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Abstract

This article grew out of several talks that the author presented at
the Banach Institute and at the University of Bialystok in Poland during
November of 2001. It describes six problems from the geometry of sub-
manifolds. Some of the problems come from the theory of constant cur-
vature submanifolds in Euclidean space, as well as applications of Morse
theory of the height function to the problem of relating curvature and
topology of submanifolds in Euclidean space. Others come from infinite-
dimensional Morse theory of minimal surfaces in Riemannian manifolds.

1 Introduction.

At the beginning of the new millennium, it was fashionable to present lists of
open problems within several specialties of mathematics.

A kind invitation from Professor Aminov to give a talk at the Banach Insti-
tute in Poland on “open problems in the geometry of submanifolds” gave the
author an opportunity to reflect on problems which have motivated his own
research over the last several years. Some of these problems are likely to be
difficult, while others might yield to a simple technique or trick that has so far
proven to be elusive. I believe that all of them have the potential to develop
into dissertation topics for ambitious graduate students, if they are suitably
modified.

The problems I want to share with you fall into the loosely defined area
of geometry of submanifolds, more specifically the Riemannian geometry of
submanifolds of low codimension in Euclidean space, and the theory of two-
dimensional minimal surfaces in Riemannian manifolds. In the first area, we
emphasize problems which are generalizations from the classical geometry of
surfaces, problems which possess a certain compelling beauty. The theory of
constant curvature surfaces is a starting point, which is closely related to one
of the simplest of nonlinear hyperbolic partial differential equations, the sine-
Gordon equation.
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On the other hand, the theory of minimal surfaces in Riemannian manifolds
treats what is arguably the simplest global nonlinear elliptic partial differential
equation by techniques from topology and global analysis (in particular, Morse
theory). Our point of view is to regard minimal surfaces as conformal harmonic
maps, solutions to the nonlinear version of Laplace’s equation. The reader will
find that the tools needed to solve problems in the Morse theory of conformal
harmonic maps are quite similar to those used to understand other nonlin-
ear partial differential equations which arise in geometry, such as the modified
Cauchy-Riemann equations needed for Gromov’s theory of pseudoholomorphic
curves, or the celebrated Seiberg-Witten equations of four-dimensional geome-
try and topology. Technology developed in one context may have applications
in others.

The application of topological and geometric methods to the understanding
of nonlinear partial differential equations is a thread of investigation that should
continue long into the twenty-first century.

2 Submanifolds of Constant Curvature.

From the classical theory of surfaces of constant curvature in Euclidean space
come three classical theorems:

Hilbert’s Theorem. There is no isometric immersion from the complete hy-
perbolic plane H

2 into three-dimensional Euclidean space.

Liebmann’s Theorem. There is only one isometric immersion from the con-
stant curvature sphere S

2 into three-dimensional Euclidean space, up to rigid
motion.

Theorem. Any isometric immersion from Euclidean two-space E
2 into three-

dimensional Euclidean space is a cylinder.

The first two of these were proven at the turn of the century in a celebrated
paper of David Hilbert [12], the second being attributed by him to Liebmann.
Hilbert’s theorem was important for two reasons: First, the existence of such
an immersion would have provided a very visible proof that the axioms of hy-
perbolic geometry are at least as consistent as those of Euclidean three-space.
Indeed, it was later possible to prove that the hyperbolic plane admits an iso-
metric immersion into Euclidean N -space, when N is sufficiently large; this is a
consequence of Nash’s celebrated isometric imbedding theorem [11]. Second, it
was already known that there was a very large supply of noncomplete surfaces
of constant negative curvature, making Hilbert’s theorem one of the first global
theorems from the Riemannian geometry of surfaces.

The third theorem was actually proven somewhat later. Indeed, it is a special
case of a theorem of Hartman [13], which was the culmination of earlier efforts
of Pogorelov, Hartman, Nirenberg and O’Neill in the 50’s and 60’s:

Cylinder Theorem. A smooth isometric immersion f : E
n → E

n+k with k <

2



n can be factored (after a rigid motion) into a product of isometric immersions,

f = f0 × id : E
n−k × E

k −→ E
n−k × E

2k.

