
Math 5BI: Problem Set 6

Gradient dynamical systems

April 25, 2007

Recall that if f(x) = f(x1, x2, . . . , xn) is a smooth function of n variables, the
gradient of f is the vector field

∇f(x) = (∇f)(x1, x2, . . . , xn) =

 (∂f/∂x1)(x1, x2, . . . , xn)
· · ·

(∂f/∂xn)(x1, x2, . . . , xn)

 ,

a vector field which is perpendicular to the level sets of f . We say that a point
c = (c1, . . . , cn) is a critical point for f if ∇f(c) = 0. Critical points are
candidates for maxima and minima.

Problem 6.1. a. Find the critical points of the function f(x, y) = 3x2− 3y2−
2x3.

b. Find the critical points of the function f(x, y) = (1/2)y2 − cos x.

We want to investigate the behaviour of a function f(x1, . . . , xn) near a critical
point c = (c1, . . . , cn) and develop a “second derivative test” for local minima
and maxima. To do this, we consider the Hessian matrix of all second-order
partial derivatives at c:

A =


∂

∂x1

(
∂f
∂x1

)
(c) · · · ∂

∂xn

(
∂f
∂x1

)
(c)

· · · · · · · · ·
∂

∂x1

(
∂f

∂xn

)
(c) · · · ∂

∂xn

(
∂f

∂xn

)
(c)


Now it is a theorem that

∂

∂xi

(
∂f

∂xj

)
=

∂

∂xj

(
∂f

∂xi

)
.

Hence the Hessian matrix is always symmetric, A = AT .

Problem 6.2. a. Calculate the Hessian matrix of the function f(x, y) =
3x2 − 3y2 − 2x3 at the critical point (1, 0).

b. Calculate the Hessian matrix of the function f(x, y) = 3x2 − 3y2 − 2x3 at
the critical point (1, 0).
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c. Calculate the Hessian matrix of the function f(x, y) = (1/2)y2− cos x at the
critical point (0, 0).

d. Calculate the Hessian matrix of the function f(x, y) = (1/2)y2− cos x at the
critical point (π, 0).

Recall that the eigenvalues of a square matrix A are the solutions λ to the
equation

det(A− λI) = 0. (1)

Problem 6.3. a. Show that the eigenvalues of a 2× 2 symmetric matrix with
real entries are real.

b. a 2 × 2 symmetric matrix has two distinct eigenvalues λ1 and λ2 show that
the corresponding eigenspaces

Wλ1 = {x ∈ R2 : Ax = λ1x}, Wλ2 = {x ∈ R2 : Ax = λ2x}

are perpendicular to each other.

More generally, if A is an n× n symmetric matrix, it can be proven that all of
its eigenvalues are real and that eigenspaces for distinct eigenvalues are perpen-
dicular. In fact, it can be shown that there is a matrix B such that BT = B
and

BT AB =


λ1 0 · · · 0
0 λ2 · · · 0
· · · · · ·
0 0 · · · λn

 ,

where λ1, λ2, · · · , λn are the eigenvalues of A.

Definition. The symmetric matrix A is said to be

• positive definite if all of its eigenvalues are positive.

• negative definite if all of its eigenvalues are negative.

• nondegenerate if all of its eigenvalues are nonzero.

• nondegenerate of index k if it is nondegenerate and exactly k of its eigen-
values are negative.

The second derivative test. Suppose that f(x1, . . . , xn) has continuous
second partial derivatives and c is a critical point for f . If the Hessian of f at
c is

1. positive-definite, then c is a local minimum,

2. negative-definite, then c is a local maximum,

If the Hessian of f at c is nondegenerate of index k, we say that c is a “saddle
point” of index k.
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Problem 6.4. a. Which of the critical points of the function f(x, y) = 3x2 −
3y2 − 2x3 are local minima? local maxima? saddle points of index one?

b. Which of the critical points of the function f(x, y) = (1/2)y2−cos x are local
minima? local maxima? saddle points of index one?

c. Which of the critical points of the function f(x, y) = cos x− (1/2)y2 are local
minima? local maxima? saddle points of index one?

How do we see that the second derivative test works? If f(x) = f(x1, x2, . . . , xn),
we can regard the gradient of f as defining a system of differential equations

dx1
dt = ∂f

∂x1
(x,x2, . . . , xn)

· · · · · ·
dxn

dt = ∂f
∂xn

(x,x2, . . . , xn)
(2)

Such a system of differential equations is called a gradient dynamical system. It
can be written in vector form as

dx
dt

= ∇f(x).

A constant solution c = (c1, . . . , cn) to the gradient dynamical system (2)
is just a critical point for f . It is easy to visualize gradient dynamical systems
in two variables. One begins by plotting the level curves f(x1, x2) = c, thus
obtaining a topographic map of the surface z = f(x1, x2). The orbits of the
gradient dynamical system are then just the orbits of the gradient dynamical
system.

