1, 2, . . . , p − 1}. In this case, we define addition
or multiplication by first forming the sum or product in the usual sense and
then taking the remainder after division by p, so as to arrive back in the set
{0, 1, 2, . . . , p−1}. This is often referred to as mod p addition and multiplication.
Thus for example,

Z/5Z = {0, 1, 2, 3, 4},

and within Z/5Z,

3 + 4 = 7 mod 5 = 2, 3 · 4 = 12 mod 5 = 2.

One can use theorems on prime factorization to show that Z/pZ satisfies all the
field axioms, and is therefore a field which contains only finitely many elements.
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On the other hand, if n is not a prime, then Z/nZ with mod n addition and
multiplication is NOT a field. Indeed, in Z/4Z,

2 + 2 = 4 mod 4 = 0,

so 2 does not have a multiplicative inverse in Z/4Z, contradicting Axiom F8, so
Z/4Z is not a field.

1.2 Complex numbers

Unfortunately, it is not possible to take the square roots of a negative real
number and get a real number as a result. This defect makes it impossible to
find solutions to polynomial equations like

x2 + 1 = 0

when using just real numbers. In order to remedy this problem, we introduce
the complex numbers C. There are two common ways of doing this:

Method I. We can utilize the theory of matrices, and regard the space C of
complex numbers to be the set of 2× 2 matrices of the form(

a −b
b a

)
,

where a and b are real numbers. One can check that the sum or product of two
elements of C is again an element of C. Although matrix do not commute in
general, it is the case that(

a −b
b a

)(
c −d
d c

)
=
(
c −d
d c

)(
a −b
b a

)
,

for any choice of a, b, c and d, as you can easily verify by direct multiplication.
We often use the notation

1 =
(

1 0
0 1

)
, i =

(
0 −1
1 0

)
so that (

a −b
b a

)
= a+ bi.

The set C of matrices we have described, together with the operations of matrix
addition and multiplication, satisfies the field axioms, and we can call it the
field of complex numbers.

Method II. We can also think of the space C of complex numbers as the space
R2 of ordered pairs of real numbers (a, b) using vector addition for addition,
with the additional structure of a multiplication defined by the formula

(a, b)(c, d) = (ac− bd, ad+ bc). (1.1)
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Alternatively, we can set

1 = (1, 0), i = (0, 1), so (a, b) = a+ bi,

and the formula (1.1) then shows that i2 = −1. Once again, the set C of complex
numbers is a field under the addition and multiplication operations that we
have defined. Thus all of the usual rules of arithmetic (such as the associative,
commutative and distributive laws) can be applied to complex numbers.

The second approach is the one adopted by the text [10], and suggests an im-
portant way of visualizing complex numbers. A complex number

z = x+ iy

can be thought of as representing a point in the (x, y)-plane. We say that x is
the real part of z, while y is the imaginary part , and we write

x = Re(z), y = Im(z).

Using the Pythagorean law, we can define the length or modulus of the complex
number z = x+ iy by

|z| =
√
x2 + y2.

Of the main operations on complex numbers, only division might provide a
challenge for calculation when starting out. If a + ib is a complex number, its
conjugate is

a+ ib = a− ib.

The division of complex numbers is then obtained by multiplying both numer-
ator and denominator by the conjugate of the denominator:

3 + 5i
2 + 3i

=
3 + 5i
2 + 3i

2− 3i
2− 3i

=
21 + i

13
.

The complex numbers provide an important extension of the real numbers,
because within the complex numbers, one can always solve quadratic equations.
Recall that if a, b, c ∈ R, the roots of the quadratic equations

az2 + bz + c = 0 are z =
−b±

√
b2 − 4ac

2a
. (1.2)

The solutions can always be written as complex numbers, because we can always
find a square root of b2 − 4ac, even if it is negative.

Indeed, it is with the quadratic formula (1.2) that students usually encounter
complex numbers for the first time. Although they appear strange at first, it
soon becomes apparent that the complex numbers pay for themselves many
times over in many problems in which one needs to find a solution within the
real numbers to a problem expressed in terms of the real numbers.

Of course, one might try to find a similar formula for zeros of the cubic

az3 + bz2 + cz + d = 0.
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Finding such a formula was one of the successes of the Renaissance mathe-
maticians in Italy, a solution in terms of radicals being found by Tartaglia and
Cardano in 1545. Although these Italian mathematicians did not use complex
numbers, their cumbersome methods are far easier to understand with complex
numbers. An even more complicated formula was found for zeros of quartics.
Évariste Galois (1811-32) was able to show that there is no formula in terms of
radicals (square roots, cube roots and so forth) for zeros to the most general
quintic polynomials.

Nevertheless, a far-reaching existence theorem on roots to polynomials is
usually attributed to Carl Friedrich Gauss (1777-1855):

Fundamental Theorem of Algebra. Every nonconstant polynomial with
complex coefficients has at least one complex zero.

When the degree of the polynomial is large, one is usually forced to use numer-
ical methods to find approximations to the zeros. The Fundamental Theorem
provides one of the main reasons for the importance of complex numbers. We
will give a proof of this important result later in the course.

Quaternions. One might wonder whether it is possible to extend the notion
of complex numbers yet again to a larger field. This was tried by Sir William
Rowen Hamilton (1805-65) who developed the quaternions as a result; see [5],
pages 776-782. In modern notation, we would define the space H of quaternions
to be the set of 2× 2 matrices of the form(

z −w̄
w z

)
,

where z and w are complex numbers with conjugates z̄ and w̄. Once again,
one can check that the sum or product of two elements of H is again in H. The
operations of matrix addition and multiplication satisfy all of the field operations
except for commutativity of multiplication F5. Indeed, one can check that if

i =
(

0 1
−1 0

)
, j =

(
0 −i
−i 0

)
, k =

(
i 0
0 −i

)
,

then
ij = k, while ji = −k,

in analogy with the cross product. Thus the sets of quaternions H is not quite
a field, but only a skew field . In spite of that limitation, quaternions have
become increasingly important in modern physics. Just like complex numbers,
quaternions can also be thought of as elements

q = a · 1 + bi + cj + dk

in R4 with a special product.

Exercise A. a. Prove Pascal’s rule:(
n+ 1
k

)
=
(
n

k

)
+
(

n

k − 1

)
.
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Hint: Write out the right-hand side in terms of factorials, put over a common
denominator and simplify.

b. Use Pascal’s rule and mathematical induction on n to prove the binomial
formula for complex numbers:

(z + w)n = zn +
(
n

1

)
zn−1w + · · ·+

(
n

k

)
zn−kwk

+ · · ·+
(

n

n− 1

)
zwn−1 + wn.

In proving this formula, it might be helpful to first write it in summation nota-
tion:

(z + w)n =
n∑
k=0

(
n

k

)
zn−kwk.

1.3 Polar coordinates

Complex addition is just vector addition, but complex multiplication is a little
harder to visualize. To fully understand complex multiplication, it is convenient
to use polar coordinates in the complex plane:

x = r cos θ, y = r sin θ.

We can then write

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ).

We call r the modulus and θ the argument of the complex number z; note that
the argument θ = arg(z) is only defined up to the addition of an integer multiple
of 2π. We let Arg(z) denote the unique value of arg(z) which lies in the interval
(−π, π], and call it the principal value of the argument.

We often write
cos θ + i sin θ = eiθ, (1.3)

and call this Euler’s identity . To give a rigorous version of this identity, we would
need to investigate convergence of power series, which indeed is done in Math
117 or in Chapter 5 of [10]. However, the reader has probably seen power series
already in calculus courses, sufficient to at least motivate the expression for eiθ.
To see how Euler’s identity arises, we start with the McClaurin expansions for
ex, sinx and cosx:

ex = 1 + x+
1
2!
x2 +

1
3!
x3 +

1
4!
x4 · · ·+ · · ·+ 1

n!
xn + · · · ,

cosx = 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 + · · · ,
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sinx = x− 1
3!
x3 +

1
5!
x5 − 1

7!
x7 + · · · .

Then substituting iθ for x and assuming that the power series converge, we
obtain

eiθ = 1 + iθ +
i2θ2

2!
x2 +

i3θ3

3!
x3 +

i4θ4

4!
x4 · · ·+ · · ·

=
(

1− 1
2!
θ2 +

1
4!
θ4 − · · ·

)
+ i

(
θ − 1

3!
θ3 +

1
5!
θ5 − · · ·

)
= cos θ + i sin θ,

which is exactly what we wanted to establish. For the time being, the reader
can simply think of (1.3) as defining eiθ. Once we have Euler’s identity at our
disposal, we can write the polar form of a complex number as

z = reiθ.

It is the polar form of complex numbers which makes complex multiplication
easy to visualize. Indeed, if

z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2),

then

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)
= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)]

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)),

where we have used the familiar formulae for the cosine and sine of the sum of
two angles. Thus to multiply two complex numbers together, we multiply the
moduli and add the arguments, expressed in terms of Euler’s identity as

(r1e
iθ1)(r2e

iθ2) = (r1r2)ei(θ1+θ2).

An important special case of this calculation is

eiθ1eiθ2 = ei(θ1+θ2). (1.4)

This interpretation of complex multiplication makes it relatively easy to
calculate square roots; indeed,

√
reiθ = ±

√
reiθ/2.

For example,

√
i =

√
eiπ/2 = ±eiπ/4 = ±(cos(π/4) + i sin(π/4)) =

√
2

2
+
√

2
2
i.
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More generally, suppose that we want to calculate the m-th root of a complex
number z. There are actually m such m-th roots. Indeed, the m-th roots of
unity are simply

ωm = e2πi/m = cos
(

2π
m

)
+ i sin

(
2π
m

)
and all of its powers. We can visualize the distinct m-th roots of unity,

ωm, ω
2
m, . . . , ω

m−1
m , 1,

as equally spaced points around the unit circle. To find the m-th roots of a
real number, we find the positive real m-th root and multiply it by all the m-th
roots of unity.

For example, the three cube roots of unity are just

ω3 = cos
(

2π
m

)
+ i sin

(
2π
m

)
= −1

2
+
√

3
2
i. ω2

3 = −1
2
−
√

3
2
i, ω3

3 = 1,

and so the three complex cube roots of 8 are just

2ω3 = −1 +
√

3i, 2ω2
3 = −1−

√
3i, 2ω2

3 = 2.

1.4 The complex exponential

The main goal of Math 122A is to study complex-valued functions of a com-
plex variable z. One of the most important of these functions is the complex
exponential f : C→ C defined by

f(z) = ez = ex+iy = exeiy = ex(cos y + i sin y) = ex cos y + iex sin y,

where we have used Euler’s identity (1.3) to express eiy in terms of cos y and
sin y. It is often convenient to write

f(z) = f(x, y) = u(x, y) + iv(x, y),

where
u(x, y) = ex cos y, v(x, y) = ex sin y

are smooth functions of x and y, called the real and imaginary parts of the
complex-valued function f .

Note that since

f(z + 2πin) = f(z), for n ∈ Z,

the function f is not one-to-one. It is also not onto, because there is no z ∈ C
such that f(z) = 0. Nevertheless, we can define a partial inverse function

Log : C− {x ∈ R : x ≤ 0} → C by Log(z) = Log|z|+ iArg(z),
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where the logarithm on the right is the usual natural logarithm of a real number.
Note that the function Log is defined everywhere except on the negative x-axis.
If we tried to extend it over the negative x-axis, we would have to introduce a
jump discontinuity.

From (1.4), we easily conclude that the exponential function has an impor-
tant special property

ez1+z2 = ez1ez2 .

The exponential function and its inverse are examples which will recur through-
out the course.

Of course, when we let z = iθ, where θ is real, the complex exponential just
reduces to Euler’s identity (1.3). The conjugate of Euler’s identity is

cos θ − i sin θ = e−iθ, (1.5)

and we can solve (1.3) and (1.5) for cosine and sine, obtaining

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
. (1.6)

More generally, we can replace θ by an arbitrary complex number:

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Thus over the complex numbers, the trigonometric functions can be defined in
terms of the exponential. This fact can often be exploited to advantage.

For example, suppose that we want to calculate the integral∫ 2π

0

sin4 θdθ.

Although this might appear to be difficult to do directly, it is easy if we substi-
tute from (1.6) and expand using the binomial theorem:

sin4 θ =
(

1
2i

)4 (
eiθ − e−iθ

)4
=

1
24

(
e4iθ − 4e2iθ + 6− 4e−2iθ + e4iθ

)
=

1
24

(2 cos(4θ)− 8 cos(2θ) + 6) .

Since cos(2θ) and cos(4θ) integrate to sines which cancel at the upper and lower
limits, we see that ∫ 2π

0

sin4 θdθ =
∫ 2π

0

3
8
dθ =

3π
4
.

Conversely, we can express cos(nθ) and sin(nθ) in terms of powers of cos θ
and sin θ by means of de Moivre’s formula:

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n.
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For example, suppose that we want to express cos(4θ) in terms of powers of
cos θ and sin θ. We can write

cos(4θ) + i sin(4θ) = (cos θ + i sin θ)4,

expand the right-hand side using the binomial formula, and compare the real
parts of the two sides. Since

cos(4θ) + i sin(4θ)

= cos4 θ + 4i cos θ sin θ − 6 cos2 θ sin2 θ − 4i cos3 θ sin θ + sin4 θ,

we can take the real parts of both sides, and conclude that

cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ.

1.5 Subsets of the complex plane

We have seen that the complex plane C is just the Euclidean plan R2 together
with two operations which make it into a field, vector addition and complex
multiplication. It is therefore not too surprising that much of the terminology
from Rn (as described in [8] for example) carries over directly to the complex
plane.

In particular, the distance between two points z0 = x0+iy0 and z1 = x1+iy1

within C is given by the Pythagorean formula

d(z0, z1) = |z0 − z1| =
√

(x0 − x1)2 + (y0 − y1)2.

This distance function satisfies all of the usual axioms which make C into what
is called a metric space:

1. d(z0, z1) ≥ 0 and d(z0, z1) = 0⇔ z0 = z1,

2. d(z0, z1) = d(z1, z2), and

3. d(z0, z2) ≤ d(z0, z1) + d(z1, z2),

whenever z0, z1 and z2 are elements of C.
It is possible to describe many interesting subsets of C in terms of the dis-

tance function. Thus for example,

S = {z ∈ C : |z − (2 + i)| = 4} = {z ∈ C : d(z, (2 + i)) = 4} (1.7)

is just the set of points which are four units away from 2 + i, which is of course
the circle of radius 4 centered at 2 + i. Similarly,

S = {z ∈ C : |z − (3 + i)| = |z − (5 + 2i)|} (1.8)

is just the set of points which are equidistant from the two points 3 + i and
5 + 2i, which is the straight line which bisects the line segment from 3 + i to
5 + 2i.
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There is much terminology associated with distance functions from metric
spaces which has become part of the fabric of contemporary mathematics. We
will need this terminology for our study of complex analysis.

Definition. If ε is a positive number, the open disk of radius ε about the point
z0 ∈ C is the subset

N(z0; ε) = {z ∈ C : |z − z0| < ε}.

We sometimes also call this an ε-neighborhood about z0.

Definition. A subset U ⊆ C is said to be open if whenever z ∈ U , there is an
open disk N(z; ε) of some positive radius ε about z such that N(z; ε) ⊆ U .

Roughly speaking, a subset U ⊆ C is open if whenever z ∈ U , any point
sufficiently close to z is also in U . Thus, for example, the set {z ∈ C : |z| < 1}
is open while the set {z ∈ C : |z| ≤ 1} is not.

Proposition 1. The empty set ∅ and the whole space C are open subsets of C.
The union of an arbitrary collection of open sets is open. The intersection of a
finite collection of open sets is open.

For completeness, we include a proof, although some may prefer to accept the
theorem on faith. In particular, we leave it to the reader to check that the
empty set ∅ and the whole space C are open subsets of C. To prove that an
arbitrary union of open sets is open, we could suppose that {Uα : α ∈ A} is a
collection of open sets and that

U =
⋃
{Uα : α ∈ A}.

If z ∈ U , then z ∈ Uα for some α ∈ A. Hence there is an ε > 0 such that
N(z; ε) ⊆ Uα. But then N(z; ε) ⊆ U , and this shows that U is open.

On the other hand, suppose that {U1, . . . , Um} is a finite collection of open
sets and that

U = U1 ∩ · · · ∩ Um.

If z ∈ U , then z ∈ Ui for every i, 1 ≤ i ≤ m. Hence for each i, 1 ≤ i ≤ m, there
exists εi > 0 such that N(z; εi) ⊆ Ui. Let

ε = min(ε1, . . . , εm),

and note that ε > 0 since the minimum of a finite number of positive numbers
is positive. Then N(z; ε) ⊆ Ui for every i, 1 ≤ i ≤ m. Hence N(z; ε) ⊆ U and
the finite intersection U is open, finishing our proof.

Definition. A subset S ⊆ C is said to be closed if C− S is open.