It was thus quite natural to explore whether the theorems of Hilbert and Lieb-
mann could also be extended to higher dimensions, just like the cylinder theo-
rem. Indeed, a study of the Gauss equation suggests that one might hope to get
a fairly complete understanding of the structure of n-dimensional submanifolds
of constant curvature in N -dimensional Euclidean space E

N when N ≤ 2n − 1.
Some first steps had already been carried out by Cartan [3] in his well-known

paper of 1919-20. Cartan’s work showed that there were no submanifolds of con-
stant negative curvature in E

2n−2. Moreover, he used his theory of differential
systems in involution [5] to show that local real analytic isometric imbeddings
from open subsets of H

n into E
2n−1 depend upon n(n− 1) functions of a single

variable. In particular, surfaces of constant negative curvature in E
3 depend

upon two functions of a single variable, in agreement with the classical and
beautiful local isometric imbedding theorem of Janet and Cartan [4].

In [18], the author showed that the existence of an isometric immersion f :
H

n → E
2n−1 implies the existence of global coordinates on H

n whose coordinate
vectors are unit-length asymptotic vectors, thereby extending the main step in
the standard proof of Hilbert’s theorem to n dimensions. This suggested:

Conjecure 1. The n-dimensional hyperbolic space H
n admits no isometric

immersion into E
2n−1.

Tenenblat and Terng, Xavier, and Aminov have worked on this and related
problems (see [31] and [33]), but the conjectured extension of Hilbert’s theorem
remains open.

Reviewing briefly the contents of [18], we suppose that Mn is a simply con-
nected Riemannian manifold of constant curvature −1, not necessarily complete,
and we are given an isometric immersion f : Mn → E

2n−1. If h : E
2n−1 → H

2n

is the standard isometric imbedding from E
2n−1 onto a horosphere, then the

composition g = h ◦ f is a “developable submanifold” of H
2n, providing a link

with the theory behind the cylinder theorem.
Suppose that TM and NM are the tangent and normal bundles of g. Then

the second fundamental form β : TM × TM → NM must satisfy the Gauss
equation

〈β(x, z), β(y, w)〉 − 〈β(x, w), β(y, z)〉 = 0,

for x, y, z, w ∈ TpM , 〈·, ·〉 denoting the metric on the normal bundle induced
by the Riemannian metric on H

2n. We say that the second fundamental form
β is flat when it satisfies this equation. (In the terminology of É. Cartan,
the components of β with respect to a normal frame are exteriorly orthogonal
symmetric bilinear forms.)

A unit-length vector field Z : M → TM is asymptotic for f if and only if
the second fundamental form α for f satisfies α(Z, Z) = 0, or equivalently the
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second fundamental form β of g satisfies

β(Z, Z) = the unit normal to h(E2n−1).

It follows from the calculations in [18] that there are exactly 2n unit-length
asymptotic vector fields whose pairwise Lie brackets are zero. Their integral
curves give the global asymptotic coordinate systems on M . Each unit-length
asymptotic vector field Z yields a vector bundle isomorphism from the tangent
bundle to the normal bundle,

ΦZ : TM → NM defined by ΦZ(x) = α(Z(p), x), for x ∈ TpM .

Moreover, the calculations in [18] show that the normal bundle is flat and the
unit normal to h(E2n−1) is parallel with respect to the normal connection.

If n = 2, we can thus construct a coordinate system (z1, z2) such that ∂/∂z1

and ∂/∂z2 are unit-length coordinate vectors. As pointed out already in the
early articles of Hilbert and Holmgren [14], the angle θ between the asymptotic
vectors satisfies the sine-Gordon equation

∂2θ

∂z1∂z2
= sin θ;

in fact Holmgren used this equation as starting point for his proof of Hilbert’s
theorem. In terms of principle coordinates (y1, y2), related to the asymptotic
corrdinates by

z1 = y1 + y2, z2 = y1 − y2,

the sine-Gordon equation takes the form

∂2θ

∂y2
1

− ∂2θ

∂y2
2

= sin θ.

The theory of the sine-Gordon equation has developed extensively due to its
relationship with the theory of solitons.

We can pull the flat connections on the normal bundle back via the ΦZ ’s
to get a rich collection of flat connections on the tangent bundle. It is tempt-
ing to speculate that some combination of these connections coupled with the
proof of the Allendoerfer-Weil-Chern generalization of the Gauss-Bonnet for-
mula might yield interesting relationships between volumes of coordinate poly-
hedra in asymptotic coordinates, and integrals of solid angles generated by
asymptotic vector fields, at least in the case where n is even. A rich supply
of integral formulae can be obtained efficiently by means of Quillen’s theory of
superconnections [25], as extended by Mathai and Quillen. In any case, the
structure of hyperbolic submanifolds remains an interesting topic for future re-
search.

