
Using Mathematica to Solve Differential

Equations

John Douglas Moore

February 1, 2010

In solving differential equations, it is sometimes necessary to do calculations
which would be prohibitively difficult to do by hand. Fortunately, computers
can do the calculations for us, if they are equiped with suitable software, such
as Matlab or Mathematica. Here we give a brief introduction to the use of
Mathematica for doing such calculations.

Most computers which are set up to use Mathematica contain an on-line
tutorial, “Tour of Mathematica,” which can be used to give a brief hands-on
introduction to Mathematica. Using this tour, it should be possible to learn
enough Mathematica to get started without referring to lengthy technical man-
uals.

Our purpose here is to give a very brief introduction to the use of Mathe-
matica. After launching Mathematica, you can use it as a “more powerful than
usual graphing calculator.” For example, if you type in

(11 - 5)/3

the computer will perform the subtraction and division, and respond with

Out[1] = 2

The notation for multiplication is ∗, so if you type in

2 * (7 + 4)

the computer will respond with

Out[2] = 22

You can also use a space instead of ∗ to denote multiplication, so if you input

2 8

the computer will respond with

Out[3] = 16

The computer can do exact arithmetic with integers or rational numbers.
For example, since ∧ is the symbol used for raising to a power, if you type in

1



2∧150

the computer will calculate the 150th power of two and give the exact result:

Out[4] = 1427247692705959881058285969449495136382746624

On the other hand, the symbol N tells the computer to use an approximation
with a fixed number of digits of precision, so entering

N[2∧150]

will give an approximation to the exact answer, expressed in scientific notation:

Out[5] = 1.42725 1045

Real numbers which are not rational, such as π, have infinite decimal expan-
sions which cannot be stored within a computer. However, we can approximate
a real number by a finite decimal expansion with a given number of digits of pre-
cision. For example, since Mathematica uses the name E to denote the number
e, typing in

N[E]

will tell Mathematica to give a rational approximation to e to a standard number
of digits of precision:

Out[6] = 2.71828

In principle, the computer can calculate rational approximations to an arbitrary
number of digits of precision. Since the number π is represented by Mathematica
as Pi, typing in

N[Pi,40]

will tell Mathematica to give a rational approximation to π to 40 digits of
precision:

Out[7] = 3.1415926535897932384626433832795028841972

The computer can represent not only numbers but functions. Within Math-
ematica, built-in functions are described by names which begin with capital
letters. For example, Log denotes the natural base e logarithm function. Thus
entering

N[Log[2],40]

will give the logarithm of 2 with 40 digits of precision:

Out[8] = 0.693147180559945309417232121458176568076

Of course, you are familiar with using .7 as a very rough approximation for the
logarithm of 2. It is this fact which enables you to state without hesitation that
a population which is growing at 1% per year will double in .7/.01 = 70 years.

2



1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Figure 1: Graph of the logarithm function.

One can also plot functions with Mathematica. For example, to plot the
logarithm function from the values 1 to 3, one simply inputs

Plot[Log[t],{t,1,3}]

and Mathematica will automatically produce the plot shown in Figure 1.
We can also define functions ourselves, being careful not to capitalize them,

because capitals are reserved by Mathematica for built-in functions. Thus we
can define the function

y(t) = cekt

by typing

y[t ] := c * E∧(k * t);

Mathematica will remember the function we have defined until we quit Mathe-
matica. We must remember the exact syntax of this example (use of the under-
line character and the colon followed by the equal sign) when defining functions.
In this example c and k are parameters which can be defined later. Just as in
the case of functions, we must be careful to represent parameters by lower case
letters, so they will not be confused with built-in constants. Further entry of

c = 1; k = 1; N[y[1]]

yields the response

Out[11] = 2.71828

while entering

Plot[y[t],{t,0,2}]