For example, the circle (1.7) and the line (1.8) are closed subsets of C which
are not open. Any finite subset of C is closed. By an argument similar to that
of the Proposition, one can show that the empty set ∅ and the whole space C

12



are closed, the intersection of an arbitrary collection of closed sets is closed, and
the union of a finite collection of closed sets is closed.

Particular types of open and closed sets are also important.

Definition. An open subset U ⊆ C is said to be connected if whenever z0, z1 ∈
U , there is a smooth path from z0 to z1 which lies entirely within U .

In this definition, one can replace “smooth path” by “polygonal path,” and in
fact this is done by Saff and Snider in §1.6 of [10]. Connected open sets are quite
important within complex analysis, so Saff and Snider have a special name such
set; connected open sets are called domains.

Proposition 2. Suppose that U is a connected open subset of C. If u : U → R
is a function with continuous partial derivatives such that

∂u

∂x
=
∂u

∂y
= 0, (1.9)

then u is constant.

A proof, using ideas from calculus, follows from the chain rule. Indeed, if z0, z1 ∈
U and γ : [a, b]→ U is a smooth path such that γ(a) = z0 and γ(b) = z1, say

γ(t) = x(t) + iy(t), for t ∈ [a, b],

then

u(z1)− u(z0) =
∫ b

a

d

dt
(u ◦ γ)(t)dt =

∫ b

a

(
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

)
dt = 0,

so u(z1) = u(z0). Thus u has the same value at any two points of U , which is
exactly what we needed to prove.

Example. Suppose that U = {z = x + iy ∈ C : x 6= 0}. Then the function
u : U → R defined by

u(x+ iy) =

{
3, if x < 0,
5, if x > 0,

satisfies (1.9) yet is not constant. Of course, in this case, U is open but not
connected.

Among the most important closed sets are those which are bounded.

Definition. A subset S ⊆ C is said to be bounded if there is a positive real
number R such that

z ∈ S ⇒ |z| ≤ R.
A subset K ⊆ C is compact if it is both closed and bounded

One of the key theorems from real analysis ([8], Corollary 24.10) states that a
continuous real-valued function defined on a compact set K ⊆ C must achieve
its maximum and minimum values at some points of K.

13



1.6 The Riemann sphere

The Riemann sphere is the space obtained from the complex plane C by adding
a point at infinity, which we denote by ∞. It is most often visualized, however,
via stereographic projection from the (x1, x2)-plane to the unit sphere

S2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}.

If N = (0, 0, 1) is the north pole on S2, stereographic projection is a one-to-one
onto function

Φ : C −→ S2 − {N},

where C is thought of as the (x1, x2)-plane
We can follow the calculations in §1.6 of [10] to define the stereographic

projection. We consider the line L containing N = (0, 0, 1) on S2 and the point
(x, y, 0) in the plane x3 = 0. This line L can be parametrized by

γ : R→ R3 where γ(t) = (x1(t), x2(t), x3(t)) = t(x, y, 0) + (1− t)(0, 0, 1),

or alternatively, we can write this as

x1(t) = tx, x2(t) = ty, x3(t) = 1− t. (1.10)

There is a unique nonzero value for t such that γ(t) lie on S2 − {N}, and it
occurs when

1 = x2
1 + x2

2 + x2
3 = t2x2 + t2y2 + (1− t)2.

We can expand and solve for t:

1 = t2(x2 + y2) + 1− 2t+ t2 = t2(x2 + y2 + 1)− 2t+ 1,

2t = t2(x2 + y2 + 1), 2 = t(x2 + y2 + 1), t =
2

x2 + y2 + 1
.

Substitution into (1.10) then yields the point on S2 which corresponds to the
point (x, y, 0), corresponding to x+ iy ∈ C:

x1 =
2x

x2 + y2 + 1
, x2 =

2y
x2 + y2 + 1

, x3 = 1− 2
x2 + y2 + 1

.

We can then simplify this to

x1 =
2x

x2 + y2 + 1
, x2 =

2y
x2 + y2 + 1

, x3 =
x2 + y2 − 1
x2 + y2 + 1

, (1.11)

which gives an explicit formula for stereographic projection

Φ : C −→ S2 − {N}, Φ(z) =
(

2Re(z)
|z|2 + 1

,
2Im(z)
|z|2 + 1

,
|z|2 − 1
|z|2 + 1

)
,

where Re(z) and Im(z) are the real and imaginary parts of z.
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To see that Φ is one-to-one and onto, we can construct an explicit inverse.
Indeed, eliminating t from equations (1.10) gives first t = 1− x3 and then

x =
x1

t
=

x1

1− x3
, y =

x2

t
=

x2

1− x3
.

Thus we can define a function

φ : S2 − {N} → C by φ(x1, x2, x3) =
x1 + ix2

1− x3
.

which is exactly the inverse of Φ. The inverse map φ is well-behaved except
when x3 = 1, that is, it is well-behaved except at the north pole N on S2.

These explicit formulae may seem confusing at first. The important point
to note is that as the modulus of z gets larger and larger, Φ(z) approaches the
north pole on S2. Thus if we think of using Φ to identify points of C with points
on S2−{N}, then the north pole N should be identified with a point at infinity.
Indeed we might think of extending Φ to a map

Φ̃ : C ∪ {∞} −→ S2.

This idea of adding a point at infinity to the complex plane, thereby obtaining
what is sometimes called the extended complex plane or the one-point compact-
ification of C, has turned out to be extremely useful in understanding functions
of a complex variable.

Example. Supppose that U = C− {3} and

f : U → C by f(z) =
1

z − 3
.

Since f(z) gets larger and larger as z approaches 3, it is often useful to extend
f to a map

f̂ : C→ C ∪ {∞} so that f(z) =

{
1/(z − 3), if z 6= 3,
∞, if z = 3.

Unfortunately, there is no way of defining addition and multiplication with ∞
so that C ∪ {∞} satisfies the field axioms.

We can think of φ as defining a coordinate z on S2, which is well-behaved
everywhere except at the north pole N . But sometimes we want a coordinate
w that might be well-behaved near ∞. We might try to take

w =
1
z

as such a coordinate. Can we think of this also as a complex coordinate on part
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of S2? We find that

z =
x1 + ix2

1− x3

⇒ w =
1
z

=
1− x3

x1 + ix2
=

(1− x3)(x1 − ix2)
x2

1 + x2
2

=
(1− x3)(x1 − ix2)

1− x2
3

=
x1 − ix2

1 + x3

Thus if we let S denote the south pole (0, 0,−1), we can define

ψ : S2 − {S} → C by w = ψ(x1, x2, x3) =
x1 − ix2

1 + x3
.

It tuns out that conjugation followed by the inverse of ψ is then stereographic
projection with the north pole replaced by the south pole.

These constructions give two complex coordinate systems on S2,

φ : S2 − {N} → C and ψ : S2 − {S} → C

which are related by

ψ ◦ φ−1(z) = w =
1
z
.

These complex coordinate systems make S2 into what is called a Riemann sur-
face.
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Chapter 2

Analytic functions

Recall that if A and B are sets, a function f : A→ B is a rule which assigns to
each element a ∈ A a unique element f(a) ∈ B. In this course, we will usually
be concerned with complex-valued functions of a complex variable, functions
f : U → C, where U is an open subset of C. For such a function, we will often
write

w = f(z) = f(x+ iy) = u(x, y) + iv(x, y),

where u(x, y) and v(x, y) are the real and imaginary parts of f . We can think
of the complex-valued function f as specified by these two real-valued functions
u and v.

For example, if f : C→ C is defined by w = f(z) = z2, then

z2 = (x+ iy)2 = x2 − y2 + 2ixy ⇒

{
u(x, y) = x2 − y2,

v(x, y) = 2xy.

We can think of this as defining a transformation

u = x2 − y2, v = 2xy

from the (x, y)-plane to the (u, v)-plane.
Our goal is to study complex analytic functions f : U → C, functions which

have a complex derivative at each point of U . We will see that the existence of
a complex derivative at every point is far more restrictive than the existence of
derivatives of real valued functions. We will also see that a function f : U → C is
complex analytic if and only if its component functions u and v have continuous
partial derivatives and satisfy the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Moreover, u(x, y) and v(x, y) automatically have arbitrarily many derivatives
and satisfy Laplace’s equation:

∂2u

∂x2
+
∂2u

∂y2
= 0,

∂2v

∂x2
+
∂2v

∂y2
= 0.
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These equations have many practical applications. For example, the real part of
an analytic function can be used to model steady-state temperature distributions
in regions of the plane.

2.1 Convergence and continuity

To properly deal with complex-valued functions, we need to understand limits
and continuity. These are similar to the same concepts for real-valued functions
which are studied informally in calculus or more carefully in real analysis courses
such as Math 117 (see [8]). The simplest of the definitions is that of limit of a
complex sequence.

Definition 1. A sequence (zn) of complex numbers is said to converge to a
complex number z if for every ε ∈ R with ε > 0, there is an N ∈ N such that

n ∈ N and n > N ⇒ |zn − z| < ε.

In this case, we write z = lim zn. A sequence (zn) of real numbers which does
not converge to a real number is said to diverge.

Example 1. We claim that the sequence (zn) defined by zn = 1/n converges to
0. Indeed, given ε > 0, there exists N ∈ N such that N > 1/ε and thus 1/N < ε
by the so-called Archimedean property of the real numbers. It follows that

n > N ⇒ 0 <
1
n
<

1
N

⇒ |zn − 0| =
∣∣∣∣ 1n − 0

∣∣∣∣ < ε.

Using the same technique, you could show that the sequence (zn) defined by
zn = c/n converges to 0, whenever c is a complex number.

Example 2. On the other hand, the sequence (zn) defined by zn = in diverges.
We can prove this by contradiction. Suppose that this sequence (zn) were to
converge to z. We could then take ε = 1, and there would exist N ∈ N such
that

n > N ⇒ |zn − z| < 1.

But then if n > N and n is even, we would have zn+2 = (i2)zn = −zn. Since
|zn| = 1,

2 = |zn − zn+2| ≤ |zn − z|+ |z − zn+2| < 1 + 1 = 2,

a contradiction.

Example 3. Suppose that zn = an, where a ∈ R and 0 < a < 1. Then

1
a

= 1 + b, where b > 0,

and by the binomial formula(
1
a

)n
= (1 + b)n = 1 + nb+ · · ·+ bn ≥ nb,
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so
an ≤ 1

bn
=
c

n
, where c =

1
b
.

Now the argument for Example 1 can be applied with the result that

lim zn = lim(an) = 0.

Finally if c ∈ C and |c| < 1, then

|cn − 0| ≤ |c|n ⇒ lim cn = 0.

Proposition 1. Suppose that (zn) and (wn) are convergent sequences of com-
plex numbers with lim zn = z and limwn = w. Then

1. (zn + wn) converges and lim(zn + wn) = z + w,

2. (znwn) converges and lim(znwn) = zw,

3. (zn/wn) converges and lim(zn/wn) = z/w, provided wn 6= 0 for all n and
w 6= 0.

This theorem is proven in Math 117 for sequences of real numbers, and exactly
the same proof holds for sequences of complex numbers. For example, to prove
part I, we let ε > 0 be given. Since (zn) converges to z, there exists an N1 ∈ N
such that

n ∈ N and n > N1 ⇒ |zn − z| <
ε

2
.

Since (wn) converges to w, there exists an N2 ∈ N such that

n ∈ N and n > N2 ⇒ |wn − w| <
ε

2
.

Let N = max(N1, N2). Then using the triangle inequality, we conclude that

n ∈ N and n > N ⇒ |(zn+wn)−(z+w)| ≤ |zn−z|+|wn−w| <
ε

2
+
ε

2
= ε,

which is exactly what we needed to prove. This is sometimes called the ε/2
trick. Similar arguments are used to prove the other parts of the Proposition.

Example 4. Suppose we want to investigate the convergence of the sequence
(zn) defined by

zn =
2n+ 3 + i

n+ 5− 4i
.

We can rewrite this as

zn =
2 + (3 + i)/n
1 + (5− 4i)/n

.

By Example 1, we see that as n→∞, (3+ i)/n and (5−4i)/n converge to zero.
We can then use the above Proposition to establish that

lim(2 + (3 + i)/n) = 2, lim(1 + (5− 4i)/n) = 1 and lim zn = 2.
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Similarly, we can use the Proposition to show that the sequence (zn) defined by

zn =
2n2 + (3 + 5i)n+ (6− i)
3n2 + (5 + i)n+ (2 + 3i)

converges to z = 2/3.

Example 5. Suppose that (zn) is the sequence of complex numbers defined by

z1 = 1.5, zn+1 = f(zn) =
zn
2

+
1
zn
, for n ∈ N. (2.1)

If this sequence has a limit, Proposition 1 tells us what the limit must be.
Indeed, by induction one sees that zn ∈ R and zn > 0 for all n ∈ N. Moreover,
using calculus, one can show that x ∈ R ⇒ f(x) ≥

√
2. Thus if z = lim zn, it

follows from Proposition 1 that

z = lim zn+1 =
lim zn

2
+

1
lim zn

=
z

2
+

1
z
⇒ z

2
=

1
z
⇒ z2 = 2.

Thus we see that z =
√

2. We remark that (2.1) provides a good numerical
method for finding the square root of two.

We next turn to the notion of limits of functions. If z0 is a complex number, a
deleted open ball about z0 is a set of the form

N∗(z0; ε) = N(z0; ε)− {z0} = {z ∈ C : 0 < |z − z0| < ε},

for some ε > 0.

Definition 2. Let D ⊆ C and let z0 be a complex number such that some
deleted neighborhood N∗(z0; ε) of z0 lies within D. A complex number w0 is
the limit of a function f : D → C at z0 if

zn ∈ D, zn 6= z0 and lim zn = z ⇒ lim f(zn) = w0.

In this case, we write
lim
z→z0

f(z) = w0.

Some authors, including [10], prefer an alternate definition which turns out to
be equivalent:

Definition 2’. Let D ⊆ C and let z0 be a complex number such that some
deleted neighborhood of z0 lies within D. A complex number w0 is the limit of
a function f : D → C at z0 if for every ε > 0 there exists δ > 0 such that

0 < |z − z0| < δ ⇒ |f(z)− w0| < ε.

With either Definition 2 or 2’, it is important that the function f need be
defined only on a deleted open ball about z0, not necessarily at the point z0
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itself. Indeed, we will often take limits at z0 when f is not defined at z0. The
following proposition follows immediately from Definition 2 and Proposition 1:

Proposition 2. Let D ⊆ C and let z0 be a complex number such that some
deleted neighborhood of z0 lies within D. Suppose that f : D → C and g : D →
C are functions such that limz→z0 f(z) = w0 and limz→z0 g(z) = w1. Then

1. limz→z0(f(z) + g(z)) = w0 + w1,

2. limz→z0(f(z)g(z)) = w0w1,

3. if g(z) 6= 0 for z ∈ D and w1 6= 0, then limz→z0(f(z)/g(z)) = w0/w1.

Definition 3. Suppose that D ⊆ C, that f : D → C, and z0 is a point of D
such that N(z0; ε) ⊆ D for some ε > 0. Then f is continuous at z0 if

lim
z→z0

f(z) = f(z0).

The following proposition follows immediately from this definition and Propo-
sition 2:

Proposition 3. Suppose that D ⊆ C and that f : D → C and g : D → C are
continuous at z0 ∈ D. Then the functions f + g and f · g are also continuous at
z0. Moreover, if g(z) 6= 0 for z ∈ D, then the quotient f/g is also continuous at
z0.

It is quite easy to show that the function f : C → C defined by f(z) = z
is continuous at every z0 ∈ C. It then follows from Proposition 3 that every
polynomial function

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

with complex coefficients a0, a1, . . . , an−1, an, is continuous at every z0 ∈ C.
Suppose that

Q(z) = bmz
m + bm−1z

m−1 + · · ·+ b1z + b0 = 0

is a second polynomial with complex coefficients and that S be the finite set
of points at which Q(z) vanishes. Let D = C − S. Then it also follows from
Proposition 3 that the rational function R : D → C defined by

R(z) =
P (z)
Q(z)

is continuous at every point of D. Thus we can construct many examples of
continuous functions. Moreover, it is easy to calculate the limits of continuous
functions, because if f is continuous at z0 then

lim
z→z0

f(z) = f(z0).
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But there are also numerous cases in which limits do not exist. For an
important example, suppose that D = C − {0} and that f : D → C is defined
by

f(x+ iy) = f(z) =
z̄

z
=
x− iy
x+ iy

=
(x− iy)2

x2 + y2
=
x2 − y2 − 2xyi

x2 + y2
.

Then if (zn = xn + iyn) is a sequence in D which lies on the x-axis, yn = 0 ⇒
f(zn) = 1, while if (zn = xn + iyn) is a sequence in D which lies on the y-axis,
xn = 0 ⇒ f(zn) = −1. Thus limz→0 f(z) does not exist.