As pointed out in [21], there is a beautiful duality between submanifolds of
constant negative and constant positive curvature. One manifestation of this is
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that simply connected nonumbilic surfaces of constant positive curvature are in
one-to-one correspondence with solutions of the partial differential equation

∂2θ

∂y2
1

+
∂2θ

∂y2
2

= − sinh θ

with θ > 0, where (y1, y2) are suitable principle coordinates. In fact, one can
prove Liebmann’s theorem by establishing this equation and showing that θ →
∞ as one approaches umbilic points. In the case of isometric immersions from
the sphere, if the open set of nonumbilics were nonempty, θ would have to assume
a minimum value, calculation the minimum principle for Laplace’s equation (see
[21], §2). Liebmann’s theorem then follows from the standard fact that if a
compact has only umbilic points, it must be a standard round sphere.

We can ask for a higher-dimensional version of Liebmann’s theorem for con-
stant positive curvature. Indeed, if M (2n−1,1) is the hyperboloid of one sheet in
the Minkowski space-time with coordinates (x1, . . . x2n, t) and metric

ds2 = dx2
1 + · · · + dx2

2n − dt2,

there is a totally umbilic isometric immersion h : E
2n−1 → M (2n−1,1). Note

that M (2n−1,1) has a metric of Lorentz signature. If we are given an isometric
immersion f : Mn → E

2n−1, where Mn is an n-dimensional manifold of constant
curvature one, the composition h ◦ f is once again a “developable submanifold”
of M (2n−1,1). The second fundamental form β of g once again satisfies the Gauss
equation

〈β(x, z), β(y, w)〉 − 〈β(x, w), β(y, z)〉 = 0, (1)

for x, y, z, w ∈ TpM , but this time the inner product 〈·, ·〉 on the normal bundle
has Lorentz signature.

An analysis of (1) is presented in [21] and it leads to a classification of the
possible algebraic structures for β. Points of Mn are divided into two types,
nonumbilics and weak umbilics. Theorem 3 of [21] states that in the compact
case, in which we have an isometric immersion f : S

n → E
2n−1, all points are

weak umbilics, which means that there is a unit-length section e2n−1 : S
n →

NS
n such that

〈α(x, y), e2n−1〉 = 〈x, y〉,
where α is the second fundamental form of f . The proof is a direct generalization
of the proof of the classical Liebmann theorem stated before. However, it is still
not known what existence of the section e2n−1 implies about the structure of
the isometric immersion.

Question 2. Can any smooth isometric immersion f : S
n → E

2n−1 be extended
to an isometric immersion f̃ : Dn+1 → E

2n−1, where

Dn+1 = {(x1, . . . , xn+1) ∈ E
n+1 : (x1)2 + · · · + (xn+1)2 ≤ 1}?

This would give a simple geometric extension of Liebmann’s theorem to n di-
mensions. The answer is known to be yes when n = 3 (see [22]). It seems
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very likely that the question has a positive answer in the case of real analytic
isometric immersions.

We conclude this section by pointing out that the theory of flat symmetric
bilinear forms, symmetric bilinear forms satisfying (1) has become a useful tool
in studying rigidity of submanifolds. It can be used to prove Allendoerfer’s
well-known rigidity theorem [6] and generalizations thereof [7].

3 Morse theory and Curvature of Submanifolds.

When we generalize from constant curvature submanifolds to submanifolds
whose curvature tensor satisfies inequalities, different techniques are needed.
Morse theory presents itself as a tempting tool to unravel the relationship be-
tween topology and curvature of submanifolds of low codimension in Euclidean
space.

Recall that if u is a unit-length vector in Euclidean space E
N and f : Mn →

E
N is an isometric immersion of a Riemannian manifold Mn, we can define a

function
hu : Mn → R by hu(p) = u · p,

where the dot denotes the usual Euclidean dot product. A point p ∈ Mn is a
critical point for hu if and only if u is perpendicular to Mn at p. If p is a critical
point, the Hessian of hu at p is the symmetric bilinear form

d2hu(p) : TpM × TpM −→ R given by d2hu(p)(x, y) = 〈α(x, y), u〉, (2)

for x, y ∈ TpM . Here α is the second fundamental form of the isometric immer-
sion f .

