Math 5BI: Problem Set 14
Surface area

June 1, 2007

Sometimes surfaces in R3 are conveniently represented as graphs of functions,
sometimes as the images of smooth maps, called parametrizations.
For example, the paraboloid of revolution in R3, defined as the set of points
which satisfy the equation
z=a%+ y2,
can be thought of as the graph of the function f(z,y) = 2% + y2. But we can
also regard it as the image of the map

U
x:R* - R® by x(u,v)= v
u? + 02
The map x is called a parametrization for the paraboloid of revolution.

A parametrization of a smooth surface S is simply a smooth one-to-one map
x from a domain D in the (u,v) plane onto S.

A plane passing through the origin of R3 is simply a two-dimensional linear
subspace—it can be parametrized by the mapping x : R? — R? given by the
formula

x(u,v) = uby + vba,

where by, bs is a basis for the plane. The plane that passes through the point
p and is parallel to the linearly independent vectors by, by is parametrized by
x : R? — R3, where

x(u,v) = p + ub;y + vba.
Problem 14.1. a. Show that {(1,0,1),(0,1,1)} is a basis for the linear sub-
space of R? defined as the set of solutions to the homogeneous linear equation
r+y—z=0.
b. Find a parametrization for the plane z +y — 2z = 7.

The sphere of radius a centered at the origin, =2 + 3% 4+ 22 = a2, can be

parametrized in terms of spherical coordinates:
T = 7 cosfsin ¢,
y = rsinfsin ¢,
Z = 1 COoS ¢.



In these spherical coordinates, the sphere is represented by the equation r = a,
so we can parametrize the sphere by x : D — R3, where

D={(0,0)cR*:0<60<2m,0<¢<n}

and
acos fsin ¢

x(0,¢) = | asinfsing
acos ¢

Actually, this parametrization does not cover the entire sphere. It misses the
“prime meridian,” a subset of zero area, which will not affect our subsequent
calculations of surface integrals.

Problem 14.2. Find a parametrization of the ellipsoid,

(B () +() -

where a, b, and c¢ are positive, by introducing the new variables

x Yy z
u=—v=>w=-.
a b c
so that the equation of the ellipsoid simplifies to u? 4 v2 4+ w? = 1, and then use
our previous parametrization of the sphere.

A surface obtained from a smooth curve in the right half of the (z, z)-plane by
rotating the curve about the z-axis is called a surface of revolution. Surfaces of
revolution can be conveniently parametrized by means of cylindrical coordinates.
For example, suppose that the curve in the (z,z)-plane is the catenary z =
cosh z. In terms of cylindrical coordinates

T =rcosb,
y =rsind,
z=z.

the surface revolution generated by the catenary is represented by the equation
r = cosh z. This surface is called the catenoid. We can parametrize the catenoid
by setting z = u and 0 = v.

Problem 14.3. a. Sketch the catenoid.

b. Find a parametrization x : D — R3 of the catenoid, where

D = {(u,v) €eR*:0<wv < 27}

Now we turn to the problem of calculating surface area. We start with the
observation that the area of the parallelogram spanned by two vectors v and w
is simply the length of their cross product,

Area = |v x w|.



Suppose now that x : D — R? is the parametrization of a surface S, and
that (ug,vg) € D. Let O denote the rectangular region in D with corners at
(ug,vo), (uo + du,vp), (ug,vo + dv), and (ug + du, vg + dv). The linearization of
x at (ug,vp) is the affine mapping

) )
L(x) = x(uo, vo) + £(u ) + a—);(v — ).

Under this affine mapping

0
(uo, vo) +— x(ug,v0), (uo+ du,vg) — x(ug,vo) + %du,
(11, vo-+) > X0, v0)+ X, (utg-+du, vo-+dv) s X (g, v0)+ > dut2Xd
— — — — —dv.
Up, Vo v X\Up, Vo v v, () U, Vo v X \Up, Vo ou U v v

The four image points are the corners of the parallelogram located at x(ug, vg)
and spanned by

X ox
a—u(uo, vo)du and %(uo, vp)dv,

a parallelogram which has area

@ax

ey X 5 dudv.

aa-|

Since the linearization closely approximates the parametrization x : D — R3
near (ug,vg), the area of x(0O) is closely approximated by

dA = %xa—x

9 < o dudv.

If we divide D up into many small rectangles like O and add up their con-
tributions to the area, we obtain the following formula for the surface area of a
surface S parametrized by x : D — R3:

Surface area of S = / /
D

For example suppose that we want to find the area of the sphere which is
defined by the equation 22 + y? + 22 = a%?. We can use the parametrization
x : D — R3, where

ox  ox
ou  Ov

D={0,9) cR*:0<0<2m,0< <7}

and
acos 0 sin ¢

x(0,¢) = | asinfsing
acos ¢

Problem 14.4. Find the surface area of the sphere of radius a.



Problem 14.5. Find the surface area of that part of the paraboloid z = 22 + 1?2
which lies inside the cylinder 22 + 3% = 1.

Problem 14.6. Find the surface area of that part of the cone x2 + y? = 22
which lies between the planes z = 0 and z = 2.

Problem 14.7. Find the surface area of that part of the catenoid z2 + 32 =
sinh? z which lies between the planes z = —1 and z = 1.

Problem 14.8. Let S be the torus defined by the equation

(Va2 +y2—2)2 +22 =1,
with the parametrization x : D — S, defined by

(2 + cosv) cosu
x(u,v) = | (2+cosv)sinu |,
sinv
where
D={(u,v) ER*: —r <u<m—m<v<r}
Find the surface area of S.
If x : D — R3 is the parametrization of a surface S and f(x,y,z2) is any

continuous function of three variables, the surface integral of f over S is given
by the formula

//sf(x’y’z)dA://Df(fv(u,v%y(u,u),z(u,v))‘g’; " %’;

In more advanced texts it is shown that the integral thus defined is independent
of parametrization.

Problem 14.9. If

dudv.

S = {(z,y,2) €R¥: 2? + > + 22 = a? 2 > 0}.

| | zaa

SUPPLEMENTARY MATERIAL: FLUX INTEGRALS

evaluate the surface integral

Suppose now that we have a continuous choice of unit-normal N to the surface
S. Such a continuous choice of unit-normal is called an orientation of S. If

F(r,y,2) = P(z,y,2)i+ Q(z,y, 2)j + R(x,y, 2)k

is a smooth vector field on R? the fluz of F through S is given by the surface

integral
[ [ ¥ N
S

4



Calculation of flux integrals is simpler than might be expected, because

9x o OX 1 hy Px Ox 0Ox
NdA = Quw = 0v |72 72 i
d % ” %‘ 7 X 50 dudv 7 X (%dUdU’

and hence

/ /SF'NdA: / /D F(a(u, v), y(u,v), 2(u,v)) - (g’; x gjj) dudv.

Problem 14.10. If S is the hemisphere 22 + 32 + 22 = a2,z > 0, and

F(x7y7 Z) = yi - .’Ifj + ZSkv

//SF-NdA.

A physical picture for the flux integral: Suppose that a fluid is flowing
throughout (z, y, z)-space with velocity V(z,y, z) and density p(z,y, z). In this
case, fluid flow is represented by the vector field

evaluate

F =)V,

AR M)

represents the rate at which the fluid is flowing accross S in the direction of IN.
To see this, note first that the rate at which fluid flows across a small piece
of S of surface area dA is

and the surface integral

(density)(normal component of velocity)dA = pV - NdA.

If we add up the contributions of all the small area elements, we obtain the
integral (1).