Here is another example. Recall that Arg(z) is the unique value of the
multivalued angle function arg(z) which lies in the interval (−π, π]. This defines
a function

Arg : C− {0} → (−π, π]

which we use to define the logarithm

Log : C− {0} → C by Log(z) = Log|z|+ iArg(z). (2.2)

As we saw earlier, if exp : C→ C is the function defined by exp(z) = ez, then

exp ◦ Log(z) = z, Log ◦ exp(w) = w,

when the composition is defined. If (zn = xn + iyn) is a sequence of complex
numbers such that yn > 0 and lim zn = −1, then lim Log(zn) = π, while
if (zn = xn + iyn) is a sequence such that yn < 0 and lim zn = −1, then
lim Log(zn) = −π. Thus

lim
z→−1

Log(z)

does not exist, and the function Log defined by (2.2) fails to be continuous at
z = −1.

On the other hand, one can show that the restricted function

Log : C− {x ∈ R : x ≤ 0} → C, defined by Log(z) = Log|z|+ iArg(z),

is in fact continuous, because we have excised the points of discontinuity from
the domain.

2.2 Complex derivatives and analyticity

The notion of derivative for a complex-valued function looks superficially similar
to the similar definition for real-valued functions, but we will see that it has far
stronger implications:

Definition 1. Suppose that f : U → C is a complex valued function, where U
is an open subset of C and z0 ∈ U . Then the complex derivative of f at z0 is

df

dz
(z0) = f ′(z0) = lim

∆z→0

f(z0 + ∆z)− f(z0)
∆z

, (2.3)
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if this limit exists. We say that f is differentiable at z0 if it has a complex
derivative at z0.

Definition 2. A function f : U → C, where U is an open subset of C, is said
to be complex analytic or holomorphic if it has a derivative at every z0 ∈ U . If
U = C, we say that the function is entire.

Example 1. If f : C→ C is the function defined by f(z) = zn, then it follows
from the binomial formula that

f(z0 + ∆z) = zn0 + nzn−1
0 ∆z +

(
n

2

)
zn−2

0 (∆z)2 + · · ·+ (∆z)n,

so

f(z0 + ∆z)− f(z0) = nzn−1
0 ∆z +

(
n

2

)
zn−2

0 (∆z)2 + · · ·+ (∆z)n

and

f(z0 + ∆z)− f(z0)
∆z

= nzn−1
0 +

(
n

2

)
zn−2

0 (∆z) + · · ·+ (∆z)n−1.

Taking the limit as ∆z → 0 yields

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

= nzn−1
0 .

Thus in this case, the derivative of f exists at every z0 ∈ C and is given by the
familiar formula

f ′(z0) = nzn−1
0 .

Thus f is complex analytic on the entire complex plane, that is, it is an entire
function.

Example 2. If f : C→ C is the function defined by f(z) = z̄, then

f(z0 + ∆z)− f(z0) = (z0 + ∆z)− z̄0 = ∆z.

Thus
f(z0 + ∆z)− f(z0)

∆z
=

∆z
∆z

.

But

∆z ∈ R ⇒ ∆z
∆z

= 1 while ∆z ∈ iR ⇒ ∆z
∆z

= −1,

so

lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

cannot exist in this case, so f is not differentiable at any z0 ∈ C, even though
if we divide f into real and imaginary parts,

f(z) = f(x+ iy) = u(x, y) + iv(x, y), then

{
u(x, y) = x,

v(x, y) = −y
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and the component functions u and v have continuous partial derivatives of
arbitrarily high order in the usual sense of several variable calculus.

One can use Proposition 2 from §2.1 as the foundation for proving:

Proposition 1. If f : D → C and g : D → C are differentiable at z0 ∈ D, then

1. f + g is differentiable at z0, and (f + g)′(z0) = f ′(z0) + g′(z0),

2. cf is differentiable at z0 for any constant c, and (cf)′(z0) = cf ′(z0),

3. fg is differentiable at z0, and (fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0),

4. if g(z) 6= 0 for z ∈ D, then f/g is differentiable at z0. and(
f

g

)′
(z0) =

g(z0)f ′(z0)− f(z0)g′(z0)
g(z0)2

. (2.4)

Using Example 1 and this Proposition, it becomes straightforward to show that
any polynomial

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

with complex coefficients a0, a1, . . . , an−1, an is differentiable at every point
z0 ∈ C, with complex derivative given by the formula

P ′(z0) = nanz
n−1
0 + n(n− 1)an−1z

n−2
0 + · · ·+ a1.

Moreover, if

Q(z) = bmz
m + bm−1z

m−1 + · · ·+ b1z + b0 = 0

is a second polynomial with complex coefficients and S is the finite set of points
at which Q(z) vanishes. It also follows from Proposition 1 that the rational
function

R(z) =
P (z)
Q(z)

is differentiable at every point of D = C− S. In this case, we would say that R
is complex analytic except at the points of S, and we can use (2.4) to find the
derivative at any point of C− S.

We can also prove a version of the chain rule for complex derivatives:

Proposition 2. Suppose that U and V are open subsets of the complex plane
C and that f : U → V and g : V → C are differentiable at z0 ∈ U and f(z0) ∈ V
respectively. Then the composition g ◦ f : U → C is differentiable at z0 and

(g ◦ f)′(z0) = g′(f(z0))f ′(z0).
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Here is a simple application of the chain rule: We will see in the next section
that the function

g : C→ C defined by g(x+ iy) = ez = ex(cos y + i sin y)

is differentiable at every point of C and g′(z) = ez. If f : C → C is defined by
f(w) = aw, where a ∈ C, then g ◦ f(z) = eaz, and it follows from the chain rule
that

(g ◦ f)′(z) = g′(f(z))f ′(z) = eaza = aeaz.

Finally, just as in the real case, it turns out that a function which has a
complex derivative at a point automatically is continuous at that point:

Proposition 3. If f : D → C is differentiable at z0 ∈ D, then f is continuous
at z0 as well.

To prove this, we let z = z0 + ∆z in (2.3) so that ∆z = z − z0. Then

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

.

Thus

lim
z→z0

(f(z)− f(z0)) = lim
z→z0

f(z)− f(z0)
z − z0

lim
z→z0

(z − z0)

= f ′(z0) lim
z→z0

(z − z0) = 0.

But this immediately implies that f is continuous at z0.

Thus if D is an open subset of C and f : D → C is complex analytic, then f
is continuous. It is a little harder to show (via a theorem of Goursat) that a
complex analytic function f : D → C automatically has a continuous deriva-
tive f ′ : D → C. Later we will see via the Cauchy integral theorem that in
fact a complex analytic function has continuous derivatives of arbitrarily high
order. Thus existence of complex derivatives is far stronger than the existence
of ordinary derivatives of real valued functions.

2.3 The Cauchy-Riemann equations

Suppose that the function f : D → C has a complex derivative at z0 = x0+iy0 ∈
D. In the definition of complex derivative, we can let ∆z approach zero along
the x-axis, that is, we can set ∆z = h ∈ R. In that case, (2.3) becomes

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)
h

,

where h ranges only over R. We recognize that this is just the partial derivative
of the vector valued function f(x + iy) = u(x, y) + iv(x, y) with respect to x,
which we can write out in terms of real and imaginary parts:

f ′(z0) =
∂f

∂x
(x0, y0) =

∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (2.5)
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On the other hand, we can also let ∆z approach zero along the y-axis, that is,
we can set ∆z = ik, where k ∈ R. In this case, we find that

f ′(z0) = lim
k→0

f(z0 + ik)− f(z0)
ik

=
1
i

∂f

∂y
(x0, y0)

=
1
i

∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0) = −i∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0). (2.6)

Since the two expressions (2.5) and (2.6) must be equal, we must have

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

Thus the real and imaginary parts of a complex analytic function must satisfy
these equations, known as the Cauchy-Riemann equations in honor of Augustin
Cauchy (1789-1859) and Bernard Riemann (1826-1866), although these equa-
tions had actually appeared earlier in work of d’Alembert and Euler on fluid
motion (as explained in Chapter 26 of [5]).

Conversely, we have the following key theorem:

Cauchy-Riemann Theorem. Suppose that U is an open subset of C and
the complex-valued function f : U → C can be expressed in terms of real and
imaginary parts as

f(z) = f(x+ iy) = u(x, y) + iv(x, y),

where u(x, y) and v(x, y) have continuous first order partial derivatives on U
which satisfy the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (2.7)

Then f is a complex analytic function on U and its derivative is given by the
formula

f ′(z) =
∂u

∂x
− i∂u

∂y
. (2.8)

We sketch a proof of this following Ahlfors [1], page 26. It is proven in calculus
courses (or more rigorously in real analysis courses) that when u(x, y) and v(x, y)
have continuous partial derivatives,

u(x+ h, y + k)− u(x, y) =
∂u

∂x
(x, y)h+

∂u

∂y
(x, y)k + ε1

and
v(x+ h, y + k)− v(x, y) =

∂v

∂x
(x, y)h+

∂v

∂y
(x, y)k + ε2,

where
ε1√

h2 + k2
→ 0 and

ε2√
h2 + k2

→ 0 as
√
h2 + k2 → 0.
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Using (2.7), we can rewrite the above equations as(
u(x+ h, y + k)
v(x+ h, y + k)

)
−
(
u(x, y)
v(x, y)

)
=
(
∂u/∂x ∂u/∂y
∂v∂x ∂v/∂y

)
(x, y)

(
h
k

)
+
(
ε1

ε2

)
. (2.9)

The key point now is that the Jacobian matrix(
∂u/∂x ∂u/∂y
∂v∂x ∂v/∂y

)
(x, y) represents a complex matrix

(
a −b
b a

)
if and only if the Cauchy-Riemann equations are satisfied. Thus if the Cauchy-
Riemann equations are satisfied, we can rewrite (2.9) as(

u(x+ h, y + k)
v(x+ h, y + k)

)
−
(
u(x, y)
v(x, y)

)
=
(
∂u/∂x ∂u/∂y
−∂u/∂y ∂u/∂x

)
(x, y)

(
h
k

)
+
(
ε1

ε2

)
.

One can check that the two components of this last equation are the real and
imaginary parts of the complex equation

f(z + (h+ ik))− f(z) =
(
∂u

∂x
− i∂u

∂y

)
(h+ ik) + ε1 + iε2.

But this implies that

lim
h+ik→0

(
f(z + (h+ ik))− f(z)

h+ ik

)
=
(
∂u

∂x
− i∂u

∂y

)
(x, y),

so f is analytic and its derivative is given by (2.8).

Application 1. Suppose that f : C→ C is the exponential function defined by

f(x+ iy) = ez = ex(cos y + i sin y) = u(x, y) + iv(x, y),

where u(x, y) = ex cos y and v(x, y) = ex sin y. We could try to prove directly
that this function is complex analytic, but this would require evaluating some
difficult limits. Instead, we can observe the real and imaginary parts of f are
continuously differentiable, and

∂u

∂x
= ex cos y =

∂v

∂y
and

∂u

∂y
= −ex sin y =

∂v

∂x
,

so the Cauchy-Riemann Theorem implies that f is a complex analytic function.
Moreover,

df

dz
=
∂u

∂x
− i∂u

∂y
= ex cos y + iex sin y, so

d

dz
(ez) = ez.

Exercise B. a. Use the chain rule to express the partial derivatives of u and v
with respect to x and y in terms of the partial derivatives with respect to the
polar coordinates (r, θ), where

x = r cos θ, y = r sin θ.
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b. Use the expressions you obtained to rewrite the Cauchy-Riemann equations
in terms of polar coordinates:

∂u

∂r
=

1
r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
. (2.10)

Application 2. Suppose that

f = Log : C−{x ∈ R : x ≤ 0} → C, is defined by Log(z) = Log|z|+iArg(z),

In this case,

u(x, y) = Log
(√

x2 + y2
)
, v(x, y) = arg(x+ iy).

In terms of polar coordinates,

u(r, θ) = Log(r), v(r, θ) = θ,

so
∂u

∂r
=

1
r
,

∂u

∂θ
= 0,

∂v

∂r
= 0,

∂u

∂θ
= 1.

It therefore follows from the polar coordinate form of the Cauchy-Riemann
equations (2.10), together with the Theorem, that f = Log is a complex analytic
function of z, and using (2.8) we find its derivative:

f ′(z) =
∂

∂x
Log

(√
x2 + y2

)
− i ∂

∂y
Log

(√
x2 + y2

)
=

1√
x2 + y2

∂

∂x

(√
x2 + y2

)
− i√

x2 + y2

∂

∂y

(√
x2 + y2

)
=

x− iy
x2 + y2

=
z̄

z̄z
=

1
z
.

The following Proposition follows from Proposition 2 in §1.5:

Proposition 1. Suppose that D is a connected open subset of C and that
f : D → C is a complex analytic function such that f ′ : D → C is continuous.
Then

f ′(z) = 0 for all z ∈ D ⇒ f(z) ≡ c,

where c is a constant.

Indeed, if f ′(z) = 0 for all z ∈ D, then it follows from (2.8) and the Cauchy-
Riemann equations that

∂u

∂x
=
∂u

∂y
= 0,

∂v

∂x
=
∂v

∂y
= 0.

Since D is connected, it follows from Proposition 2 in §1.5, or from Theorem 1,
page 40 in [10], that u and v are both constant.
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Many properties of complex analytic functions can be derived from the Cauchy-
Riemann equations. For example:

Proposition 2. Suppose that D is a connected open subset of |mathbbC and
that f : U → C is a complex analytic function such that f ′ : D → C is
continuous. If the real part of f is constant, then f itself is constant.

Proof: Suppose that f(x+ iy) = u(x, y) + iv(x, y), so that u is the real part of
f . Then

u constant ⇒ ∂u

∂x
=
∂u

∂y
= 0.

It then follows from the Cauchy-Riemann equations that

∂v

∂x
= −∂v

∂y
= 0,

∂v

∂y
=
∂u

∂y
= 0.

It therefore follows from Proposition 2 in §1.5 that v is constant. Thus f itself
is constant. QED

Can you use this proposition to show that if f : D → C and g : D → C are two
complex analytic functions with the same real part, then f = g + c, where c is
an imaginary constant?

2.4 Fluid motion in the plane

In his research on complex analysis, Riemann utilized physical models to but-
tress his intuition, as emphasized by Felix Klein in his classic treatise [4] on
Riemann’s theory of complex functions. One of the models Riemann used was
that of a fluid flow tangent to the field lines for an electric field in the (x, y)-
plane, a flow which turns out to be both incompressible and irrotational.

One can represent the velocity of a fluid in an open subset U of the (x, y)-
plane by a vector field

V(x, y) = M(x, y)i +N(x, y)j : U −→ R,

where i and j are the perpendicular unit-length vectors pointing in the x and y
coordinate directions. We say that V has continuous first-order partial deriva-
tives if its component functions M and N have continuous first-order partial
derivatives. Such a vector field V (or the corresponding fluid) is said to be
incompressible if

∂M

∂x
+
∂N

∂y
= 0, (2.11)

and irrotational if
∂N

∂x
− ∂M

∂y
= 0. (2.12)

An important fact is that we can rotate the vector field V counterclockwise
through 90 degrees, obtaining

?V = −N(x, y)i +M(x, y)j, (2.13)
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and one can check that

V is irrotational ⇔ ?V is incompressible,

V is incompressible ⇔ ?V is irrotational.

We will see later that the velocity field for a steady-state fluid of constant
density is incompressible so long as no fluid is being created or destroyed. On
the other hand, if U is either C or an open ball in C then a vector field is
irrotational if and only if it is the gradient of a function:

Poincaré Lemma. Suppose that U = C or

U = N((x0, y0);R) = {x+ iy ∈ C : d((x, y), (x0, y0)) < R},

for some (x0, y0) ∈ C and some R > 0, and that V is is a vector field on U with
continuous first-order partial derivatives. Then

V = M i +N j = ∇u, for some u : U → R ⇔ ∂N

∂x
− ∂M

∂y
= 0.

Here the condition V = ∇u means that

∂u

∂x
(x, y) = M(x, y),

∂u

∂y
(x, y) = N(x, y). (2.14)

One direction of the proof is easy. If V = ∇u, then (2.14) and equality of mixed
partials yields

∂N

∂x
− ∂M

∂y
=

∂

∂x

(
∂u

∂y

)
− ∂

∂y

(
∂u

∂x

)
= 0.

We will not prove the other direction of the Poincaré Lemma now except to
note that it follows from Green’s Theorem from vector calculus. Instead, we
note that one constructs the function u : U → R such that V = ∇u by the
method of exact differentials. Indeed, with sufficient effort, one could make the
method of exact differentials into a proof of the Poincaré Lemma.