Problem 6.5. a. Sketch the topographic map of the function f(x, y) = x2+y2.

b. Sketch the topographic map of the function f(x, y) = x2 − y2.

c. Sketch the topographic map of the function f(x, y) = (x− 3)2 + (y − 1)2.

d. Use trigonometric identities to show that y2 = 4 cos2
(

1
2x

)
is a level set for

the function f(x, y) = (1/2)y2 − cos x.

e. Sketch the curves y2 = 4 cos2
(

1
2x

)
in the (x, y)-plane. These form part of

the topographic map for the function f(x, y) = (1/2)y2 − cos x.

f. Give a rough sketch of the topographic map of the function f(x, y) = (1/2)y2−
cos x.

One can think of the orbits of the gradient dynamical system

dx
dt

= ∇f(x)

as representing the paths of rain droplets flowing over the surface z = f(x1, x2),
except that they are traversed in the opposite direction. The mountain peaks,
mountain passes, and lake bottoms on the topographic map are included among
the critical points of f .

In more than two variables, the orbits of such systems are still orthogonal
to the level sets f(x1, . . . , xn) = c. One can have the same geometrical picture
in one’s mind.
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To investigate the behaviour of a function f(x1, . . . , xn) near a critical point
c = (c1, . . . , cn), we can consider the linearization of the gradient dynamical
system (2) at the equilibrium solution c:

 dx1/dt
· · ·

dxn/dt

 =


∂

∂x1

(
∂f
∂x1

)
(c) · · · ∂

∂xn

(
∂f
∂x1

)
(c)

· · · · · · · · ·
∂

∂x1

(
∂f

∂xn

)
(c) · · · ∂

∂xn

(
∂f

∂xn

)
(c)


 x1 − c1

· · ·
xn − cn

 .

If we let

aij =
∂

∂xj

(
∂f

∂xi

)
(c),

we can rewrite this system as dx1/dt
· · ·

dxn/dt

 =

 a11 . . . a1n

· · · · · · · · ·
an1 . . . ann

  x1 − c1

· · ·
xn − cn

 ,

or equivalently, as

dx
dt

= A(x− c) or
dy
dt

= Ay, where y = x− c,

and

A =

 a11 . . . a1n

· · · · · · · · ·
an1 . . . ann


is the Hessian matrix.

Problem 6.6. a. If f(x, y) = 3x2 − 3y2 − 2x3, what is the linearization of

dx
dt

= ∇f(x)

at the critical point (0, 0)?

b. What is the linearization at the critical point (1, 0)?

Problem 6.7. a. If f(x, y) = (1/2)y2 − cos x, what is the linearization of

dx
dt

= ∇f(x)

at the critical point (0, 0)?

b. What is the linearization at the critical point (π, 0)?

If c is a critical point for f(x1, . . . , xn) and

dx
dt

= A(x− c) is the linearization of
dx
dt

= ∇f(x)
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at c, the eigenvalues of A determine the qualitative behaviour of the solutions to
the linearization. If all of the eigenvalues of A are negative, then all the nonzero
solutions will tend towards c as t → ∞. We see that in this case c is a local
maximum. If all of the eigenvalues are positive, then all the nonzero solutions
will move away from c as t →∞ and c musts be a local minimum.

Problem 6.8. a. What are the critical points of the function f(x, y) = −x2 +
4xy − 3y2 + 6x + 10y?

b. Find the Hessian of f at each critical point.

c. Which of the critical points are local maxima? Which are local minima?

Problem 6.9. a. An important equation from physics is the pendulum equation

m

2
d2x

dt2
= −g

a
sinx.

Suppose that m = 1 and g/a = 1, so the equation becomes

1
2

d2x

dt2
= − sinx.

Introduce the variable y = dx/dt. Write out a corresponding first order system
of differential equations

dx

dt
= f(x, y),

dy

dt
= g(x, y), (3)

for suitable f and g.

b. Divide dx/dt by dy/dt to obtain an equation which does not involve dt. Solve
the resulting equation. Your solution should be of the form V (x, y) = c, where
V (x, y) = (1/2)y2 − cos x. Note that V (x, y) is constant along the solution
curves to (3).

c. Find the critical points of V .

d. Find the linearization of (3) at the critical point (0, 0).

e. Find the linearization of (3) at the critical point (π, 0).

f. Sketch the solution curves to the pendulum system (3).

h. Determine ∇V .

i. Sketch the solution curves to the gradient dynamical system

dx
dt

= ∇V (x, y).

These should be the orthogonal trajectories to the solutions to (3).
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