Math 5BI: Problem Set 14 Surface area

June 1, 2007

Sometimes surfaces in \mathbb{R}^3 are conveniently represented as graphs of functions, sometimes as the images of smooth maps, called parametrizations.

For example, the *paraboloid of revolution* in \mathbb{R}^3 , defined as the set of points which satisfy the equation

$$z = x^2 + y^2,$$

can be thought of as the graph of the function $f(x,y) = x^2 + y^2$. But we can also regard it as the image of the map

$$\mathbf{x}: \mathbb{R}^2 \to \mathbb{R}^3$$
 by $\mathbf{x}(u, v) = \begin{pmatrix} u \\ v \\ u^2 + v^2 \end{pmatrix}$.

The map \mathbf{x} is called a parametrization for the paraboloid of revolution.

A parametrization of a smooth surface S is simply a smooth one-to-one map \mathbf{x} from a domain D in the (u, v) plane onto S.

A plane passing through the origin of \mathbb{R}^3 is simply a two-dimensional linear subspace—it can be parametrized by the mapping $\mathbf{x}: \mathbb{R}^2 \to \mathbb{R}^3$ given by the formula

$$\mathbf{x}(u,v) = u\mathbf{b}_1 + v\mathbf{b}_2,$$

where $\mathbf{b}_1, \mathbf{b}_2$ is a basis for the plane. The plane that passes through the point \mathbf{p} and is parallel to the linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2$ is parametrized by $\mathbf{x} : \mathbb{R}^2 \to \mathbb{R}^3$, where

$$\mathbf{x}(u,v) = \mathbf{p} + u\mathbf{b}_1 + v\mathbf{b}_2.$$

Problem 14.1. a. Show that $\{(1,0,1),(0,1,1)\}$ is a basis for the linear subspace of \mathbb{R}^3 defined as the set of solutions to the homogeneous linear equation x+y-z=0.

b. Find a parametrization for the plane x + y - z = 7.

The sphere of radius a centered at the origin, $x^2 + y^2 + z^2 = a^2$, can be parametrized in terms of spherical coordinates:

$$\begin{cases} x = r \cos \theta \sin \phi, \\ y = r \sin \theta \sin \phi, \\ z = r \cos \phi. \end{cases}$$

In these spherical coordinates, the sphere is represented by the equation r = a, so we can parametrize the sphere by $\mathbf{x} : D \to \mathbb{R}^3$, where

$$D = \{ (\theta, \phi) \in \mathbb{R}^2 : 0 < \theta < 2\pi, 0 < \phi < \pi \}$$

and

$$\mathbf{x}(\theta, \phi) = \begin{pmatrix} a\cos\theta\sin\phi \\ a\sin\theta\sin\phi \\ a\cos\phi \end{pmatrix}.$$

Actually, this parametrization does not cover the entire sphere. It misses the "prime meridian," a subset of zero area, which will not affect our subsequent calculations of surface integrals.

Problem 14.2. Find a parametrization of the ellipsoid,

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1,$$

where a, b, and c are positive, by introducing the new variables

$$u = \frac{x}{a}, v = \frac{y}{b}, w = \frac{z}{c}.$$

so that the equation of the ellipsoid simplifies to $u^2 + v^2 + w^2 = 1$, and then use our previous parametrization of the sphere.

A surface obtained from a smooth curve in the right half of the (x, z)-plane by rotating the curve about the z-axis is called a *surface of revolution*. Surfaces of revolution can be conveniently parametrized by means of cylindrical coordinates. For example, suppose that the curve in the (x, z)-plane is the catenary $x = \cosh z$. In terms of cylindrical coordinates

$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \\ z = z. \end{cases}$$

the surface revolution generated by the catenary is represented by the equation $r = \cosh z$. This surface is called the *catenoid*. We can parametrize the catenoid by setting z = u and $\theta = v$.

Problem 14.3. a. Sketch the catenoid.

b. Find a parametrization $\mathbf{x}: D \to \mathbb{R}^3$ of the catenoid, where

$$D = \{(u, v) \in \mathbb{R}^2 : 0 \le v < 2\pi\}.$$

Now we turn to the problem of calculating surface area. We start with the observation that the area of the parallelogram spanned by two vectors \mathbf{v} and \mathbf{w} is simply the length of their cross product,

Area =
$$|\mathbf{v} \times \mathbf{w}|$$
.

Suppose now that $\mathbf{x}: D \to \mathbb{R}^3$ is the parametrization of a surface S, and that $(u_0, v_0) \in D$. Let \square denote the rectangular region in D with corners at $(u_0, v_0), (u_0 + du, v_0), (u_0, v_0 + dv)$, and $(u_0 + du, v_0 + dv)$. The linearization of \mathbf{x} at (u_0, v_0) is the affine mapping

$$\mathbf{L}(\mathbf{x}) = \mathbf{x}(u_0, v_0) + \frac{\partial \mathbf{x}}{\partial u}(u - u_0) + \frac{\partial \mathbf{x}}{\partial v}(v - v_0).$$

Under this affine mapping

$$(u_0, v_0) \mapsto \mathbf{x}(u_0, v_0), \quad (u_0 + du, v_0) \mapsto \mathbf{x}(u_0, v_0) + \frac{\partial \mathbf{x}}{\partial u} du,$$

$$(u_0, v_0 + dv) \mapsto \mathbf{x}(u_0, v_0) + \frac{\partial \mathbf{x}}{\partial v} dv, \quad (u_0 + du, v_0 + dv) \mapsto \mathbf{x}(u_0, v_0) + \frac{\partial \mathbf{x}}{\partial u} du + \frac{\partial \mathbf{x}}{\partial v} dv.$$