To express the Poincaré Lemma in the language of differentials, we let

dx = dxi + dyj, so that ∇u · dx =
∂u

∂x
dx+

∂u

∂y
dy = du

and V(x, y) · dx = (M i +N j) · (dxi + dyj) = Mdx+Ndy,

and hence
V = ∇u ⇔ Mdx+Ndy = du,

and the Poincaré Lemma becomes

Mdx+Ndy = du ⇔ ∂N

∂x
− ∂M

∂y
= 0.
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Example 1. Suppose that

V(x, y) = (4x3 − 12xy2)i + (−12x2y + 4y3)j

so that Mdx+Ndy = (4x3 − 12xy2)dx+ (−12x2y + 4y3)dy.

Then
∂N

∂x
= −12x2 + 12y2 =

∂M

∂y
,

so V = ∇u, for some function u by the Poincaré Lemma. To find u, first note
that

∂u

∂x
= 4x3 − 12xy2 ⇒ u(x, y) = x4 − 6x2y2 + g(y),

where g(y) is a function of y alone, while

∂u

∂y
= −12x2y + 4y3 ⇒ −12x2y + g′(y) = −12x2y + 4y3,

so
g(y) = y4 + c and u(x, y) = x4 − 6x2y2 + y4 + c,

where c is a constant. Thus V determines u up to a constant. We call u a
potential for the fluid flow V.

Suppose now that V : U → R is both incompressible and irrotational. If U is
the entire plane or an open ball, it follows from the Poincaré Lemma that V has
a potential u and substituting (2.14) into (2.11) yields the Laplace equation:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0. (2.15)

Definition. A function u : U → R with continuous first and second order
partial derivatives is said to be harmonic if u satisfies (2.15).

Thus harmonic functions are exactly the potentials for irrotational incompress-
ible fluid flows in the plane. What is important for complex analysis is that
if

f(x+ iy) = u(x, y) + iv(x, y)

is a complex analytic function with continuous partial derivatives up to order
two on an open subset U of the complex plane C, then u and v are harmonic
functions. Not only that, but a harmonic function u : U → C is the real part
of a complex analytic function, at least if U is the entire complex plane or an
open ball in the complex plane. Indeed, if u is harmonic, then its gradient

V = ∇u =
∂u

∂x
i +

∂u

∂y
j

is both irrotational and incompressible. But then

?V = −∂u
∂y

i +
∂u

∂x
j
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is also both irrotational and incompressible. If U is the entire complex plane
or an open ball in the complex plane, we can apply the Poincaré Lemma and
construct a potential v : U → R for ?V, so that

−∂u
∂y

i +
∂u

∂x
j = ?V =

∂v

∂x
i +

∂v

∂y
j.

But then u and v satisfy the Cauchy-Riemann equations, and (assuming the
Poincar’e Lemma) we have proven:

Theorem. Suppose that U = C or an open ball within U and that u : U → R is
a harmonic function on U . Then up to addition of a constant, there is a unique
harmonic function v(x, y) such that

f(x+ iy) = u(x, y) + iv(x, y), for (x, y) ∈ U .

We call v the harmonic conjugate of u.

Example 2. Suppose that

u(x, y) = x4 − 6x2y2 + y4,

a function which is easily verified to be harmonic. Then

V = ∇u = (4x3 − 12xy2)i + (−12x2y + 4y3)j,

so that
?V = (12x2y − 4y3)i + (4x3 − 12xy2)j,

and we can find the harmonic conjugate v as follows:

∂v

∂x
= 12x2y − 4y3 ⇒ v(x, y) = 4x3y − 4xy3 + g(y),

where g(y) is a function of y alone. Then

∂v

∂y
= 4x3 − 12xy2 ⇒ u(x, y) = 4x3y − 4xy3 + c,

where c is a constant. Thus if we set c = 0,

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

= x4 − 6x2y2 + y4 + i(4x3y − 4xy3) = (x+ iy)4 = z4.

We have seen that the study of irrotational incompressible fluid motion in the
plane inexorably leads to the Cauchy-Riemann equations of complex analysis.
Following Klein [4], we can imagine an electric field V(x, y) in the (x, y)-plane
produced by a finite number of charges located at the points {z1, . . . , zk} (which
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will be singular points for V). Maxwell’s equations from electricity and mag-
netism imply that V is an incompressible irrotational flow on the open set

U = C− {z1, . . . , zk}.

However, even if we assume that V has a potential u, U is not an open ball
within C, so we cannot apply the Poincaré Lemma to construct a harmonic
conjugate v. This raises the question: Can we extend the Poincaré Lemma to
more general connected open sets U?

Exercise C. Using Exercise B, show that we can write Laplace’s equation in
polar coordinates as

∇2u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
= 0.

Example 3. It follows from Exercise C, that the only solutions to Laplace’s
equation which are radially symmetric are the solutions to the ordinary differ-
ential equation

d2u

dr2
+

1
r

du

dr
= 0.

If we set w = du/dr, this yields

dw

dr
+
w

r
= 0 which has the solutions w =

a

r
,

where a is a constant. This in turn implies that

u = a Log r + b = a Log|z|+ b, (2.16)

where a and b are constants; if b = 0 and a > 0, this is interpreted as a source
at the origin z = 0 of strength a. In the electrostatic model, u is the potential
produced by an electric charge placed at the origin.

But now we can ask the question: Does u have a harmonic conjugate? If we
let

U = C− {x ∈ R : x ≤ 0},

then the harmonic conjugate to u must be the imaginary part of the function
Log we described before, which is given by

v(x, y) = Arg(x+ iy),

while if U = C−{0}, there is no continuous harmonic conjugate. (The harmonic
conjugate would have to be the “multivalued function” arg, but that of course
is not a genuine function.) We will return to the question of when the harmonic
conjugate to a given harmonic function exists after we have studied contour
integrals.
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Remark: The stereographic projection Φ : C → S2 − {N} ⊆ R3 allows us
to extend this model of fluid flow to the surface of the sphere S2. Indeed, if
φ : S2 − {N} → C is the inverse to stereographic projection,

u ◦ φ : S2 − {N} −→ C

can be thought of as the potential for a fluid on S2−{N}, and the best behaved
potentials are those which extend to the north pole N and are well-behaved
near N .

For example, we could take the harmonic function u = a Log|z| of Example 3.
How does this fluid flow behave near the north pole N? To answer that question,
we write u in terms of the coordinate w = 1/z which is well behaved near N :

u = a Log|z| = a Log|1/w| = −a Log|w|.

Thus if a > 0 a source of strength a at the origin z = 0 is balanced by a sink of
strength a at z =∞.
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Chapter 3

Examples of analytic
functions

We now focus on various examples of complex analytic functions, starting with
the rational functions, then continuing on to the exponential and logarithm
functions, and finally the trigonometric functions and their inverses. Yet other
examples of complex analytic functions come from the theory of ordinary dif-
ferential equations.

The complex analytic functions we construct will provide important cases in
which we can solve for the steady-state distribution of temperature in a given
region of the plane.

3.1 Rational functions

The simplest complex analytic functions are the rational functions. These are
the functions

R(z) =
P (z)
Q(z)

, (3.1)

where

P (z) = amz
m + am−1z

m−1 + · · ·+ a1z + a0

and Q(z) = bnz
n + bn−1z

n−1 + · · ·+ b1z + b0

are polynomials with complex coefficients

am, am−1, . . . , a1, a0, bn, bn−1, . . . , b1, b0,

and we make the assumptions that am 6= 0 and bn 6= 0. We also assume that
P and Q do not have any common factors. The function R(z) is differentiable
at every point of C − S, where S is the finite set of points within C at which
the denominator Q(z) vanishes. The maximum of the two degrees, the degree
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of the numerator and the degree of the denominator, is called the degree of the
rational function R(z).

The sum of two rational functions is also rational function, as is the product.
Indeed, one can check that with these operations of addition and multiplication,
the space of rational functions satisfies the field axioms, and we denote this field
by C(X). This is an important example of a field, which can be added to the
earlier ones Q, R and C.

The Fundamental Theorem of Algebra allows us to factor the polynomials
P (z) and Q(z),

P (z) = am(z − z1)p1(z − z2)p2 · · · (z − zr)pr

and Q(z) = bn(z − ζ1)q1(z − ζ2)q2 · · · (z − ζs)qs ,

where the exponents denote the multiplicities of the roots, and this provides us
with the first of the two important canonical forms for a rational function:

R(z) =
am
bn

(z − z1)p1(z − z2)p2 · · · (z − zr)pr
(z − ζ1)q1(z − ζ2)q2 · · · (z − ζs)qs

. (3.2)

The zeros z1, . . . , zr of the numerator are called the zeros of the rational function,
while the zeros ζ1, . . . , ζs of the denominator are called its poles. The order
of a zero or pole is its multiplicity as a root of either the numerator or the
denominator. Poles of order one are said to be simple.

We say that a rational function R(z) is proper if

m = degP (z) ≤ n = degQ(z),

and strictly proper if m < n. If R(z) is not strictly proper, we can divide by the
denominator to obtain

R(z) = P1(z) +R1(z),

where P1(z) is a polynomial and the remainder R1(z) is a strictly proper rational
function.

Example 1. Suppose that

R(z) =
z3 − 2z2 − 7z + 21

z2 − 9
.

This rational function is not strictly proper so we can divide numerator by
denominator to obtain

R(z) = z − 2 +R1(z), where the remainder R1(z) =
2z + 3
z2 − 9

is a strictly proper rational function.

Strictly proper rational functions have a second canonical form, called the par-
tial fraction decomposition. This is extremely useful in calculating integrals of
rational functions, as you may remember from calculus.

36



Theorem. If the rational function R(z) = P (z)/Q(z) is strictly proper, that is
if degP < degQ, then R(z) has a partial fraction decomposition

R(z) =
A1,0

(z − ζ1)q1
+ · · ·+ A1,q1−1

(z − ζ1)

+
A2,0

(z − ζ2)q2
+ · · ·+ A2,q2−1

(z − ζ2)
+ · · ·

+
As,0

(z − ζs)qs
+ · · ·+ As,qs−1

(z − ζs)
. (3.3)

A proof of this theorem can be found on page 107 of Saff and Snider [10]. What
you should focus on is how to calculate the partial fraction decomposition of a
given rational function. Note that if all the poles of r are simple, that is all the
roots of the denominator have multiplicity one, then (3.3) simplifies to

R(z) =
A1

z − ζ1
+

A2

z − ζ2
+ · · ·+ An

z − ζn
. (3.4)

In this simpler case, one can find the coefficients in the partial fraction expansion
by the formula

Ai = lim
z→ζi

(z − ζi)R(z). (3.5)

Example 2. We can write the rational function

R(z) =
2z + 3
z2 − 9

as R(z) =
A1

z − 3
+

A2

z + 3
,

where use of (3.5) gives

A1 = lim
z→3

(z − 3)R(z) = lim
z→3

2z + 3
z + 3

=
9
6

=
3
2
,

A2 = lim
z→−3

(z + 3)R(z) = lim
z→−3

2z + 3
z − 3

=
−3
−6

=
1
2
.

We conclude therefore that

R(z) =
2z + 3
z2 − 9

=
3/2
z − 3

+
1/2
z + 3

.

In the more general case, one first notes that the Taylor series expansion for
(z − ζi)qiR(z) starts out with

(z − ζi)qiR(z) = Ai,0 +Ai,1(z − ηi) + · · ·+Ai,j(z − ηi)j + · · · ,

so the coefficient Ai,j is given by the formula from calculus for the coefficient in
this Taylor expansion,

Ai,j = lim
z→ζi

(
1
j!
dj

dzj
[(z − ζi)qiR(z)]

)
. (3.6)
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Example 3. We can write the rational function

R(z) =
z2 + 2z + 3

(z − 3)3
as R(z) =

A1,0

(z − 3)3
+

A1,1

(z − 3)2
+

A1,2

(z − 3)
,

where it follows from (3.6) that

A1,0 = lim
z→3

(z − 3)3R(z) = lim
z→3

(z2 + 2z + 3) = 18,

A1,1 = lim
z→3

(
d

dz
(z − 3)3R(z)

)
= lim
z→3

(
d

dz
(z2 + 2z + 3)

)
= lim
z→3

(2z + 2) = 8,

A1,2 = lim
z→3

(
1
2
d2

dz2
(z − 3)3R(z)

)
= lim
z→3

(
1
2
d2

dz2
(z2 + 2z + 3)

)
= lim
z→3

(1) = 1.

We conclude therefore that

R(z) =
z2 + 2z + 3

(z − 3)3
=

18
(z − 3)3

+
8

(z − 3)2
+

1
(z − 3)

.

It is quite convenient to regard the argument z of the rational functions R(z), as
well as the values of R(z). as ranging over the extended complex plane C∪{∞}.
In considering the extension to C∪{∞}, we make use of a new variable w = 1/z
which is well-behaved near ∞. Suppose that the numerator and denominator
in the rational function have the same degree,

R(z) =
anz

n + an−1z
n−1 + · · ·+ a1z + a0

bnzn + bn−1zn−1 + · · ·+ b1z + b0
.

Then replacing z by 1/w yields

R(z) =
an(1/w)n + an−1(1/w)n−1 + · · ·+ a1(1/w) + a0

bn(1/w)n + bn−1(1/w)n−1 + · · ·+ b1(1/w) + b0

=
an + an−1w + · · ·+ a1w

n−1 + a0w
n

bn + bn−1w + · · ·+ b1wn−1 + b0wn
.

Setting z =∞ is the same as setting w = 0, so we let R denote also the extension
of the rational function R to C ∪ {∞},

R(∞) =
an
bn
.

More generally, the reader can easily check that if

R(z) =
P (z)
Q(z)

, with degP = m and degQ = n,

then R has a zero of order n−m at ∞ if m < n and a pole of order m− n at
∞ if m > n. In particular, strictly proper rational functions have zeros at ∞.
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Similarly, we regard the value of R(z) at a pole ζi as∞. With this convention
we can regard R as a map

R : C ∪ {∞} −→ C ∪ {∞}. (3.7)

It is often helpful to use stereographic projection to regard this as defining a
map from S2 to itself. It turns out that if R has degree n there will be n
solutions to the equation R(z) = c for most choices of c ∈ C ∪ {∞}.

Example 4. Let us reconsider the rational function of Example 1,

R(z) =
z3 − 2z2 − 7z + 21

z2 − 9
= z − 2 +

2z + 3
z2 − 9

.

As in Example 2, we can also write

R(z) = z − 2 +
3/2
z − 3

+
1/2
z + 3

,

so R has simple poles at 3 and −3. Replacing z by 1/w yields,

R(z) =
1
w
− 2 + w

2 + 3w
1− 9w2

,

so R also has a simple pole at ∞. Thus there are exactly three elements of
C ∪ {∞} which solve the equation R(z) =∞, namely 3, −3 and ∞.

3.2 Linear fractional transformations

Of central importance among the rational functions are the linear fractional
transformations or Möbius transformations, the rational functions of degree
one:

w = T (z) =
az + b

cz + d
, (3.8)

where a, b, c and d are complex numbers such that ad− bc 6= 0. By solving for
z as a function of w, we can show that any linear fractional transformation T
has an inverse,

z = T−1(w) =
dw − b
−cw + a

,

as one verifies by a calculation. Thus linear fractional transformations are always
one-to-one and onto as maps from C∪{∞} to itself. Indeed, with a little effort,
it can be shown that they are the only complex analytic functions with complex
analytic inverses from C ∪ {∞} to itself.

Moreover, one easily checks that the composition of two linear fractional
transformations is another linear fractional transformation. Indeed, composition
makes the space of linear fractional transformations into what algebraists call a
group.
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When c = 0 and d = 1, the linear fractional transformation reduces to a
complex linear transformation

z 7→ w = T (z) = az + b.

The complex linear transformations include the
translations z 7→ w = T (z) = z + b,

rotations z 7→ w = T (z) = eiθz,

and expansions and contractions z 7→ w = T (z) = ρz,

where θ and ρ are real numbers, ρ being nonzero. When a = d = 0 and
b = c = 1, the linear fractional transformation reduces to an inversion

w = T (z) =
1
z
.

Here T is a reflection in the circle

z 7→ 1
z̄
, reiθ 7→ 1

r
eiθ,

followed by conjugation.
The following Proposition is quite useful in determining the properties of

a given linear fractional transformation. Linear fractional transformations will
become increasingly important as the course progresses, and will be studied in
more detail in 122B; see §7.3 of [10] or Chapter 7, § 5 of [7].

Proposition. a. Any linear fractional transformation is the composition of
complex linear maps and inversions. b. Any linear fractional transformation
takes circles and lines to circles and lines. c. Given any three distinct points z1,
z2 and z3 of C∪ {∞}, there is a unique linear fractional transformation T such
that

T (z1) = 0, T (z2) = 1 and T (z3) =∞. (3.9)

Sketch of proof of a: Note that the transformation (3.8) is unchanged if we make
the replacements

a 7→ λa, b 7→ λb, c 7→ λc, d 7→ λd,

where λ 6= 0. So we can assume without loss of generality that ad − bc = 1.
Moreover, we can assume without generality that c 6= 0, because when c = 0,
the transformation is clearly linear. We can then factor the map

z′ = T (z) =
az + b

cz + d

into a composition of four transformations

z1 = z +
d

c
, z2 = c2z1, z3 = − 1

z2
, z′ = z3 +

a

c
. (3.10)
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To see this, note that

z2 = c(cz + d), z3 = − 1
c(cz + d)

,

z′ =
a(cz + d)
c(cz + d)

− 1
c(cz + d)

=
acz + ad− 1
c(cz + d)

=
az + b

cz + d
.