With these preparations out of the way, we can present a proof schema for
arguments which might relate curvature to topology: Suppose we have an iso-
metric immersions f : Mn → E

N . Then conditions on the Riemann-Christoffel
curvature tensor R of Mn or the curvature operator R can be expected to yield
restrictions on the second fundamental form α via the Gauss formula

〈R(x, y)w, z〉 = 〈R(x ∧ y), z ∧ w〉 = 〈α(x, z), α(y, w)〉 − 〈α(x, w), α(y, z)〉,

for x, y, z, w ∈ TpM . Conditions on the second fundamental form then yield
conditions on the index of the Hessian via (2). Finally, Morse theory provides
restrictions on the Betti numbers of M .

This proof scheme is used in [19] to show that if Mn is a compact conformally
flat submanifold of E

n+p, then Hk(M ;F ) = 0 for p < k < n − p, where F is
any field. The proof is based upon the theory of flat symmetric bilinear forms,
those which satisfy (1).

Here is another example: Suppose that Mn is a compact n-dimensional
manifold of E

2n−1 with negative sectional curvatures. It follows from Bezout’s
theorem of algebraic geometry that there is at least one complex vector x + iy
such that α(x + iy, x + iy) = 0. Writing out real and imaginary parts yields

α(x, x) = α(y, y) α(x, y) = 0,
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which implies by the Gauss equation

〈R(x, y)y, x〉 = 〈α(x, x), α(x, x)〉 > 0 unless α(x, x) = α(y, y) = 0.

Thus negative sectional curvature implies that there exists an asymptotic vector
z ∈ TpM such that α(z, z) = 0. Negative sectional curvature also implies that
x �→ α(z, x) is a vector space isomorphism. (In particular, there could not be
even a local isometric immersion of such a manifold into E

2n−2.)
Since M is compact, each height function hu must have a local minimum at

some point p ∈ M , and the Hessian d2hu(p) must be semidefinite. Let z ∈ TpM
be an asymptotic vector and choose x ∈ TpM so that α(z, x) = u. Then

d

dt
〈α(z + tx, z + tx), u〉

∣∣∣∣
t=0

= 2,

showing that 〈α(y, y), u〉 must assume both signs when y is close to z, contra-
dicting definiteness. Thus we obtain the theorem of Chern, Kuiper and Otsuki:
A compact manifold of negative curvature has no isometric immersion in E

2n−1.
(See [15], Vol II, p.29.)

A slightly more general scheme would be to average over the unit-length
vectors u. This idea was used in [21] to prove that if Mn is a compact manifold
of positive sectional curvatures which admits an isometric immersion into E

n+2

then Mn must be homeomorphic to a sphere, when n ≥ 3. More generally, we
could ask for a positive curvature analog of the Chern-Kuiper-Otsuki theorem:

Question 3. If Mn is an n-dimensional manifold of positive sectional curvatures
which admits an isometric immersion into E

2n−1, must Mn be homeomorphic
to a sphere?

In particular, we can ask whether such a manifold must be simply connected.
Reference [23] shows that the answer is yes if M has constant positive curvature,
but the proof is surprisingly subtle. It is based upon Chern-Simons invariants
and we do not see how to generalize it even to the case of Riemannian manifolds
with sectional curvatures K(σ) satisfying the inequality

δ ≤ K(σ) ≤ 1, for any δ with 0 < δ < 1,

without bounding the size of the fundamental group.

4 Morse theory of Minimal Surfaces in Rieman-
nian Manifolds.

Of course, one of the most impressive features of Morse theory is that it ap-
plies not only to functions on finite-dimensional manifolds, but also to certain
ordinary and partial differential equations. The simplest vector-valued linear
second-order ordinary differential equations asks for a function

γ : R −→ E
N such that γ′(t) = 0.
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The soluutions are just affinely parametrized straight lines, γ(t) = at+ b, where
a, b ∈ E

N .
The simplest way to make this equation nonlinear is to require that γ takes

its values within a smooth submanifold M of E
N ; thus we seek a function

γ : R −→ M such that (γ′(t))T = 0,

where (·)T denotes tangential component. Curves γ which solve this equation
are called geodesics. It is especially interesting to explore the existence of peri-
odic geodesics, or equivalently, smooth closed geodesics.

Suppose that M is compact and let

Λ1(M) = {γ : S1 → E
N : f is L2

1 and f(t) ∈ M , for all t ∈ S1}

and define the energy E : Λ1(M) → R by

E(f) =
1
2

∫
S1
〈γ′(t), γ′(t)〉dt.

