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A. Homogeneous linear systems

Linear algebra is the theory behind solving systems of linear equations, such as

a11x1 + a12x2 + · · ·+ a1nxn = 0,
a21x1 + a22x2 + · · ·+ a2nxn = 0,

· · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = 0.

(1)

Here the aij ’s are known elements of the field F, and we are solving for the
unknown elements x1, . . . , xn in F. Our goal is to describe the space of solutions

W = {(x1, x2, . . . , xn) ∈ Fn : (x1, x2, . . . , xn) satisfies (1) }

as simply as possible. You will note that W is a linear subspace of Fn. In fact,
it turns out that any linear subspace of Fn is a solution set to a homogeneous
linear system of equations just like (1).

Our strategy is to simplify the system by means of the elementary operations
on equations:

1. Interchange two equations.

2. Multiply an equation by a nonzero constant c.

3. Add a constant multiple of one equation to another.

All of these operations are reversible and each leads to a new system with exactly
the same solution set W . We want to choose these operations judiciously, so
that we put the system into the simplest possible form.

From properties of matrix multiplication that you learned in Math 3C, you
realize that this system of linear equations can be written in terms of its coeffi-
cient matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
am1 am2 · · · amn

 and the vector x =


x1

x2

·
xn

 .

as Ax = 0. Thus the solution set W can be expressed more simply as

W = {x ∈ Fn : Ax = 0}.
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Each elementary operation on the linear system (1) corresponds to elementary
row operations on its coefficient matrix A. Those elementary row operations
are:

1. Interchange two rows.

2. Multiply a row by a nonzero constant c.

3. Add a constant multiple of one row to another.

Each of these operations is reversible and leaves the solutions to the matrix
equation Ax = 0 unchanged. Our goal is to use these operations to replace A
by a matrix that is in row-reduced echelon form. By definition, the matrix A is
in row-reduced echelon form if it has the following properties:

1. The first nonzero entry in any row is a one.

2. If a column contains an initial one for some row all of the other entries in
that column are zero.

3. The initial one in a given row occurs to the right of the initial ones in all
higher rows.

4. If a row consists of all zeros, then it is below all of the other rows.

It can be proven that any m×n matrix can be put in row-reduced echelon form
by elementary row operations, and the reduced row-reduced echelon matrix is
unique. It is easy to see how to carry out the procedure. One starts by putting
a one as the first nonzero entry in the first row of the first nonzero column.
We do this by interchanging rows if necessary to get a nonzero entry in the
first nonzero column into the first row, and then divide the first row by this
first nonzero entry. We then zero out all other elements in the first nonzero
column by subtracting suitable multiples of the first row from other rows. In
the submatrix obtained by removing the first row, we then apply the same
procedure obtaining an initial one in a second column and zeroing out all other
entries in that column. Continuing with this procedure leads to a matrix in
row-reduced echelon form.

Indeed, properly reformulated, the procedure we have described could be
refined to give a proof that any matrix can be put in row-reduced echelon form
by elementary row operations. We will not carry out all of the details, but you
should be able to see how they would go.

If there are k nonzero rows, one can solve for the k variables corresponding
to the initial ones in those rows in terms of the n−k variables corresponding to
the other rows. The n − k variables which do NOT correspond to initial ones
are called free variables, and can be thought of as coordinates for the space W .
In this way, we can obtain a general solution to the original linear system, in
which the n− k free variables form the coordinates.
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Example 1. Suppose we consider the homogeneous linear system

2x1 + 4x2 + 2x3 + 4x4 = 0,
x2 + x3 = 0,

x1 + 3x2 + 2x3 + 2x4 = 0.
(2)

We write out the coefficient matrix, and apply the elementary row operations: 2 4 2 4
0 1 1 0
1 3 2 2

 7→

 1 2 1 2
0 1 1 0
1 3 2 2



7→

 1 2 1 2
0 1 1 0
0 1 1 0

 7→

 1 2 1 2
0 1 1 0
0 0 0 0


7→

 1 0 −1 2
0 1 1 0
0 0 0 0

 .