Each of the transformations in (3.10) is either complex linear or an inversion,
so the Proposition is proven.

Sketch of proof of b: Complex linear transformations take circles and lines to
circles and lines, so we need only check that inversions take circles and lines to
circles and lines. But the equation of a circle can be written as

A(x2 + y2) + Re[(C − iD)(x+ iy)] +B = 0,

for some choice of real constants A, B, C and D. We can rewrite this as

Azz̄ + Re[(C − iD)z] +B = 0.

If we replace z by 1/w, this becomes

A

ww̄
+ Re

[
(C − iD)

w

]
+B = 0

or
A+ Re [(C − iD)w̄] +Bww̄ = 0,

which is once again the equation for a circle.

Sketch of proof of c: If none of the three points is infinity, the linear fractional
transformation satisfying (3.9) is

T (z) =
(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

. (3.11)

One needs to adjust this formula appropriately when one of the three points is
∞.

Example. Suppose that we want a linear fractional transformation T such that

T (−i) = 0, T (1) = 1, T (i) =∞.

Use of the formula (3.11) yields

T (z) =
(z + i)(1− i)
(z − i)(1 + i)

=
z + i

iz + 1
.

This transformation takes the unique circle through −i, 1 and i, which turns
out to be the unit circle, to the straight line through 0, 1 and ∞, which is the
x-axis. Moreover, T (0) = i. From this one can conclude that T takes the unit
disk

D = {z ∈ C : |z| < 1|]
to the upper half-plane

H = {x+ iy ∈ C : y > 0}.

41



3.3 Exponential and trigonometric functions

Earlier, we defined the complex exponential function in terms of real-valued
functions as

w = exp(z) = ez = ex(cos y + i sin y), (3.12)

and used identities from trigonometry to show that

ez1+z2 = ez1ez2 ,

as well as to show that the exponential function is periodic of period 2πi:

exp(z + 2πki) = exp(z), for k ∈ Z. (3.13)

Moreover, writing

ez = u(x, y) + iv(x, y), where u(x, y) = ex cos y and v(x, y) = ex sin y

and using the Cauchy-Riemann equations, we find that

d

dz
(ez) =

∂u

∂x
− i∂u

∂y
= ex cos y + iex sin y = ez. (3.14)

Although the exponential function exp is certainly quite well-behaved on C,
it does not extend to a well-behaved function on the extended complex plane
C ∪ {∞}. Neither

lim
w→0

e1/w nor lim
w→0

1
e1/w

exists, and hence one says that exp(z) has an “essential singularity” at ∞. In-
deed, one can show that e1/w takes on every nonzero complex number infinitely
many times when w lies in any neighborhood N(0; ε) of 0.

We would like to define a function which is inverse to exp on C−{0}, but the
periodicity makes it impossible to define an inverse which is a genuine function.
Indeed, if w = ez, it only follows from (3.12) that

w = reiθ = r(cos θ + i sin θ) = ex(cos y + i sin y),

so y is one of the many possible values of the angular coordinate θ, all of these
values differing by integer multiples of 2π. Thus we write

x = Log(r) = Log(|w|), y = θ = arg(w),

where arg is the multiple-valued function which gives the various possible an-
gular coordinates θ of w, and

z = x+ iy = Log(|w|) + iarg(w).

In this way, we are led to define the multiple-valued function log by

log(w) = Log(|w|) + iarg(w),
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where Log(|w|) is the usual natural logarithm of the nonzero real number |w|.
It follows from (3.13) that the various values of the multiple-valued function log
differ by integer multiples of 2π.

Dangerous curve: It is important to note that a multiple-valued function is
NOT a genuine function as studied in the rest of mathematics. A genuine func-
tion can only assume one value for a given choice of argument. Nevertheless,
the notion of multiple-valued function is commonly used within the theory of
complex variables, because it is quite useful. In more advanced treatments of
complex variables, one tries to eliminate multiple-valued functions on open sub-
sets of the complex plane by passing instead to genuine single-valued functions
defined on “Riemann surfaces” over the open subsets (see [3]).

As we saw earlier, we can eliminate the ambiguity in the logarithm by replacing
C− {0} by the smaller domain

D = C− {x+ iy ∈ C : x ≤ 0}, (3.15)

and choosing a branch of the muliple-valued function log that is single-valued
in D. We do this by first letting Arg(w) be the value of the angular coordinate
θ which lies in the interval (−π, π] and then define

Log : D −→ C by Log(w) = Log(|w|) = iArg(w).

Choosing a branch does give us a genuine single-valued complex analytic loga-
rithm function, and as we saw when discussing the Cauchy-Riemann equations,

d

dw
Log(w) =

1
w
.

However, this destroys some of the nice properties one might hope for the log-
arithm; for example, although

log(z1z2) = log(z1) + log(z2),

where equality means that the values taken by the multiple-valued functions on
the two sides are the same, it is not true that

Log(z1z2) = Log(z1) + Log(z2)

in general—the formula is sometimes off by an integer multiple of 2πi.
One of the most useful applications of the multiple-valued logarithm function

is in defining arbitrary powers of a complex number. The definition is motivated
by the fact that

zn = exp (nlog(z)) , when n ∈ N.

Definition. If z ∈ C− {0} and α ∈ C, we define zα by

zα = exp (αlog(z)) .
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Example 1. Let us consider the possible values of

i−2i = exp(−2ilog(i)).

To do this, we first note that

log(i) = log 1 + iarg(i) = 0 + i
π

2
+ 2πki, for k ∈ Z,

so
i−2i = exp(π + 4πk), for k ∈ Z.

This example illustrates that just like logarithms, the complex power zα can
have infinitely many different values. Although square roots can have only two
different values, they provide important examples of multiple-valued functions.
Later, when we want to integrate square roots along contours, we will need to
choose a particular branch for the integrals to be well-defined. We provide a
few examples to illustrate how this is done:

Example 2. We can construct two branches f1 and f2 of the square root
function

w = ±
√
z,

by setting

f1(z) = exp
(

1
2

Log(z)
)
, f2(z) = −exp

(
1
2

Log(z)
)
,

for z ∈ D, where D is the domain defined by (3.15), the complex plane minus
the negative x-axis. One can imagine two copies D1 and D2 of D (called sheets)
which are glued together along the negative x-axis. As one crosses the negative
x-axis one passes from sheet to the other. The union of the two sheets can be
regarded as a “Riemann surface” on which the square root function is a genuine
single-valued function.

Example 3. Suppose that we want to construct a branch of the multiple-valued
function

w = ±
√

1− z2. (3.16)

To do this, we note that the multiple-valued function can be defined by

w = exp
(

1
2

log(1− z2)
)
,

and that log(1 − z2) fails to be defined when z = ±1. We can then construct
two branches

w = f1(z) = exp
(

1
2

Log
(
1− z2

))
and

w = f2(z) = −exp
(

1
2

Log
(
1− z2

))
,
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which will be a single-valued functions defined so long as 1− z2 does not lie on
the negative part of the x-axis, that is, so long as z is not real with |z| > 1.
Thus we can regard f − z and f2 as analytic functions defined on the open set

U = C− {z = x+ iy ∈ C : y = 0 and x ≥ 1 or x ≤ −1 }
= C− ((−∞,−1] ∪ [1,∞)).

One can imagine that the two branches of the multiple-valued function±
√

1− z2

are interchanged when one crosses the subset (−∞,−1) ∪ (1,∞) of R.

Example 4. Similarly, we can construct branches of the multiple-valued func-
tion

w = ±
√
z2 − 1 = ±i

√
1− z2,

which is not much different from the function considered in the previous exam-
ple, but this time we seek branches are defined and single-valued outside the
unit disk. For this, we note first that the multiple-valued function can also be
written as

w = z exp
(

1
2

log
(

1− 1
z2

))
,

and in this representation 1− (1/z)2 lies on the negative x-axis exactly when z
is real and |z| < 1. Thus the functions

w = f1(z) = z exp
(

1
2

Log
(

1− 1
z2

))
and

w = f2(z) = −z exp
(

1
2

Log
(

1− 1
z2

))
will be a single-valued functions defined on the set

U = C− {z = x+ iy ∈ C : y = 0 & − 1 ≤ x ≤ 1} = C− [−1, 1].

In this case, one can imagine that the two branches of the multiple-valued
function ±

√
z2 − 1 are interchanged when one crosses the interval (−1, 1) ⊆ R.

Trigonometric functions. As mentioned before, we can use Euler’s identity
to express the trigonometric functions cosine and sine in terms of exponentials,

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
,

thereby achieving a simplifying unity between exponential and trigonometric
functions. We can use these expressions to determine all of the usual properties
of the trigonometric functions. For example, it follows from (3.14) that

d

dz
(sin z) = cos z,

d

dz
(cos z) = − sin z.
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Thus, it follows from the definition of derivative that if f(z) = sin z,

1 = cos(0) = f ′(0) = lim
∆z→0

f(∆z)− f(0)
∆z

= lim
∆z→0

sin(∆z)
∆z

= lim
h→0

sinh
h

,

a limit familiar in first year calculus when h is assumed to be real.
Using the logarithm, we can also solve to find the inverses of the trigono-

metric functions. Thus if

z = sinw =
eiw − e−iw

2i
,

we can multiply through by eiw, obtaining

2ieiwz =
(
eiw
)2 − 1 or

(
eiw
)2 − 2izeiw − 1 = 0.

Thus it follows from the quadratic formula that

eiw = iz ±
√

1− z2,

and we find that

w = arcsin(z) = −i log
(
iz ±

√
1− z2

)
, (3.17)

which is, of course, a multiple-valued function. Similarly, the inverse of the
cosine is a mutiple-valued function

w = arccos(z) =
π

2
− arcsin(z) =

π

2
− i log

(
iz ±

√
1− z2

)
.

To choose a specific branch of the inverse trigonometric functions, we must
choose a branch of the square root as well as of the logarithm. For any such
branch, it follows from (3.17) that

d

dz
(arcsin(z)) =

1
±
√

1− z2
. (3.18)

Note that by Example 3, a single-valued branch of the derivative of the inverse
of the sine can be defined over

U = C− ((−∞,−1] ∪ [1,∞)) ,

and we will later see that this enables us to construct a single-valued inverse of
the sine itself over the same region U .

Similarly, we can find the inverses of the hyperbolic cosine; thus if

z = coshw =
ew + e−w

2
,

we can multiply through by ew, obtaining

2ewz = (ew)2 + 1 or (ew)2 − 2zew + 1 = 0.
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This time the quadratic formula, yields

ew =
2z ±

√
4z2 − 4
2

= z ±
√
z2 − 1.

Thus we find that

w = arccosh(z) = log
(
z ±

√
z2 − 1

)
(3.19)

Differentiation this time yields

d

dz
(arccosh(z)) =

1
±
√
z2 − 1

,

the derivative possessing a single-valued branch over the domain C− [−1, 1] by
Example 4.

3.4 Steady-state temperature distributions

We now illustrate the use of the real and imaginary parts of the complex loga-
rithm in determining the steady-state temperature distribution in several regions
of the plane.

But first we must show that steady-state temperature is represented by a
solution to the Laplace equation. We suppose that a region U of the (x, y)-
plane contains a material that has homogeneous properties. We would like to
determine the steady-state temperature within the region when the temperature
is given on the boundary.

Let u(x, y) be the temperature at the point (x, y). Then the flow of heat at
(x, y) should be V(x, y), where

V(x, y) = −(κ∇u)(x, y) = −κ∂u
∂x

(x, y)i− κ∂u
∂x

(x, y)j, (3.20)

where κ is a positive constant, called the thermal conductivity of the material.
We agree to set

V(x, y) = M(x, y)i +N(x, y)j.

If D is a region within U with smooth boundary ∂D, then it follows from
the divergence theorem that∫

∂D

(M i +N j) ·Nds =
∫ ∫

D

(
∂M

∂x
+
∂N

∂y

)
dxdy,

where N is the outward-pointing unit normal to ∂D, and s is the arc-length
parameter along ∂D. Recall that the line integral on the left is calculated by
means of a unit-speed parametrization γ : [a, b]→ ∂D with γ(a) = γ(b).
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This line integral can be interpreted as the rate at which heat is flowing
outward across ∂D. Thus if no heat is being created or destroyed within D, the
line integral must vanish, and∫ ∫

D

(
∂M

∂x
+
∂N

∂y

)
dxdy = 0.

If no heat is being created or destroyed anywhere within U , this double integral
must vanish for every choice of D ⊆ U , and this can only happen if

∇ ·V =
∂M

∂x
+
∂N

∂y
≡ 0 on U .

In the special case where V is given by (3.20), we conclude that the temperature
u must satisfy Laplace’s equation.

∂2u

∂x2
+
∂2u

∂y2
= 0,

or equivalently, u must be a harmonic function. (See §2.6 of [10] for a more
leisurely discussion.)

Since harmonic functions are the real parts of complex analytic functions,
we have a nice application of complex analytic functions: Their real parts can
represent the steady-state temperature distribution in a homogeneous medium.

Example 1. Suppose we want to determine the steady state temperature
distribution in the annular region

D = {x+ iy ∈ C : 1 ≤ x2 + y2 ≤ e2},

given that the temperature on the circle x2 + y2 = 1 is 40 degrees and the
temperature on the circle x2 + y2 = e2 is 70 degrees.

To solve this problem, it is quite natural to use polar coordinates (r, θ).
We need to find those harmonic functions which depend only on the radial
coordinate r. This problem was solved in the discussion following Exercise C in
§2.4, and we found that the only such harmonic functions are

u = a Log r + b = a Log|z|+ b,

where a and b are real constants. The boundary conditions are that u = 40
when r = 1 and u = 70 when r = e. Thus{

a Log(1) + b = b = 40,
a Log(e) + b = a+ b = 70,

and we find that b = 40 and a = 30, so

u = 30 Log r + 40.
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Example 2. Suppose we want to determine the steady state temperature
distribution u(z) = u(x, y) in the wedge

D = {x+ iy ∈ C : x > 0, y < x, y > −x},

given that the temperature on the ray y = x, x > 0 is 90 degrees and the
temperature on the ray y = −x, x > 0 is 50 degrees. Once again it is natural to
use polar coordinates (r, θ), and we seek those harmonic functions which depend
only on the angular coordinate θ. This time the only such harmonic functions
are

u = a θ + b,

where a and b are real constants. The boundary conditions are that u = 90
when θ = π/4 and u = 50 when θ = −π/4. Thus{

a(π/4) + b = 90,
−a(π/4) + b = 50,

and we find that the solution to the linear equations is a = 80/π and b = 70, so

u =
80 θ
π

+ 70 or u =
80
π

Arg(x+ iy) + 70.

Example 3. Suppose we want to determine the steady state temperature
distribution u(z) = u(x, y) in the upper half-plane, given that the temperature
along the real axis is given by

u(x, 0) =


90, for x < 1,
70, for −1 < x < 1,
50, for x > 1.

In this case, it is natural to consider the temperature as given by a superposition
of argument functions

u(z) = a+ b1Arg(z − 1) + b2Arg(z + 1).

The boundary conditions in this case give

a+ πb1 + πb2 = 90, a+ πb1 = 70, a = 50,

and we quickly find that the solution is

u(z) = 50 +
20
π

Arg(z − 1) +
20
π

Arg(z + 1).

Proposition. Suppose that U and V are open subsets of C. If f : U → V is
complex analytic, and u : V → R is harmonic, then u ◦ f : U → R is harmonic.
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Sketch of proof: First reduce to the case where U and V are open balls. Then
one can use the Poincaré Lemma to construct a harmonic conjugate v to u and

g = u+ iv : V → C

is complex analytic. Then it follows from the chain rule that g ◦ f : U → C is
also complex analytic, and hence

u ◦ f = Re(g ◦ f) : U → R

is harmonic.

Example 4. We can now use the preceding example together with the linear
fractional transformation

T (z) =
z + i

iz + 1
,

described at the end of §3.2 to determine the steady-state temperature in the
unit disk,

D = {x+ iy ∈ C : x2 + y2 ≤ 1}

which satisfies the boundary conditions that the temperature be 50 degrees on
the part C1 of the circle x2 + y2 = 1 lying in the first quadrant, 70 degrees on
the part C2 of the circle x2 + y2 lying below the x-axis, and 90 degrees on the
remaining quarter circle C3.

