
Lecture Notes on Metric Spaces

Math 117: Summer 2007
John Douglas Moore

Our goal of these notes is to explain a few facts regarding metric spaces not
included in the first few chapters of the text [1], in the hopes of providing an
easier transition to more advanced texts such as [2].

1 The dot product

If x = (x1. . . . , xn) and y = (y1. . . . , yn) are elements of Rn, we define their dot
product by

x · y = x1y1 + · · ·+ xnyn.

The dot product satisfies several key axioms:

1. it is symmetric: x · y = y · x;

2. it is bilinear: (ax + x′) · y = a(x · y) + x′ · y;

3. and it is positive-definite: x · x ≥ 0 and x · x = 0 if and only if x = 0.

We define the length of x by
|x| =

√
x · x.

Note that the length of x is always ≥ 0.

Cauchy-Schwarz Theorem. The dot product satisfies

−1 ≤ x · y
|x||y|

≤ 1.

Sketch of proof: Expand the inequality

0 ≤ (x(y · y)− y(x · y)) · (x(y · y)− y(x · y))

and simplify. (Exercise: Work this out!)

The importance of the Cauchy-Schwarz Theorem is that it allows us to define
angles between vectors x and y in Rn. Given an number t ∈ [−1, 1], there is a
unique angle θ such that

θ ∈ [0, π] and cos θ = t.
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Thus we can define the angle between two nonzero vectors x and y in Rn by
requiring that

θ ∈ [0, π] and cos θ =
x · y
|x||y|

.

Thus we can say that two vectors vectors x and y in Rn are perpendicular or
orthogonal if x ·y = 0. This provides much intuition for dealing with vectors in
Rn.

Corollary of Cauchy-Schwarz Theorem. If u,v ∈ Rn, then

|u + v| ≤ |u|+ |v|.

Proof: It suffices to check that

|u + v|2 ≤ (|u|+ |v|)2

or
|u|2 + 2u · v + |v|2 ≤ |u|2 + 2|u||v|+ |v|2.

But this follows immediately from the Cauchy-Schwarz inequality.

2 Metric spaces

Definition 2.1. A metric space is a set X together with a function d : X×X →
R such that

1. d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y,

2. d(x, y) = d(y, x), and

3. d(x, z) ≤ d(x, y) + d(y, z).

The last of these conditions is known as the triangle inequality .

Example 1. The most basic example is R with

d : R× R → R defined by d(x, y) = |x− y|.

Example 2. The example needed for multivariable calculus is Rn with

d : Rn × Rn → R defined by d(x,y) = |x− y|,

the length of x− y being defined as in the preceding section. In verifying that
this really is a metric space, the only difficulty is checking the triangle inequality.
But this follows from the Corollary in the preceding section when u = x − y
and v = y − z. Of course, this example includes the previous one as a special
case.
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Example 3. Let S be a subset of Rn. If x and y are elements of S, we let
d(x,y) be the distance from x to y in Rn. This provides numerous examples of
metric spaces. For example, the unit sphere

Sn−1 = {(x1, . . . , xn) ∈ Rn : (x2
1 + · · ·+ x2

n = 1}

inherits a metric from Rn.

Definition 2.2. If (X1, d1) and (X2, d2) are metric spaces, a function f : X1 →
X2 is continuous if for every c ∈ X1 and every ε > 0 there exists a δc > 0 such
that

x ∈ X1 and d1(x, c) < δc ⇒ d2(f(x), f(c)) < ε. (1)

A function f : X1 → X2 is uniformly continuous if for every ε > 0 there exists
a δ such that

x, y ∈ X1 and d1(x, y) < δ ⇒ d2(f(x), f(y)) < ε.

Definition 2.3. If (X, d) is a metric space and ε > 0 is given the ε-neighborhood
N(x; ε) of a point x ∈ X is

N(x; ε) = {y ∈ X : d(x, y) < ε}.

We can then rewrite (1) as

x ∈ N(x; δc) ⇒ f(x) ∈ N(f(c); ε). (2)

Definition 2.4. A subset U of X is said to be open if

x ∈ U ⇒ N(x; ε) ⊂ U, for some ε > 0.

A subset C of X is closed if its complement X − C is open.

Proposition 2.1. The collection of open sets satisfies the following:

1. X is open and the empty set ∅ is open.

2. An arbitrary union of open sets is open.

3. A finite intersection of open sets is open.

Proof: Exercise.

Proposition 2.2. Let (X, d) be a metric space and let S be a subset of X,
which is a metric space in its own right. Then a subset U of S is open if and
only if U = V ∩ S, where V is open in X.

Proof: Exercise.

3



Proposition 2.3. If (X1, d1) and (X2, d2) are metric spaces and a function
f : X1 → X2 is continuous, then whenever U is an open subset of X2, f−1(U)
is an open subset of X1.

