Key Linear Independence Theorems

Math 108 A: Spring 2010 John Douglas Moore

April 21, 2010

Linear Dependence Lemma. Suppose that $(\mathbf{v}_1, \dots, \mathbf{v}_m)$ is a linearly dependent list of vectors in a vector space V over a field F, and that $\mathbf{v}_1 \neq \mathbf{0}$. Then there exists $j \in \{2, \dots, m\}$ such that

$$\mathbf{v}_j \in Span(\mathbf{v}_1, \dots, \mathbf{v}_{j-1}).$$

Moreover,

$$Span(\mathbf{v}_1,\ldots,\mathbf{v}_{j-1},\mathbf{v}_{j+1},\ldots,\mathbf{v}_m) = Span(\mathbf{v}_1,\ldots,\mathbf{v}_m).$$

Assuming this lemma, we prove the MAIN RESULT of Chapter 1 in the text:

Replacement Theorem. If V is a vector space over a field F, $(\mathbf{u}_1, \dots, \mathbf{u}_m)$ is a linearly independent list of elements from V, and V is the span of a list $(\mathbf{w}_1, \dots, \mathbf{w}_n)$, then $m \leq n$.

Idea of proof: One by one replace elements of the spanning list by elements of the linear independent list, renormalizing to the same size by means of the Linear Dependence Lemma.

Definition. A basis for a vector space V is a list $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ which is linearly independent and spans V.

Corollary. If V is a vector space over a field F, Any two finite bases for V have the same number of elements.

Definition. A vector space V over a field F is finite-dimensional if it has a basis which has finitely many elements. The *dimension* of a finite-dimensional vector space V is the number of elements in any of its bases. We let $\dim(V)$ denote the dimension of V.

Theorem. Every spanning list in a finite-dimensional vector space V can be reduced to a basis.

Idea of proof: Start with a spanning set and throw away elements until you have a basis. As long as you don't have a basis, the Linear Dependence Lemma says that you can throw something away.

Theorem. Every linearly independent list in a finite-dimensional vector space V can be extended to a basis.

Idea of proof: Suppose that $B = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ is a linearly independent list. Since V is finite-dimensional, we can write $V = \operatorname{span}(\mathbf{w}_1, \dots, \mathbf{w}_n)$. One by one, add the \mathbf{w}_i 's to the list B, throwing away any additions that make the list linearly dependent (by means of the Linear Dependence Lemma).

Definition. Suppose that U and W are subspaces of a vector space V. We say that V is the *direct sum* of U and W, and we write $V = U \oplus W$, if

- 1. $U \cap W = \{0\}$, and
- 2. every element $\mathbf{v} \in V$ is of the form $\mathbf{u} + \mathbf{w}$ where $\mathbf{u} \in U$ and $\mathbf{w} \in W$.

Theorem. Let U be a subspace of a finite-dimensional vector space V. Then there is a subspace W of V such that $V = U \oplus W$.

Idea of proof: Choose a basis $(\mathbf{u}_1, \dots, \mathbf{u}_m)$ for U and extend it to a basis $(\mathbf{u}_1, \dots, \mathbf{u}_m, \mathbf{w}_{m+1}, \dots, \mathbf{w}_n)$ of V. Then $(\mathbf{w}_{m+1}, \dots, \mathbf{w}_n)$ is a basis for $W = \operatorname{span}(\mathbf{w}_{m+1}, \dots, \mathbf{w}_n)$ and $V = U \oplus W$.