It follows from the Proposition that if u(z) is the harmonic function of Exam-
ple 3, then u◦T is also harmonic. Moreover, T takes D to the upper half-plane,
takes the counterclockwise unit circle to the x-axis traversed in the positive
direction, and satisfies

T (−1) = −1, T (1) = 1, T (i) =∞.

Hence it takes C1, C2 and C3 to the segments x > 1, −1 < x < 1 and x < −1
along the x-axis, and the desired function is

(u ◦ T )(z) = 50 +
20
π

Arg(T (z)− 1) +
20
π

Arg(T (z) + 1).
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Chapter 4

Contour integrals

We now turn to the question of integrating complex differentials along curves
in the complex plane C. We can think of this as an extension of real valued
integrals such as ∫ b

a

f(x)dx

to the case where f and x are allowed to take on complex values.
A complex differential is an expression of the form

f(z)dz, where f(x+ iy) = u(x, y) + iv(x, y) and dz = dx+ idy.

We can write a complex differential in terms of real and imaginary parts as

f(z)dz = (u(x, y) + iv(x, y))(dx+ idy)
= [u(x, y)dx− v(x, y)dy] + i [v(x, y)dx+ u(x, y)dy] ,

and it follows from the Cauchy-Riemann equations that the coefficient f(z)
is holomorphic if and only if the real and imaginary parts both represent in-
compressible and irrotational fluid flow. In this chapter, we will show how to
construct the contour integral of a complex differential, which is just the line
integral as studied in several variable calculus.

Our main goal will be to prove Cauchy’s theorem, which states that the in-
tegral of a holomorphic differential defined in the entire complex plane around
a closed contour is zero, and we will see that it is just a consequence of Green’s
Theorem from several variable calculus, at least when f(z) has a continuous
complex derivative. Goursat found a proof of Cauchy’s theorem that requires
only that f be continuous and that f has a complex derivative at every point; in
his proof no assumption was needed about the continuity of the complex deriva-
tive. We will see that Cauchy’s theorem then implies that complex analytic
functions have continuous derivatives of all orders, and gives explicit formulae
for these derivatives in terms of contour integrals. Moreover, Cauchy’s theorem
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has many remarkable applications, including a proof of the Fundamental Theo-
rem of Algebra, that a nonconstant polynomial with complex coefficients always
has at least one complex root.

4.1 Contours

We will start by reviewing the notion of line integral, or contour integral accord-
ing to the terminology most frequently used in complex analysis. To do this,
we first need to discuss the smooth parametrization of curves.

Definition 1. A smooth parametrized arc in C is a continuously differentiable
map z : [a, b]→ C, for some choice of closed interval [a, b] ⊆ R with a < b, such
that z′(t) is never zero, where

z(t) = x(t) + iy(t) and z′(t) =
dx

dt
(t) + i

dy

dt
(t).

We will say that z(a) is the initial point , and z(b) the terminal point , of the
smooth parametrized arc.

Example 1. The simplest case of a smooth parametrized arc is the constant
speed straight line segment from a point z0 ∈ C to z1 ∈ C, where z0 6= z1, which
starts at z0 at time t = 0 and ends at z1 at time t = 1:

z : [0, 1]→ C where z(t) = (1− t)z0 + tz1.

For example, the straight line segment C from 2 + 5i to 3 + 7i is parametrized
by

z : [0, 1]→ C where z(t) = (1− t)(2 + 5i) + t(3 + 7i),

with 2 + 5i being the initial point of C and 3 + 7i the terminal point.

Given a smooth parametrized arc z : [a, b] → C, a reparametrization of z is a
map

z ◦ τ : [c, d]→ C, where τ : [c, d]→ [a, b]

is an increasing continuously differentiable map with differentiable inverse. Two
parametrized arcs in C are equivalent if they are related by reparametriza-
tion. Finally, by a smooth arc C in C we mean an equivalence class of smooth
parametrized arcs.

Example 2. The catenary is the smooth arc C in C formed by a chain hanging
between two endpoints, and defined by the equation

y = coshx, where coshx =
ex + e−x

2
.

The simplest parametrization is obtained by letting x = t, so y = cosh t:

z : [−1, 1]→ C such that z(t) = t+ (cosh t)i.

52



If one thinks of the parameter t as time, then the total distance traversed is just
the integral of the speed:

s = (arc length) =
∫ t

0

|z′(τ)| dτ.

But since the derivative of cosh t is sinh t,

z′(t) = 1 + (sinh t)i ⇒ |z′(t)| =
√

1 + sinh2 t = cosh t,

so the arc length is

s = σ(t) =
∫ t

0

|z′(τ)| dτ =
∫ t

0

cosh τdτ = sinh t.

But it follows from (3.19) that the hyperbolic sine has an inverse given by

t = τ(s) = arcsin(s) = Log
(
s+

√
s2 + 1

)
.

One thereby obtains a reparametrization

z ◦ τ : [sinh(−1), sinh(1)]→ C

of the catenary by arc length with the explicit formula

z ◦ τ(s) = Log
(
s+

√
s2 + 1

)
+
(√

s2 + 1
)
i.

One can check directly that z ◦ τ has unit speed, in other words that∣∣∣∣d(z ◦ τ)
ds

(s)
∣∣∣∣ = 1.

Usually, one of the smooth parametrized arcs z defining a smooth arc C will
be one-to-one and we can identify the equivalence class of parametrization with
the image of that parametrization z. This allows us to think identify C with
the image of any of its parametrizations, a subset of C. In fact, Saff and Snider
require that z be one-to-one as part of the definition of smooth arc (see §4.1 of
[10]), but it is sometimes convenient to have smooth arcs which are not one-to-
one. We will often say that z is a parametrization of the smooth arc C. The
parametrization gives a direction to C, the direction of increasing time. By
−C, we will mean the arc with the same image, but traversed in the opposite
direction.

Example 3. If C is the directed line segment from 4 + i to 5 + 2i which is
parametrized by

z : [0, 1]→ C where z(t) = (1− t)(4 + i) + t(5 + 2i),

then
z : [0, 1]→ C where z(t) = (1− t)(5 + 2i) + t(4 + i)
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is a parametrization of −C, which has the initial and terminal points reversed.

Definition 2. A smooth closed parametrized curve in C is a smooth map
z : [a, b]→ C with a < b such that z′(t) is never zero,

z(b) = z(a) and z′(b) = z′(a).

We will say that z(a) = z(b) is both the initial point and the terminal point of
the smooth closed parametrized curve.

Given a smooth parametrized arc z : [a, b] → C, a reparametrization of z is a
map

z ◦ τ : [c, d]→ C where τ : [c, d]→ [a, b]

is an increasing differentiable map with differentiable inverse such that

(z ◦ τ)′(c) = (z ◦ τ)′(d).

As in the case of smooth arcs, we can define a smooth closed curve in C to be
an equivalence class of smooth closed parametrized curves, two being equivalent
if they differ by a parametrization. Any one of the parametrizations of C gives
a direction to C, the direction of increasing time, and by −C, we will mean
the smooth closed curve with the same image, but traversed in the opposite
direction.

Example 4. The simplest case of a smooth closed curve is the circle of radius ρ
centered at a point z0 ∈ C. The counterclockwise parametrization of this circle
is given by

z : [0, 2π]→ C where z(t) = z0 + ρeit, (4.1)

while the clockwise parametrization is

z : [0, 2π]→ C where z(t) = z0 + ρe−it.

Thus, for example, the counterclockwise circle C of radius 7 centered at 2 + 5i
is parametrized by

z : [0, 2π]→ C where z(t) = 2 + 5i+ 7eit.

By a smooth directed curve C we mean either a smooth arc or a smooth closed
curve with a choice of direction.

Definition 3. A smooth contour Γ in C will be a finite sequence (C1, . . . , Cn)
of smooth directed curves such that the terminal point of Ci is the initial point
of Ci+1, for 1 ≤ i ≤ n− 1. In this case, we will usually write

Γ = C1 + C2 + · · ·+ Cn,

noting that the order in the sum is important. The initial point of Γ is the
initial point of C1 and the terminal point of Γ is the terminal point of Cn.
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Contours are also sometimes called piecewise smooth curves. Indeed, if we
choose parametrizations

zi : [ai, bi]→ C, for 1 ≤ i ≤ n,

such that bi = ai+1, for 1 ≤ i ≤ n− 1, these parametrization piece together to
give a piecewise smooth parametrization

z : [a1, bn]→ C of Γ.

Note that given a contour

Γ = C1 + C2 + · · ·+ Cn, we can set − Γ = −Cn − · · · − C1,

and if
Γ1 = C1 + · · ·+ Cn and Γ2 = Cn+1 + · · ·+ Cn+m

are smooth contours with the terminal point of Γ1 equalling the initial point of
Γ2, we can form the sum

Γ1 + Γ2 = C1 + · · ·+ Cn + Cn+1 + · · ·+ Cn+m.

We say that a smooth contour Γ = C1 + · · ·+Cn is polygonal if each of the Ci’s
is a straight line segment.

Finally, we say that a smooth contour is closed if its initial and terminal
points coincide, and a smooth closed contour is simple if it has no multiple
points except for the terminal point of Ci being the initial point of Ci+1, for
1 ≤ i ≤ n− 1, and the terminal point of Cn being the inital point of C1.

Jordan Curve Theorem. A simple smooth closed contour Γ divides the
complex plane into two open connected sets, an interior domain D0 which is
bounded, and an exterior domain D1 which is unbounded.

We call D0 and D1 the connected components of C − Γ. The Jordan Curve
Theorem is a relatively deep theorem from topology, and its proof is beyond the
scope of the course.

4.2 Integration along contours

Most of the deepest results in complex analysis are proven most easily by means
of integration. To obtain these results, we need to use some standard facts about
integration which are described in calculus courses, and proven in real analysis
courses such as Math 118. The standard text for 118 is Rudin [9], and Chapter 6
of this book gives proofs of the properties of the Riemann integral, the version
of integral used in calculus.

Suppose that U is a connected open subset of C and M(x, y)dx+N(x, y)dy
is a differential on U which has continuously differentiable coefficients M and
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N . If z : [a, b] → U is a parametrization of a smooth cirected curve C within
U , say

z(t) = x(t) + iy(t), for a ≤ t ≤ b,

then the contour integral of Mdx+Ndy along C is∫
C

Mdx+Ndy =
∫ b

a

[
M(x(t), y(t))

dx

dt
+N(x(t), y(t))

dy

dt

]
dt, (4.2)

the right-hand side being a Riemann integral.

Example 1. Let U = C− {0} and consider the differential

M(x, y)dx+N(x, y)dy =
−y

x2 + y2
dx+

x

x2 + y2
dy

on U . Note that although M and N blow up at the origin, we have excised that
point from U , so M and N are well-behaved, that is, have continuous first-order
partial derivatives, on U . Suppose now that C is the counterclockwise unit circle
x2 + y2 = 1. As parametrization of C we take

z : [0, 2π]→ C defined by z(t) = eit = cos t+ i sin t,

so that {
x(t) = cos t,
y(t) = sin t,

for 0 ≤ t ≤ 2π.

Then x2 + y2 = 1, so along C,

M(x, y)dx+N(x, y)dy = −ydx+ xdy

= −(sin t)d(cos t) + cos td(sin t) = sin2 tdt+ cos2 tdt = dt,

and (4.2) yields ∫
C

Mdx+Ndy =
∫ 2π

0

dt = 2π.

We claim that the contour integral (4.2) is invariant under reparametrization.
To prove this, suppose that τ : [c, d]→ [a, b] is a continuously differentiable map
with differentiable inverse, and note that

t = τ(s) ⇒ dt =
dt

ds
(s)ds = τ ′(s)ds.
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Thus it follows from the chain rule and the change of variable formula that∫ d

c

M(x ◦ τ(s), y ◦ τ(s))
d(x ◦ τ)
ds

ds

=
∫ d

c

M(x ◦ τ(s), y ◦ τ(s))
dx

ds
(τ(s))τ ′(s)ds

=
∫ d

c

M(x ◦ τ(s), y ◦ τ(s))
d(x ◦ τ)
ds

(s)
dt

ds
(s)ds

=
∫ b

a

M(x(t), y(t))
dx

dt
(t)dt. (4.3)

A similar argument shows that∫ d

c

N(x ◦ τ(s), y ◦ τ(s))
d(y ◦ τ)
ds

ds =
∫ b

a

N(x(t), y(t))
dy

dt
(t)dt. (4.4)

The sum of (4.3) and (4.4) is∫ d

c

M(x ◦ τ(s), y ◦ τ(s))
d(x ◦ τ)
ds

ds+
∫ d

c

N(x ◦ τ(s), y ◦ τ(s))
d(y ◦ τ)
ds

ds

=
∫ b

a

M(x(t), y(t))
dx

dt
(t)dt+

∫ b

a

N(x(t), y(t))
dy

dt
(t)dt,

which implies that when τ is strictly increasing, so that c < d, the integral
of Mdx + Ndy along the directed curve C does not depend on the choice of
parametrization.

On the other hand, when τ is strictly decreasing, so that c > d, we need to
interchange the upper and lower limits, and this changes the sign, showing that∫

−C
Mdx+Ndy = −

∫
C

Mdx+Ndy.

More generally, suppose that

Γ = C1 + C2 + · · ·+ Cn

is a smooth contour in the complex plane C. Then the contour integral of the
differential Mdx+Ndy along Γ is∫

Γ

Mdx+Ndy =
∫
C1

Mdx+Ndy + · · ·+
∫
Cn

Mdx+Ndy.

It follows that∫
−Γ

Mdx+Ndy = −
∫

Γ

Mdx+Ndy and∫
Γ1+Γ2

Mdx+Ndy =
∫

Γ1

Mdx+Ndy +
∫

Γ2

Mdx+Ndy.
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Our goal is actually to calculate contour integrals of complex differentials.
As we mentioned before, a complex differential on an open subset U ⊆ C is an
expression of the form

f(z)dz, where f : U → C

is a continuous function. If we write f and dz in terms of real and imaginary
parts,

f(x+ iy) = u(x, y) + iv(x, y) and dz = dx+ idy,

the differential can be rewritten as

f(z)dz = (u(x, y) + iv(x, y))(dx+ idy)
= [u(x, y)dx− v(x, y)dy] + i [v(x, y)dx+ u(x, y)dy] .

Note that the real and imaginary parts of a complex differential are just ordinary
differentials as described before. To integrate a complex differential along a
smooth directed curve C, we choose a parametrization z : [a, b] → C of C and
integrate real and imaginary parts.

Indeed, if we write

z(t) = x(t) + iy(t), dz =
dz

dt
dt =

(
dx

dt
+ i

dy

dt

)
dt,

the contour integral of f(z)dz along C is∫
C

f(z)dz =
∫ b

a

f(z)
dz

dt
(t)dt,

which is much more efficient to write than the expanded version,∫
C

f(z)dz =
∫ b

a

[
u(x, y)

dx

dt
− v(x, y)

dy

dt

]
dt+ i

∫ b

a

[
v(x, y)

dx

dt
+ u(x, y)

dy

dt

]
dt.

Example 2. Let U = C− {z0}, where z0 is some point in C and let C be the
circle of radius ρ about z0 directed counterclockwise, which we can parametrize
by (4.1). To calculate the contour integral∫

C

1
z − z0

dz of the differential
1

z − z0
dz,

we write
z = z0 + ρeit, dz = iρeitdt,

1
z − z0

dz = idt,

from which we can calculate∫
C

1
z − z0

dz =
∫ 2π

0

idt = 2πi.
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Note that the integral in this case is independent of the choice of the radius ρ.

If U is an open subset of C and F : U → C is a complex analytic function, say

F (x+ iy) = U(x, y) + iV (x, y),

then the differential of F is the complex differential

dF = F ′(z)dz =
(
∂U

∂x
dx+

∂U

∂y
dy

)
+ i

(
∂V

∂x
dx+

∂V

∂y
dy

)
. (4.5)

Note that we can rewrite (4.5) as

F ′(z)dz =
(
∂U

∂x
− i∂U

∂y

)
(dx+ idy), so F ′(z) =

∂U

∂x
− i∂U

∂y
.

When the components of F have continuous second order partial derivatives,
the fact that the real and imaginary parts of U are harmonic implies that f ′(z)
satisfies the Cauchy-Riemann equations, so that the complex derivative of F is
also complex analytic.

The fundamental theorem of calculus can be extended to say that the contour
integral of a complex differential along a directed curve C is just the difference
in the values of the function at the terminal and initial points of C.

Fundamental Theorem of Calculus for Contour Integrals. If F : U → C
is a complex analytic function, then for any smooth arc C,∫

C

F ′(z)dz = F (z(b))− F (z(a)), whenever z : [a, b]→ C

is a parametrization of C.