3



will give a plot of the function we have defined, for t in the interval [0, 2].
We can use Mathematica to solve matrix differential equations of the form

dx
dt

= Ax, (1)

where A is a square matrix with constant entries.
The first step consists of using Mathematica to find the eigenvalues and

eigenvectors of A. To see how this works, we must first become familiar with
the way in which Mathematica represents matrices. Since Mathematica reserves
upper case letters for descriptions of built-in functions, it is prudent to denote
the matrix A by lower case a when writing statements in Mathematica. The
matrix

A =
(
−2 5
1 −3

)
can be entered into Mathematica as a collection of row vectors,

a = {{-2,5},{1,-3}}

with the computer responding by

Out[1] = {{-2,5},{1,-3}}

Thus a matrix is thought of as a “vector of vectors.” Entering

MatrixForm[a]

will cause the computer to give the matrix in the familiar form

Out[2] = (
−2 5
1 −3

)
To find the eigenvalues of the matrix A, we simply type

Eigenvalues[a]

and the computer will give us the exact eigenvalues

−5−
√

21
2

,
−5 +

√
21

2
,

which have been obtained by using the quadratic formula. Quite often numerical
approximations are sufficient, and these can be obtained by typing

eval = Eigenvalues[N[a]]

the response this time being

Out[4] = {-4.79129, -0.208712}

Defining eval to be the eigenvalues of A in this fashion, allows us to refer to
the eigenvalues of A later by means of the expression eval.

4



We can also find the corresponding eigenvectors for the matrix A by typing

evec = Eigenvectors[N[a]]

and the computer responds with

Out[5] = {{-0.873154, 0.487445}, {0.941409, 0.337267}}

Putting this together with the eigenvalues gives the general solution to the
original linear system (1) for our choice of the matrix A:

x(t) = c1

(
−0.873154
0.487445

)
e−4.79129t + c2

(
0.941409
0.337267

)
e−0.208712t.

Mathematica can also be used to find numerical solutions to nonlinear differ-
ential equations. The following Mathematica programs will use Mathematica’s
differential equation solver (which is called up by the command NDSolve), to
find a numerical solution to the initial value problem

dy/dx = y(1− y), y(0) = .1

for the logistic equation, give a table of values for the solution, and graph the
solution curve on the interval 0 ≤ x ≤ 6. The first step

sol := NDSolve[{ y’[x] == y[x] (1 - y[x]), y[0] == .1 },
y, {x,0,6}]

generates an “interpolation function” which approximates the solution and calls
it sol, an abbreviation for solution. We can construct a table of values for the
interpolation function by typing

Table[Evaluate[y[x] /. sol], {x,0,6,.1}];

or graph the interpolation function by typing

Plot[Evaluate[y[x] /. sol], {x,0,6}]

This leads to a plot like that shown in Figure 2.
Readers can modify these simple programs to graph solutions to initial value

problems for quite general differential equations of the canonical form

dy

dx
= f(x, y).

All that is needed is to replace the first argument of NDSolve with the differential
equation one wants to solve, remembering to replace the equal signs with double
equal signs, as in the example.

In fact, it is no more difficult to treat initial value problems for higher order
equations or systems of differential equations. For example, to solve the initial
value problem

dx

dt
= −xy, dy

dt
= xy − y, x(0) = 2, y(0) = .1. (2)

5



1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

Figure 2: Solution to y′ = y(1− y), y(0) = .1.

0.5 0.75 1.25 1.5 1.75 2

0.1

0.2

0.3

0.4

Figure 3: A parametric plot of a solution to dx/dt = −xy, dy/dt = xy − y.

6



one simply types in

sol := NDSolve[{ x’[t] == - x[t] y[t], y’[t] == x[t] y[t] - y[t],
x[0] == 2, y[0] == .1 },
{x,y}, {t,0,10}]

Once we have this solution, we can print out a table of values for y by entering

Table[Evaluate[y[t] /. sol], {t,0,2,.1}]

We can also plot y(t) as a function of t by entering

Plot[Evaluate[y[t] /. sol], {t,0,10}]

Figure 3 shows a parametric plot of (x(t), y(t)) which is generated by entering

ParametricPlot[Evaluate[{ x[t], y[t]} /. sol], {t,0,10}]

7