The critical points of this function (in the sense of the calculus of variations)
are the smooth closed curves γ : S1 → M which satisfy the differential equation
(γ′(t))T = 0, that is, the smooth closed geodesics. This suggests that Morse
theory might be applied to the energy function E to prove existence of smooth
closed geodesics.

This viewpoint has turned out to be very successful. One can approximate
Λ1(M) by finite-dimensional spaces of broken geodesics, the approach used by
Morse, which is presented in Milnor’s classic text [17]. This can be used to
prove many classical results including Fet’s beautiful theorem that every com-
pact Riemannian manifold possesses at least one smooth closed geodesic. A
particularly beautiful presentation of many of these results, with an emphasis
on the importance of equivariant Morse theory can be found in [2].

It is undoubtedly more elegant to phrase the theory in terms of infinite-
dimensional manifolds modeled on Hilbert spaces, as developed by Palais and
Smale [24]. However, it seems that all known theorems in the theory of closed
geodesics can be proven within the context of finite-dimensional approximations.
It is only when one considers partial differential equations that the technology
of infinite-dimensional manifolds appears to be indispensable.

Indeed, the development of infinite-dimensional Morse theory [24] was par-
tially motivated by a desire to attack partial differential equations by techniques
from global analysis. In this regard, Smale wrote in 1977:

The most interesting case for more than one independent variable
is minimal surfaces. In the theory of Plateau’s problem, I had been
intrigued by a result of Morse-Tompkins and Schiffman in 1939.
Their theorem asserted that if a Jordan curve in R

3 spans two stable
minimal surfaces, then it spans a third of unstable type. This was
suggestive of a Morse theory for Plateau’s problem. In the sixties, I
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tried without success to find such a theory, or to imbed the Morse-
Tompkins-Schiffman result in a general conceptual setting. Tromba
and Uhlenbeck may now have succeeded in initiating a development
of calculus of variations in the large for more than one independent
variable ([30], pp. 692-693).

Here is how one might envision the development of a Morse theory for elliptic
partial differential equations in two independent variables: We begin by observ-
ing that the simplest vector-valued linear elliptic partial differential equation in
two variables is the vector-valued Laplace equation, which asks for a function

f : Σ −→ E
N such that

∂2f

∂x2
+

∂2f

∂y2
= 0.

Here Σ is a Riemann surface and (x, y) are arbitrary conformal coordinates on Σ,
the Laplace equation being invariant under change of conformal coordinates. Of
course Σ must be noncompact for this equation to have nonconstant solutions.

To make this equation nonlinear, we require that f takes its values within a
smooth compact submanifold M of E

N ; thus we seek a function

f : Σ −→ M such that
(

∂2f

∂x2
+

∂2f

∂y2

)T

= 0.

where (·)T denotes tangential component, as before. Maps f which satisfy this
equation are called harmonic maps. There is often a rich supply of harmonic
maps from compact Riemann surfaces into compact Riemannian manifolds.

It turns out that the image of harmonic maps of nonzero area are minimal
surfaces if and only if they are conformal. Let T be the Teichmüller space of
(marked) conformal structures on Σ. Then a conformal harmonic map is exactly
a critical point for the energy function

E : Map(Σ, M) × T → R. (3)

Here Map(Σ, M) denotes the space of smooth maps from Σ to M and E is
defined by

E(f) =
1
2

∫
Σ

[
∂f

∂x
· ∂f

∂x
+

∂f

∂y
· ∂f

∂y

]
dxdy =

1
2

∫
T 2

|df |2dA,

where (x, y) are local conformal coordinates on Σ (the integrand being inde-
pendent of the choice) and |df | and dA represent the norm of df and the area
element with repect to any metric on Σ within the conformal structure. By the
uniformization theorem, we can normalize the metric on Σ by assuming that
it has constant Gaussian curvature one in the case where Σ has genus zero, is
flat with total area one when Σ has genus one, and is of constant curvature −1,
when Σ has genus greater than one.

However, in order to apply critical point theory to the energy function,
we would need condition C of Palais and Smale to hold. This would require,
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however, that we complete the space Map(Σ, M) with respect to the L2
1-topology

and this topology is too weak for the theory of Hilbert manifolds. Therefore
Sacks and Uhlenbeck [26], [27] introduced a perturbed version of the energy, the
α-energy

Eα : Map(Σ, M) × T → R.