The idea behind the proof is to apply the chain rule and the usual fundamental
theorem of calculus for Riemann integrals to the real and imaginary parts of F .
Thus it follows from (4.5) that∫

C

F ′(z)dz =
∫ b

a

(
∂U

∂x

dx

dt
+
∂U

∂y

dy

dt

)
dt+ i

∫ b

a

(
∂V

∂x

dx

dt
+
∂V

∂y

dx

dt

)
dt

=
∫ b

a

d

dt
(U ◦ z)dt+ i

∫ b

a

d

dt
(V ◦ z)dt

= U(z(b))− U(z(a)) + iV (z(b))− V (z(a)) = F (z(b))− F (z(a)).

Example 3. Let U = C− {0} and that k ∈ Z and k 6= −1. Then the function

F : U → C defined by F (z) =
zk+1

k + 1
has derivative F (z) = zk.

Hence if C is any directed arc from z0 to z1,∫
C

zkdz =
zk+1

1

k + 1
− zk+1

0

k + 1
.
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4.3 Independence of Path

The Fundamental Theorem of Calculus from the preceding section raises the
following question: Suppose that U is a connected open subset of C and that
f(z)dz is a complex differential defined on U . We can then ask: Is there a
complex analytic function F : U → C such that

dF = F ′(z)dz = f(z)dz?

In this case, we say that the function f(z) has an antiderivative on U .
First, if f(z) has an antiderivative, we would expect it to be complex analytic,

because if f = F ′ for some complex analytic function and the components
of F have continuous derivatives up to order two, then F ′ is automatically
complex analytic. Second, it follows from the Fundamental Theorem that if f
has an antiderivative, then whenever C is a directed smooth closed curve in U
parametrized by z : [a, b]→ C, then

γ(a) = γ(b) ⇒
∫
C

f(z)dz =
∫
C

F ′(z)dz = F (γ(b))− F (γ(a)) = 0,

that is, the contour integral of the differential around any closed curve within
U is zero. The following Theorem shows that these two conditions are also
sufficient:

Path Independence Theorem. If U is a connected open subset of C and
f : U → C is a complex analytic function such that∫

Γ

f(z)dz = 0 (4.6)

whenever Γ is a closed contour within U , then f has an antiderivative; thus
there is a complex analytic function F : U → C such that F ′(z) = f(z).

The idea behind the proof is extremely simple. We choose a base point z0 =
x0 + iy0 within U . If z1 = x1 + iy1 ∈ U , we then let

F (z1) =
∫

Γ

f(z)dz,

when Γ is any smooth contour within U with initial point z0 and terminal point
z1. This definition makes sense because if Γ1 and Γ2 are two smooth contours
within U with initial point z0 and terminal point z1, then Γ2 − Γ1 is a closed
contour and hence the hypothesis (4.6) implies that∫

Γ2−Γ1

f(z)dz = 0.

But then ∫
Γ2

f(z)dz −
∫

Γ1

f(z)dz = 0 or
∫

Γ2

f(z)dz =
∫

Γ1

f(z)dz.
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To finish the proof of the Theorem, we need to show that F has a complex
derivative at every point and that F ′(z1) = f(z1), for z1 ∈ U . Since U is open,
we can choose ε > 0 so that N(z1; ε) ⊆ U . If we choose ∆z ∈ C − {0} so that
|∆z| < ε, then it follows from the definition of F that

F (z1 + ∆z)− F (z1) =
∫

Γ

f(z)dz,

when Γ is any smooth contour with initial point z1 and terminal point z1 + ∆z.
If we choose Γ to be the usual constant speed straight line from z1 to z1 + ∆z,

z(t) = z1 + t∆z, for 0 ≤ t ≤ 1,

then dz = ∆zdt, and hence

F (z1 + ∆z)− F (z1) =
∫ 1

0

f(z1 + t∆z)∆zdt.

But then
F (z1 + ∆z)− F (z1)

∆z
=
∫ 1

0

f(z1 + t∆z)dt,

and since f is continuous

lim
∆z→0

F (z1 + ∆z)− F (z1)
∆z

= f(z1),

showing that the derivative F ′(z1) exists and F ′(z1) = f(z1), which finishes the
proof of the theorem.

Remark. The Path Independence Theorem is also true if we only assume (4.6)
for closed polygonal contours.

4.4 Cauchy’s Theorem

Definition. Suppose that U is a open subset of C. We say that U is simply
connected if it is connected and whenever simple Γ is a smooth closed contour
within U , the bounded domain D0 determined by Γ (via the Jordan Curve
Theorem) is contained within U .

Thus if U is an open ball within C then U is simply connected, while if

U = {z ∈ C : z 6= 0},

then U is not simply connected becaue the circle |z| = 1 lies within U while the
open disk

D0 = {z ∈ C : |z| < 1}

it bounds is not contained in U .
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Cauchy’s Theorem. Suppose that U is a subset of C which is open, connected
and simply connected. If f : U → C is a complex analytic function which has a
continuous derivative f ′ : U → C, then∫

Γ

f(z)dz = 0 (4.7)

whenever Γ is a smooth closed contour within U .

Example 1. Suppose that we consider the differential

1
z
dz.

It is not well-behaved at 0 so we start by setting U = C − {0}. Then f :
U → C is complex analytic, but as we saw in Example 2 of §4.2, if C is the
counterclockwise unit circle |z| = 1,∫

C

1
z
dz = 2πi.

Thus the conclusion of Cauchy’s Theorem does not hold, a reflection of the fact
that U is not simply connected. But we can replace U by a smaller open set

U1 = C− { the negative x-axis },

which is simply connected. The unit circle is no longer contained in U1, and the
conclusion of Cauchy’s Theorem holds. It now follows from the Path Indepen-
dence Theorem that f(z) has an antiderivative F : U1 → C. Of course,

F (z) = Log(z) + c,

the principal branch of the logarithm, up to addition of a complex constant c.

Example 2. Suppose next that we consider the differential

1√
1− z2

dz,

which is certainly badly behaved when z = ±1, but in addition is not well-
defined until we pick a branch of the square root. We let

U = C− ((−∞,−1] ∪ [1,∞)) ,

and as in Example 2 of §3.3, we choose a branch by setting

1√
1− z2

dz = f(z)dz, where f(z) = exp
(
−1

2
Log

(
1− z2

))
,

and Log is the principle value of the Logarithm. Then U is simply connected
and f : U → C is complex analytic, so the conclusion of Cauchy’s Theorem
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holds and line integrals of f(z)dz along smooth contours depend only on the
endpoints. We can therefore define F : U → C by

F (z1) =
∫

Γ

f(z)dz,

where Γ is any smooth contour with initial point 0 and terminal point z1. Then it
follows from (3.18) that F can be thought of as the principal branch of multiple-
valued function arcsin defined by

Arcsin(z1) =
∫ z1

0

exp
(
−1

2
Log

(
1− z2

))
dz, for z1 ∈ U .

It is easier to define a branch of the arcsine via this formula than via (3.17),

arcsin(z) = −i log
(
iz ±

√
1− z2

)
,

which involves two multiple valued functions, the square root and the logarithm.

Proof of Cauchy’s Theorem: Cauchy’s Theorem actually follows directlly
from Green’s Theorem from vector calculus. Suppose that Γ is a simple closed
contour within the simply connected open set U , let D0 denote the bounded
open connected subset of C determined by Γ, and let

D̄0 = D0 ∪ Γ.

We can think of Γ as the boundary of D̄0.

Green’s Theorem. Suppose that M(x, y)dx+N(x, y)dy is a differential with
coefficients M and N which have continuous partial derivatives on the region
D̄0, and that Γ is directed counterclockwise. Then∫

Γ

Mdx+Ndy =
∫ ∫

D̄0

(
∂N

∂x
− ∂M

∂y

)
dxdy.

An intuitive treatment of this theorem is presented in Math 5B (see for example
§9.4 in Kreyszig [6]), while a more rigorous treatment is given in Math 118; In
this course we will assume Green’s Theorem as known.

We wish to apply Green’s Theorem to a holomorphic differential f(z)dz such
that f has continuous derivative f ′ over U . Writing f(z) and dz in terms of
real and imaginary parts,

f(x+ iy) = u(x, y) + iv(x, y) and dz = dx+ idy,

gives us

f(z)dz = (u+ iv)(dx+ idy) = [udx− vdy] + i [vdx+ udy] .

But it follows from Green’s Theorem with M = u and N = −v that∫
Γ

udx− vdy =
∫ ∫

D0

(−vx − uy)dxdy = 0. (4.8)
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Similarly, it follows from Green’s Theorem with M = v and N = u and the
other Cauchy-Riemann equation that∫

Γ

vdx+ udy =
∫ ∫

D0

(ux − vy)dxdy = 0. (4.9)

Then (4.8) and (4.9) yield ∫
Γ

f(z)dz = 0,

finishing the proof of Cauchy’s Theorem.

Cauchy’s Theorem has the following important consequence:

Corollary. Suppose that U is a subset of C which is open, connected and
simply connected, and f : U → C is a complex analytic function which has a
continuous derivative f ′ : U → C, and that Γ0 and Γ1 are two contours within
U which have the same initial and terminal points. Then∫

Γ0

f(z)dz =
∫

Γ1

f(z)dz. (4.10)

Indeed, we can set Γ = Γ0 − Γ1, and (4.10) is then an immediate consequence
of (4.7).

4.5 Deformations of contours

Let U be a connected (but not necessarily simply connected) open subset of C.
Suppose that Γ0 and Γ1 are two smooth closed contours within U with piecewise
smooth parametrization based on the same closed interval [a, b]:

z0, z0 : [a, b] −→ U.

We say that Γ0 and Γ1 are homotopic within U , or that Γ1 is obtained from Γ0

by deformation within U , if there is a continuous map

z : [0, 1]× [a, b] −→ U

such that
z(0, t) = z0(t), z(1, t) = z1(t), for t ∈ [a, b],

and
z(s, a) = z(s, b), for s ∈ [0, 1].

The principle of deformation of contours states that if f : U → C is holomor-
phic, then ∫

Γ0

f(z)dz =
∫

Γ1

f(z)dz,
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whenever Γ0 and Γ1 are closed contours within U which can be obtained from
each other via deformation within U . It is justified by the following theorem:

Homotopy Theorem. Suppose that U is a connected (but not necessarily
simply connected) open subset of C, and f : U → C is a complex analytic
function which has a continuous derivative f ′ : U → C. If Γ0 and Γ1 are two
closed contours within U which are homotopic within U , then∫

Γ0

f(z)dz =
∫

Γ1

f(z)dz. (4.11)

Here is a sketch of proof for the Homotopy Theorem in the case where z0, z1

and z have continuous partial derivatives up to order two. (Some readers may
wish to skip the argument.) Note that a homotopy defines a one parameter
family of contours Γs which are parametrized by

zs : [a, b]→ C, zs(t) = z(s, t), for s ∈ [0, 1]

It suffices to show that
d

ds

[∫
Γs

f(z)dz
]

= 0.

But our hypotheses imply that we can differentiate under the integral sign. Thus
just in the argument presented for Theorem 8, page 186, in Saff and Snider [10],
we can calculate this derivative, obtaining

d

ds

[∫
Γs

f(z)dz
]

=
d

ds

[∫ b

a

(f ◦ zs)(t)
dzs
dt

(t)dt

]

=
∫ b

a

[
(f ′ ◦ z)∂z

∂s

∂z

∂t
+ (f ◦ z) ∂

2z

∂s∂t

]
(s, t)dt =

∫ b

a

d

dt

(
(f ◦ z)∂z

∂s

)
(s, t)dt

= (f ◦ z)(s, b)∂z
∂s

(s, b)− (f ◦ z)(s, a)
∂z

∂s
(s, a) = 0.

We conclude that [∫
Γs

f(z)dz
]

is constant as a function of s, which implies (4.11).

Remarks. Some authors derive versions of the Homotopy Theorem from
Cauchy’s Theorem (this is done in §49 of Brown and Churchill [2]), but it
is also possible do derive Cauchy’s Theorem from the Homotopy Theorem, as
described in pages 180-191 of Saff and Snider [10]. To do this, one starts with
an alternate definition of simply connected (which is shown to be equivalent to
the other definition in topology courses).

Alternate Definition. An open subset U of C is said to be simply connected
if it is connected and every closed contour Γ contained within U is homotopic
to a trivial constant contour, parametrized by a smooth map to a point.
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This implies that if U is simply connected and Γ0 is any closed contour within
U , then since Γ0 is homotopic to a constant contour Γ1 and the integral of any
differential over a constant contour is zero,

Homotopy Theorem ⇒
∫

Γ0

f(z)dz =
∫

Γ1

f(z)dz = 0,

whenever f(z)dz is a holomorphic differential. The Homotopy Theorem is quite
useful for calculating contour integrals, as the following examples illustrate.

Example 1. Suppose that we want to calculate the contour integral of the
rational function

f(z) =
3

z − 2
+

7
z − 100

,

around a counterclockwise circle Γ0 of radius ten around the origin. To do this,
we first note that f has poles at 2 and 100, but is holomorphic on the open set
U = C − {2, 100}. Thus if Γ1 is any closed contour which is homotopic to Γ0,
the principle of deformation of contours states that∫

Γ0

f(z)dz =
∫

Γ1

f(z)dz.

We can choose Γ1 to be a small circle of radius ε > 0, and let V = N(2; 2ε).
Then V is a simply connected open set containing Γ1 and the function

7
z − 100

is holomorphic on V , so it follows from Cauchy’s theorem that∫
Γ1

7
z − 100

dz = 0.

Thus∫
Γ0

f(z)dz =
∫

Γ1

(
3

z − 2
+

7
z − 100

)
dz

=
∫

Γ1

3
z − 2

dz =
∫ 2π

0

3e−itieitdt = 6πi,

where we have used the parametrization z1; [0, 2π]→ C given by z1(t) = 2 + eit.

Example 2. Suppose that we want to calculate the contour integral of the
rational function

f(z) =
2

z + 1
+

5
z − 1

+
12

z − 100
.

along the counterclockwise circle Γ0 of radius five centered at the origin, a
contour which is homotopic to

Γ1 = C1 + C2 + C3 + C4,
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where C1 is a counterclockwise circle of radius ε centered at −1 and beginning
and ending at −1 + ε, C2 is the line segment from −1 + ε to 1 − ε, C3 is the
couterclockwise circle of radius ε centered at 1 starting and ending at 1− ε, and
C4 = −C2. Thus∫

Γ0

f(z)dz =
∫

Γ1

f(z)dz =
∫
C1

f(z)dz +
∫
C3

f(z)dz,

since the contour integrals over C2 and C4 cancel. Using the same procedure as
in Example 1, we find that∫

C1

f(z)dz =
2

z + 1
dz = 4πi

and ∫
C3

f(z)dz =
5

z − 1
dz = 10πi,

so ∫
Γ0

(
2

z + 1
+

5
z − 1

+
12

z − 100

)
dz = 14πi.

4.6 Improper integrals of rational functions

The examples at the end of the previous section illustrate how Cauchy’s The-
orem and the Principle of Deformation of Contours can be used to calculate
contour integrals of any rational function (as studied in §3.1) which has been
expanded in a partial fractions decomposition. Suppose, for example that

R(z) =
A1

z − ζ1
+

A2

z − ζ2
+ · · ·+ An

z − ζn
,

where ζa, . . . , ζn are the poles of R(z). In this case we call Ai the residue at ζi.
If Γ is a counterclockwise simple closed contour which misses all of the poles,
we find that the contour integral of R(z) around Γ is 2πi times the sum of all
of the poles that are enclosed by Γ. Thus∫

Γ

R(z)dz = 2πi

 ∑
ζi∈D0

Ai

 ,

where D0 is the bounded open connected component of C−Γ; thus ζi is enclosed
by Γ when ζi ∈ D0.

Example 1. Suppose that

R(z) =
3

z − 1
+

6
z

+
2

z + 2
+

55
z − 100

+
67

z − 200
,

and Γ is the counterclockwise circle of radius 5 centered at the origin. Then the
poles

1, 0,−2 ∈ D0 = {z ∈ C : |z| < 5},
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so ∫
Γ

R(z)dz = 2πi(3 + 6 + 2) = 22πi.

This technique has important applications. Thus suppose that

R(z) =
P (z)
Q(z)

,

where

P (z) = amz
m + am−1z

m−1 + · · ·+ a1z + a0

and Q(z) = bnz
n + bn−1z

n−1 + · · ·+ b1z + b0

are polynomials with real coefficients

am, am−1, . . . , a1, a0, bn, bn−1, . . . , b1, b0,

and we make the assumptions that

1. Q(z) has no real roots, and

2. degQ ≥ degP + 2.

It is then possible to use the method of contour integrals to evaluate the improper
integral ∫ ∞

−∞
R(x)dx = lim

a→∞

∫ a

−a
R(x)dx,

an integral which may be difficult or impossible to evaluate by the techniques
of standard calculus. We illustrate how this is done with an example:

Example 2. Suppose that we want to calculate the integral∫ ∞
−∞

1
(x2 + 1)2

dx = lim
a→∞

∫ a

−a

1
(x2 + 1)2

dx.