The four image points are the corners of the parallelogram located at $\mathbf{x}(u_0, v_0)$ and spanned by

$$\frac{\partial \mathbf{x}}{\partial u}(u_0, v_0)du$$
 and $\frac{\partial \mathbf{x}}{\partial v}(u_0, v_0)dv$,

a parallelogram which has area

$$dA = \left| \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} \right| du dv.$$

Since the linearization closely approximates the parametrization $\mathbf{x}: D \to R^3$ near (u_0, v_0) , the area of $\mathbf{x}(\square)$ is closely approximated by

$$dA = \left| \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} \right| du dv.$$

If we divide D up into many small rectangles like \square and add up their contributions to the area, we obtain the following formula for the surface area of a surface S parametrized by $\mathbf{x}: D \to \mathbb{R}^3$:

Surface area of
$$S = \int \int_{D} \left| \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} \right| du dv$$
.

For example suppose that we want to find the area of the sphere which is defined by the equation $x^2 + y^2 + z^2 = a^2$. We can use the parametrization $\mathbf{x} : D \to \mathbb{R}^3$, where

$$D = \{ (\theta, \phi) \in R^2 : 0 < \theta < 2\pi, 0 < \phi < \pi \}$$

and

$$\mathbf{x}(\theta, \phi) = \begin{pmatrix} a\cos\theta\sin\phi \\ a\sin\theta\sin\phi \\ a\cos\phi \end{pmatrix}.$$

Problem 14.4. Find the surface area of the sphere of radius a.

Problem 14.5. Find the surface area of that part of the paraboloid $z = x^2 + y^2$ which lies inside the cylinder $x^2 + y^2 = 1$.

Problem 14.6. Find the surface area of that part of the cone $x^2 + y^2 = z^2$ which lies between the planes z = 0 and z = 2.

Problem 14.7. Find the surface area of that part of the catenoid $x^2 + y^2 = \sinh^2 z$ which lies between the planes z = -1 and z = 1.

Problem 14.8. Let S be the *torus* defined by the equation

$$(\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1,$$

with the parametrization $\mathbf{x}: D \to S$, defined by

$$\mathbf{x}(u,v) = \begin{pmatrix} (2 + \cos v)\cos u \\ (2 + \cos v)\sin u \\ \sin v \end{pmatrix},$$

where

$$D = \{(u, v) \in \mathbb{R}^2 : -\pi < u < \pi, -\pi < v < \pi\}.$$

Find the surface area of S.

If $\mathbf{x}:D\to R^3$ is the parametrization of a surface \mathbf{S} and f(x,y,z) is any continuous function of three variables, the *surface integral* of f over \mathbf{S} is given by the formula

$$\int \int_{\mathbf{S}} f(x, y, z) dA = \int \int_{D} f(x(u, v), y(u, v), z(u, v)) \left| \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} \right| du dv.$$

In more advanced texts it is shown that the integral thus defined is independent of parametrization.

Problem 14.9. If

$$\mathbf{S} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = a^2, z \ge 0\}.$$

evaluate the surface integral

$$\int \int_{\mathbf{S}} z dA.$$

SUPPLEMENTARY MATERIAL: FLUX INTEGRALS

Suppose now that we have a continuous choice of unit-normal N to the surface S. Such a continuous choice of unit-normal is called an *orientation* of S. If

$$\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$$

is a smooth vector field on \mathbb{R}^3 the flux of \mathbf{F} through \mathbf{S} is given by the surface integral

$$\int \int_{\mathbf{S}} \mathbf{F} \cdot \mathbf{N} dA.$$

Calculation of flux integrals is simpler than might be expected, because

$$\mathbf{N}dA = \frac{\frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v}}{\left|\frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v}\right|} \left|\frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v}\right| dudv = \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} dudv,$$

and hence

$$\int \int_{\mathbf{S}} \mathbf{F} \cdot \mathbf{N} dA = \int \int_{D} \mathbf{F}(x(u,v), y(u,v), z(u,v)) \cdot \left(\frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} \right) du dv.$$

Problem 14.10. If **S** is the hemisphere $x^2 + y^2 + z^2 = a^2, z \ge 0$, and

$$\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j} + z^3\mathbf{k},$$

evaluate

$$\int \int_{\mathbf{S}} \mathbf{F} \cdot \mathbf{N} dA.$$

A physical picture for the flux integral: Suppose that a fluid is flowing throughout (x, y, z)-space with velocity $\mathbf{V}(x, y, z)$ and density $\rho(x, y, z)$. In this case, fluid flow is represented by the vector field

$$\mathbf{F} = \rho \mathbf{V}$$
,

and the surface integral

$$\int \int_{\mathbf{S}} \mathbf{F} \cdot \mathbf{N} dA \tag{1}$$

represents the rate at which the fluid is flowing accross S in the direction of N. To see this, note first that the rate at which fluid flows across a small piece of S of surface area dA is

(density)(normal component of velocity)
$$dA = \rho \mathbf{V} \cdot \mathbf{N} dA$$
.

If we add up the contributions of all the small area elements, we obtain the integral (1).