Proof: Suppose that c ∈ f−1(U). Then f(c) ∈ U and since U is open,
N(f(c); ε) ⊂ U for some ε > 0. Since f is continuous, there exists δc > 0
such that (2) holds; thus f(N(c : δc)) ⊂ N(f(c); ε). Let

V =
⋃
{N(c, δc) : c ∈ f−1(U)}.

Then V = f−1(U), and since V is the union of open sets, it is open.

Remark. The converse of this Proposition is also true: If f−1(U) is an open
subset of X1 whenever u is an open subset of X2, then f is continuous. We
leave this as an exercise for you to prove.

3 Compact sets

Definition. Suppose that (X, d) is a metric space. A subset K of X is compact
if every open cover of K has a finite subcover.

Proposition 3.1. Any closed subset of a compact set is compact.

Proof: You did this as one of the earlier exercises.

Main Theorem. If (X1, d1) and (X2, d2) are metric spaces, f : X1 → X2 is a
continuous function and K is a compact subset of X1, then f(K) is compact.

Proof: Suppose that
F = {Uα : α ∈ A}

is an open cover of f(K). For each Uα, there is an open subset Vα ⊂ X1 such
that Vα ∩K = f−1(Uα). We then have

K ⊂
⋃
{Vα : α ∈ A}.

In other words, {Vα : α ∈ A} is an open cover of K. Since K is compact, there
exists a finite subcover {Vα1 , . . . , Vαn}; in other words,

K ⊂ Vα1 ∪ · · · ∪ Vαn
.

But then
f(K) ⊂ f(Vα1) ∪ · · · ∪ f(Vαn

) ⊂ Uα1 ∪ · · · ∪ Uαn
.

So {Uα1 , . . . , Uαn
} is a finite subcover of F . Since F was an arbitrary open

cover, we have shown that ANY open cover of f(K) has a finite subcover, so
f(K) is indeed compact, as needed.

Corollary. Suppose that (X, d) is a metric space and f : X → R is a continuous
function. If K is a compact subset of X, then f assumes its maximum and
minimum values on K.
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Proof: By the previous theorem, f(K) is compact and therefore closed and
bounded by the Heine-Borel Theorem.

Let S = f(K) and let m be the least upper bound of S, which exists by the
Completeness Axiom for real numbers. It suffices to show that m ∈ S.

If m /∈ S, then for any ε > 0 there exists and element s ∈ S such that
m−ε < s < m, because otherwise m−ε would be an upper bound, contradicting
the fact that m is the least upper bound.

Thus m is an accumulation point of S. But since S is closed it contains all
of its accumulation points. Therefore m ∈ S. Thus m is a maximum for S and
f achieves its maximum value on K.

The argument that f achieves its minimum value is similar.

Example 4. We can now give another important example of metric space. Let

X = C([a, b], R) = {f : [a, b] → R : f is continuous },

and define

d : C([a, b], R)× C([a, b], R) → R by d(f, g) = sup{|f(x)− g(x)| : x ∈ [a, b]}.

The supremum exists by the above corollary. It is straightforward to check that
this distance function satisfies the axioms for a metric space.

Using this example, we can apply many of the techniques that we have
learned for dealing with the real numbers to spaces of functions. This leads
to an important subject—functional analysis—that plays a key role in proving
existence of solutions to differential equations.

For example, we can consider Cauchy sequences in C([a, b], R), and we can
prove:

Completeness Theorem. Every Cauchy sequence in C([a, b], R) converges.
This gives a strategy for proving the existence of solutions to differential

equitons. Suppose that we want to solve the initial value problem

d

dx
(y(x)) = f(x, y(x)), y(x0) = y0. (3)

We can rewrite this as an integral equation

y(x) = y0 +
∫ x

x0

f(ξ, y(ξ))dξ.

If y(x) ∈ C([x0, x0 + ε], R), where ε > 0 is small, we can define

T (y)(x) ∈ C([x0, x0 + ε], R) by T (y)(x) = y0 +
∫ x

x0

f(ξ, y(ξ))dξ.

Starting with an approximate solution y0(x), one can define a sequence of solu-
tions yn(x) by

yn+1(x) = T (yn)(x).
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With some effort, one can sometmes show that (yn(x)) is a Cauchy sequence in
C([a, b], R), and hence by the Completeness Theorem converges to a limit y∞(x).
This is then a solution to the initial-value problem (3).

The key point is that the notion of metric spaces provides an avenue for ex-
tending many of the theorems used in the foundations of calculus to settings that
allow us to find solutions to differential equations, both ordinary and partial.

4 Compact subsets of Rn

Recall that the Heine-Borel Theorem states that a subset of R is compact if and
only if it is closed and bounded. It is important to realize that the Heine-Borel
Theorem also holds for Rn, when n ≥ 2 and Rn is given the metric presented in
Example 2.

General Heine-Borel Theorem. A subset of Rn is compact if and only if it
is closed and bounded.

The proof is beyond the scope of this course. It is clearly useful for several
variable calculus, and one of the key theorems proven in Math 118 or Math 145.
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