To solve this problem, we first extend the integrand to be a complex differential

1
(z2 + 1)2

dz,

and then instead of just integrating over real intervals, we can instead take
contour integrals over any contour in the complex plane.

In order to take contour integrals, we need a partial fraction decomposition
of the rational function

R(z) =
1

(z2 + 1)2
=

1
(z + i)2(z − i)2

,

so we write
R(z) =

A1,0

(z − i)2
+

A1,1

(z − i)
+

A2,0

(z + i)2
+

A2,1

(z + i)
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where, according to (3.6),

A1,0 = lim
z→i

(z − i)2R(z) = lim
z→i

1
(z + i)2

=
1

(2i)2
= −1

4
,

A1,1 = lim
z→i

d

dz

(
(z − i)2R(z)

)
= lim
z→i

d

dz

(
1

(z + i)2

)
= lim
z→i

(
−2

(z + i)3

)
=
−2

(2i)3
= − i

4
,

and by conjugation, we obtain

A2,0 = −1
4
, A2,1 =

i

4
.

Thus

R(z) =
1

(z2 + 1)2
=

1/4
(z − i)2

+
−i/4
z − i

+
1/4

(z + i)2
+

i/4
z + i

. (4.12)

Note that R(z) is well-behaved except at the two poles z = i and z = −i, and if

U = C− {i,−i}, then R : U → C

is holomorphic.
Suppose now that Γ is a counterclockwise circle of small radius ε > 0 centered

at the pole i. Then ∫
Γ

[
1/4

(z + i)2
+

i/4
z + i

]
dz = 0,

by Cauchy’s Theorem, because the expression within brackets is holomorphic
on a small simply connected ball centered at i which contains Γ. Moreover,

1/4
(z − i)2

=
d

dz

(
−1/4
z − i

)
,

so ∫
Γ

1/4
(z − i)2

dz = 0.

Thus ∫
Γ

R(z)dz =
−i
4

∫
Γ

1
z − i

dz =
(
−i
4

)
(2πi) =

π

2
.

By the principle of deformation of contours if Γ is any contour in U homotopic
within U to the counterclockwise circle of radius ε about i, then∫

Γ

1
(z2 + 1)2

dz =
π

2
.
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We now take Γ = C1 +C2, where C1 is the directed line segment from −a to
a along the x-axis, and C2 is the counterclockwise semicircle parametrized by

z(t) = aeit, for 0 ≤ t ≤ π.

Then ∫
C1

1
(z2 + 1)2

dz +
∫
C2

1
(z2 + 1)2

dz =
π

2
,

or ∫ a

−a

1
(x2 + 1)2

dx+
∫ π

0

1
((aeit)2 + 1)2

iaeitdt =
π

2
.

But ∣∣∣∣∫ π

0

1
((aeit)2 + 1)2

iaeitdt

∣∣∣∣ ≤ ∫ π

0

a

(a2 − 1)2
dt =

πa

(a2 − 1)2
,

so
lim
a→∞

∫ π

0

1
((aeit)2 + 1)2

iaeitdt = 0

and
lim
a→∞

∫ a

−a

1
(x2 + 1)2

dx =
π

2
or

∫ ∞
−∞

1
(x2 + 1)2

dx =
π

2
.

4.7 The Cauchy integral formulae

One of the central results of complex analysis is the Cauchy Integral Theorem,
which implies that the values of a complex analytic function defined on a closed
disk are completely determined by the values on the boundary of the disk:

Cauchy Integral Formula I. Suppose that U is a simply connected open
subset of C, and that Γ is a counterclockwise simple closed contour within U
such that the point z0 lies inside Γ. Then if f : U → C is a holomorphic function,

f(z0) =
1

2πi

∫
Γ

f(z)
z − z0

dz. (4.13)

To prove this, we note first that the integrand

f(z)
z − z0

is a holomorphic function of z on U − {z0}. Thus by the Homotopy Theorem,∫
Γ

f(z)
z − z0

dz =
∫
Cε

f(z)
z − z0

dz,

where Cε is the circle of radius ε centered at z0. Of course, we have a standard
parametrization

z : [0, 2π]→ U, z(t) = z0 + εeit,
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and using this parametrization yields∫
Cδ

f(z)
z − z0

dz =
∫ 2π

0

f(z0 + εeit)
εeit

iεeitdt =
∫ 2π

0

f(z0 + εeit)idt,

so ∫
Γ

f(z)
z − z0

dz = lim
ε→0

∫
Cε

f(z)
z − z0

dz = lim
ε→0

∫ 2π

0

f(z0 + εeit)idt = 2πif(z0),

which implies (4.13).

Note that we can rewrite (4.13) as∫
Γ

f(z)
z − z0

dz = 2πif(z0). (4.14)

Example 1. Suppose that we want to calculate the contour integral∫
Γ

ez

z − i
dz,

where Γ is a small counterclockwise circle which encloses the singularity at z = i.
To carry this out, we can apply (4.14) with f(z) = ez to obtain∫

Γ

ez

z − i
dz = 2πif(i) = 2πiei = (2πi)(cos 1 + i sin 1)

by Euler’s formula. Here angles are measured in radians, one radian is 180/π
degrees, and use of a calculator shows that

cos 1 = .540302, sin 1 = .841471.

Example 2. Suppose that we want to calculate the contour integral∫
Γ0

2ez

z2 − 1
dz,

where Γ0 is the counterclockwise circle of radius five about the origin. As a first
step, we need to construct a partial fraction expansion

2
z2 − 1

=
A

z + 1
+

B

z − 1
.

This is relatively easy and the result is

2
z2 − 1

=
−1
z + 1

+
1

z − 1
,

so ∫
Γ0

2ez

z2 − 1
dz =

∫
Γ0

−ez

z + 1
dz +

∫
Γ0

ez

z − 1
dz.
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Next we use the Homotopy Theorem as in Example 2 of §4.5 to replace the
contour integral over Γ0 by a sum of contour integrals over counterclockwise
circles C1 and C3 of radius ε centered at −1 and 1 respectively. Thus∫

Γ0

2ez

z2 − 1
dz =

∫
C1

−ez

z + 1
dz +

∫
C3

ez

z − 1
dz.

Finally, we apply (4.14) with f(z) = ez to obtain∫
C1

−ez

z + 1
dz = −2πif(−1) = −2πie−1 = −(2πi)e−1,∫

C3

ez

z − 1
dz = 2πif(1) = 2πie1 = (2πi)e,

which leads to the final answer∫
Γ0

2ez

z2 − 1
dz = 2πi(e− e−1) = 4πi sinh(1).

We can differentiate the Cauchy integral formula (4.13) with respect to z0 to
obtain a formula for higher derivatives of a holomorphic function f :

Cauchy Integral Formula II. Suppose that U is a simply connected open
subset of C, and that Γ is a counterclockwise simple closed contour within U
such that the point z0 lies inside Γ. Then if f : U → C is a holomorphic function,

dkf

dzk
(z0) =

k!
2πi

∫
Γ

f(z)
(z − z0)k+1

dz. (4.15)

We can of course rewrite this formula as∫
Γ

f(z)
(z − z0)k+1

dz =
2πi
k!

dkf

dzk
(z0). (4.16)

Example 3. Suppose that we want to calculate the contour integral∫
Γ

ez

(z + 1)5
dz,

where Γ is a small counterclockwise circle around the pole at z = −1. In this
case, we can apply (4.16) in the case where f(z) = ez and since

dkf

dzk
(z) = ez,

we obtain ∫
Γ

ez

(z + 1)5
dz =

2πi
4!
e−1 =

πi

12e
.
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Theoretical implications of the Cauchy integral formulae: The Cauchy
Integral Theorem II implies that a complex function f : U → C which has a
continuous complex derivative at every point of U has continuous derivatives of
all orders. Indeed, one can go further. In 1900, Édouard Goursat was able to
prove Cauchy’s Theorem without the redundant assumption that f ′ be continu-
ous. He merely assumed that f : U → C has a complex derivative at each point
of U . (Goursat’s proof for rectangular regions is presented at the beginning of
Chapter 4 of Ahlfors [1].) Since one can prove Cauchy’s Integral Theorem I
using Cauchy’s Theorem, it follows that merely assuming that f : U → C has a
complex derivative at each point of U implies that f has a continuous complex
derivative f ′ : U → C, and then via the Cauchy Integral Theorem II that f has
continuous complex derivatives of all orders. Needless to say, these remarkable
facts do not hold for ordinary derivatives of real-valued functions of one real
variable.

4.8 Applications of Cauchy’s integral formulae

We now have enough machinery to use complex analysis to prove some striking
results from other branches of mathematics, that any nonconstant polynomial
with complex coefficients must have at least one complex root and that solutions
to Laplace’s equations cannot have maxima (ore minima) except at boundary
points.

Cauchy Estimate Theorem. Suppose that f is complex analytic on

D̄R(z0) = {z ∈ C : |z − z0| ≤ R}.

If |f(z)| ≤M for all

z ∈ ∂D̄R(z0) = {z ∈ C : |z − z0| = R},

then ∣∣∣∣dkfdzk (z0)
∣∣∣∣ ≤ k!M

Rk
. (4.17)

This follows from the Cauchy Integral Theorem II. If we use the standard
parametrization

z : [0, 2π]→ C, z(t) = z0 +Reit

of the counterclockwise circle of radius R about z0, then (4.15) implies∣∣∣∣dkfdzk (z0)
∣∣∣∣ ≤ ∫ 2π

0

M

Rk+1
Rdt =

k!M
Rk

.

Liouville’s Theorem. Any bounded entire function is constant.
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Indeed, if f : C → C is a bounded complex analytic function, say |f(z)| ≤ M
for all z ∈ C, and z0 ∈ C, then (4.17) implies that∣∣∣∣dkfdzk (z0)

∣∣∣∣ ≤ k!M
Rk

for all R > 0,

which implies that
dkf

dzk
(z0) = 0, for all k > 0,

and hence f must be constant.

Fundamental Theorem of Algebra. Any nonconstant polynomial with com-
plex coefficients has at least one complex root.

Proof: Suppose that

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

is a polynomial with complex coefficients with an 6= 0 which has no roots, where
n ≥ 1. Then there exists R > 0 such that

P (z) ≥ |an|
2
|z|n ≥ |an|

2
Rn, for |z| > R,

where we can assume that R ≥ 1, so that

1
P (z)

≤ 2
|an|

1
Rn
≤ 2
|an|

, for |z| > R.

On the other hand, the modulus of P ,

|P | : D̄R → R where D̄R = {z ∈ C : |z| ≤ R},

is continuous and positive, so it must assume its greatest lower bound ε0 > 0 at
some point of D̄R, by one of the standard theorems of real analysis. Thus

1
|P (z)|

≤

{
2/|an|, when |z| > R,

1/ε0, when |z| ≤ R.

Hence 1/P (z) is a bounded entire function, and it must therefore be constant
by Liouville’s Theorem. QED

Another implication of the Cauchy Integral Theorem is the fact that if f : D →
C is a complex analytic function on a bounded open connected subset D ⊆ C,
its modulus |f | must achieve its maximum value on the boundary of D

Maximum Modulus Principle. Suppose that D is a simply connected open
set, that f : D → C is complex analytic and |f | achieves its maximum value at
some point z0 ∈ D, then f is constant within D.
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Idea of proof: By the Cauchy Integral Theorem (4.13), if Γ is the circle of radius
R about z0 parametrized by z(t) = z0 +Reit, for t ∈ [0, 2π], then

f(z0) =
1

2πi

∫
Γ

f(z)
z − z0

dz

=
1

2πi

∫ 2π

0

f(z0 +Reit)
Reit

iReitdt =
1

2π

∫ 2π

0

f(z0 +Reit)dt. (4.18)

This equation says that f(z0) is the average of f around any circle ΓR(z0) of
radius R centered at z0 which is contained within D. It implies an inequality
on the modulus

|f |(z0) ≤ 1
2π

∫ 2π

0

|f |(z0 +Reit)dt. (4.19)

If z lies on ΓR(z0) then |f |(z) ≤ |f |(z0), but if |f |(z) < |f |(z0), then the average
value of |f | on the circle would be strictly less that |f |(z0), contradicting (4.19).
We conclude that |f | must be constant on D.

Thus Re(ef ) = e|f | is constant on D. It then follows from the Cauchy-
Riemann equations (Proposition 2 from §2.3) that ef is constant. But then

0 =
d

dz
(ef ) = ef

df

dz
⇒ df

dz
= 0,

by the chain rule, so f itself is constant on D.

Maximum Principle for Harmonic Functions. Suppose that D is a simply
connected open subset of C and that u : D → R is a harmonic function. If u
achieves its maximum value at some point z0 ∈ D, then u is constant on D.

Sketch of proof: The fact that D is simply connected allows us to construct
an harmonic conjugate v to u. Indeed, using the fact that u is harmonic, one
verifies that if

M =
∂u

∂x
and N =

∂u

∂y

then M − iN is holomorphic, and hence

(M − iN)(dx+ idy) = f(z)dz

is a holomorphic differential on D such that Re(f(z)dz) = du. Since D is simply
connected, it follows from Cauchy’s Theorem that whenever Γ is a closed contour
within D, ∫

Γ

f(z)dz = 0.

Then it follows from the Independence of Path Theorem from §4.3 that f(z)
has an antiderivative F on D. In other words, there is a holomorphic function
F : D → C such that dF = f(z)dz, and hence

Re(dF ) = Re(f(z)dz) = du.
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Finally, we set v = Im(F ), and F = u+ iv, so v is an harmonic conjugate to u.
Then eF is also a complex analytic function with∣∣eF ∣∣ =

∣∣eu+iv
∣∣ = eu.

If u assumes its maximum at some point z0 ∈ D, then eF achieves its maximum
modulus at z0 ∈ D and hence eF is constant on D by the maximum modulus
principle. But then eu and hence u itself must be constant on D.

The Maximum Principle can be applied in turn to the so-called Dirichlet Prob-
lem for Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0,

solutions to which are called harmonic functions. Recall that if D is an open
connected subset of the complex plane C filled with a homogeneous material,
then a harmonic function u : D → R might represent the steady-state temper-
ature within D, as we saw in §3.4.

Dirichlet Problem. Suppose that D is the closure of a bounded open con-
nected set in C with boundary ∂D. Given the temperature along the boundary
∂D of D, determine the temperature within D; that is, given u|∂D, determine
the function u : D → R which satisfies Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0

within D and extends continuously to D ∪ ∂D.

The physical interpretation in which harmonic functions represent steady-state
temperature suggests that there should exist a unique solution to Dirichlet’s
problem, at least if D is reasonably well-behaved. The maximum principle
shows that this is indeed true:

Uniqueness of solutions to the Dirichlet Problem. Suppose that D is the
closure of a bounded open connected set in C with boundary ∂D. If u and v
are two solutions to the Dirichlet problem for D with the same values on ∂D,
then u = v.

Indeed, u− v is a solution to the Dirichlet Problem with zero boundary condi-
tions. By the Maximum Principle applied to u − v, u − v ≤ 0 on D. By the
Maximum Principle applied to v − u, v − u ≤ 0 on D. Hence u− v = 0 on D.

Poisson’s formula: Yet another application of the Cauchy integral formula is
Poisson’s explicit formula for the solution to the Dirichlet problem in the unit
disk

D = {z ∈ C : |z| < 1}.

We derive this formula following Ahlfors [1], pages 165-166, noting first that it
follows from (4.18) that if f is a holomorphic function on the disk and Γ is the
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boundary of the disk,

f(0) =
1

2π

∫
Γ

f(z)
dz

iz
. (4.20)

For a fixed choice of a ∈ D, we now make a change of variables, using a linear
fractional transformation, as described in §3.2:

w = T (z) =
z − a
1− āz

, so T (a) = 0.

This linear fractional transformation takes the unit disk D to itself. It follows
immediately that

dw

w
=

dz

z − a
+

z̄dz

1− āz
.

We now replace f by the holomorphic function f ◦ T−1 in (4.20), thereby ob-
taining

f(a) = f(T−1(0)) =
1

2π

∫
Γ

f(T−1(w))
dw

iw

=
1

2π

∫
Γ

f(z)
(

z

z − a
+

āz

1− āz

)
dz

iz

=
1

2π

∫
Γ

f(z)
(

z

z − a
+

ā

z̄ − ā

)
dz

iz
=

1
2π

∫
Γ

f(z)
1− |a|2

|z − a|2
dz

iz
,

where we have used the fact that |z| = 1. If we use the parametrization z(t) =
eit, for 0 ≤ t ≤ 2π, we can write this as

f(a) =
1

2π

∫ 2π

0

f(eit)
1− |a|2

|eit − a|2
dt. (4.21)

If u is a harmonic function on the disk, it is the real part of a holomorphic
function of f , and hence it follows from (4.21) that

u(a) =
1

2π

∫ 2π

0

u(eit)
1− |a|2

|eit − a|2
dt,

an explicit formula for the value of the harmonic function u at a ∈ D in terms
of the values of u along Γ.
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