The last matrix is in row-reduced echelon form. Our linear system (2) has the
same solution set as the system

x1 − x3 + 2x4 = 0,
x2 + x3 = 0,

0 = 0.
(3)

We can rewrite (2) in the form

x1 = x3 −2x4,
x2 = −x3 ,
x3 = x3 ,
x4 = x4.

The free variables in the system are x3 and x4; we can set them to any elements
of F and then x1 and x2 are completely determined. Replacing x3 by s and x4

by t, we can rewrite this system as
x1

x2

x3

x4

 = s


1
−1
1
0

 + t


−2
0
0
1

 ,

where the parameters s and t range over F. Since

W =

s


1
−1
1
0

 + t


−2
0
0
1

 : s, t ∈ F
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we say that the vectors

b1 =


1
−1
1
0

 , b2 =


−2
0
0
1


span the vector space W . Since

s


1
−1
1
0

 + t


−2
0
0
1

 = 0 ⇒ s = t = 0,

we say that the list of vectors (b1,b2) is linearly independent . Since the list of
vectors (b1,b2) spans W and is linearly independent, we say it is a basis for the
linear subspace W .

To summarize, the elementary row operations allow one to find a basis for the
vector space W of solutions to the homogeneous linear system (1). Although the
basis for W is not unique (other bases could be constructed by other methods),
it can be proven that all bases have the same number of elements. The number
of elements in a basis is called the dimension of the subspace W . Bases for a
solution set W to a homogeneous linear system provide the sought-after simplest
possible descriptions of the solution set.

B. Nonhomogeneous linear systems

We can use a similar procedure to find the general solution to nonhomogeneous
linear systems, such as

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

· · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = b2.

(4)

In this case, the aij ’s and the bi’s are known elements of the field F, and we are
solving for the unknown elements x1, . . . , xn in F. We can write this system as
Ax = b, where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
am1 am2 · · · amn

 , x =


x1

x2

·
xn

 and b =


b1

b2

·
bm

 .

To solve such a system, we apply the elementary row operations to the aug-
mented coefficient matrix

A =


a11 a12 · · · a1n | b1

a21 a22 · · · a2n | b2

· · · · · · | ·
am1 am2 · · · amn | bm

 .
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Example 2. Let us consider the nonhomogeneous linear system

2x1 + 4x2 + 2x3 + 4x4 = 8,
x2 + x3 = 3,

x1 + 3x2 + 2x3 + 2x4 = 7.
(5)

We write our the augmented coefficient matrix and apply the elementary row
operations: 2 4 2 4 | 8

0 1 1 0 | 3
1 3 2 2 | 7

 7→

 1 2 1 2 | 4
0 1 1 0 | 3
1 3 2 2 | 7



7→

 1 2 1 2 | 4
0 1 1 0 | 3
0 1 1 0 | 3

 7→

 1 2 1 2 | 4
0 1 1 0 | 3
0 0 0 0 | 0


7→

 1 0 −1 2 | −2
0 1 1 0 | 3
0 0 0 0 | 0

 .

In this case, our linear system (5) has the same solution set as the system

x1 − x3 + 2x4 = −2,
x2 + x3 = 3,

0 = 0.
(6)

We can rewrite (6) in the form

x1 = x3 − 2x4 − 2,
x2 = −x3 + 3,
x3 = x3,
x4 = x4.

In this system, we can assign x3 and x4 at will, and then x1 and x2 are completely
determined. Replacing x3 by s and x4 by t, we can rewrite this system as

x1 = s− 2t− 2,
x2 = −s + 3,
x3 = s,
x4 = t,

where the parameters s and t range over the real numbers. We can write the
solution in vector form as

x =


x1

x2

x3

x4

 =


−2
3
0
0

 + s


1
−1
1
0

 + t


−2
0
0
1

 . (7)
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It is NOT the case that the solution set

S = {(x1, x2, x3, x4) ∈ Fn : (x1, x2, . . . , xn) satisfies (4) }

is a linear subspace of R4. However, we can write

S =


−2
3
0
0

 + W,

where W is the solution set to the “associated” homogeneous linear system
considered in Example 1. Like all solution sets to homogeneous linear systems,
W is a linear subspace, and we can regard S as an affine subspace of R4 which
is parallel to the linear subspace W .
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