For ω ∈ T , we set Eα,ω(f) = Eα(f, ω). Then the α-energy is defined by

Eα,ω(f) =
1
2

∫ ∫
Σ

(1 + |df |2)αdA + (constant),

for α > 1, where the Riemannian metric appearing in the integrand is chosen to
be the normalized metric described before, and the constant is chosen so that
as α → 1, the α-energy approaches the usual energy. The key point is that
Eα,ω can be shown to satisfy condition C when Map(Σ, M) is completed with
respect to the Lp

1-topology where p = 2α, so one can apply critical point theory
on Banach manifolds.

In the case of genus zero, the Teichmüller space T degenerates to a point and
it was possible for Sacks and Uhlenbeck to provide a version of Fet’s theorem
for minimal two-spheres: any simply connected compact Riemannian manifold
contains at least one minimal two-sphere, which might be immersed and contain
branch points. Moreover, under suitable conditions on the fundamental group,
they proved existence of stable minimal surfaces of higher genus. On the other
hand, it was clear from their work that a full Morse theory does not hold for
the usual energy, because “bubbling” can occur as α approaches one.

It is natural to apply this theory to finding relationships between curvature
and topology. Indeed, work of Schoen and Yau [28] has shown that minimal
surfaces can be used with great effect to find relationships between scalar cur-
vature and topology. What about sectional curvature? We point out that it is
still unknown whether S2 × S2 admits a metric of positive sectional curvature.
In applying the second variation formula to minimal surfaces, however, it was
found that modifications of the notion of sectional curvature were more natural
in the context of minimal surfaces.

An integration by parts, which is carried out in [16], shows that the second
variation of energy at a harmonic map f extends to the symmetric complex
bilinear form

d2E(f) : Γ(TM ⊗ C) × Γ(TM ⊗ C) −→ C

which satisfies the formula

d2E(f)(W, W ) = 4
∫

T 2

[
‖∇∂/∂z̄W‖2 − 〈R

(
∂f

∂z
∧ W

)
,
∂f

∂z̄
∧ W 〉

]
dxdy,

where z = x + iy is a conformal coordinate on Σ and ∇ is the complex lin-
ear extension of the Levi-Civita connection to the complexified tangent bundle
TM ⊗C. This formula suggests that complex sectional curvature should play a
role in the theory of stability of minimal surfaces.
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Recall the definition. If z and w are linearly independent elements of TpM ⊗
C, the complex sectional curvature of the two-plane spanned by z and w is

〈R(z ∧ w), z̄ ∧ w̄〉
〈z ∧ w, z̄ ∧ w̄〉 ,

where the bar denotes complex conjugation. The complex two-plane is said to
be isotropic if

〈z, z〉 = 〈w, w〉 = 〈z, w〉 = 0.

Finally. the Riemannian manifold is said to have positive isotropic curvature if
the complex sectional curvature of each isotropic two-plane is positive.

In joint work with Micallef [16], the Sacks-Uhlenbeck theory of harmonic two-
spheres was applied to give a new proof of the sphere theorem from Riemannian
geometry: If M is a compact simply connected manifold with positive isotropic
curvature of dimension at least four, it must be homeomorphic to a sphere. In
particular, S2 × S2 does not admit a metric of positive isotropic curvature.

This suggested many new questions. For example, can one replace “homeo-
morphic” by “diffeomorphic”? Hamilton proved this when n = 4.

However, our focus here is on questions that might be resolved via minimal
surfaces. We recall a conjecture of Chern that the only abelian subgroups of
manifolds of positive real sectional curvature are cyclic. Shankar [29] found two
series of counterexamples to this conjecture with fundamental group containing
Z2 ⊕Z2, but the examples do not have positive isotropic curvatures. We might
therefore ask whether Chern’s conjecture holds for manifolds of positive isotropic
curvature:

Question 4. Is it true that the only abelian subgroups of the fundamental
group of a compact Riemannian manifold with positive isotropic curvature are
cyclic?

Note that S1×S3 has positive scalar curvature and is conformally flat and must
therefore have positive isotropic curvature. More generally, it is not hard to show
that the boundary of an ε-neighborhood of a graph in R

5 can be perturbed so
that its induced metric is conformally flat and of positive scalar curvature. Thus
the free product

Z ∗ Z ∗ · · · ∗ Z (n times)

occurs as the fundamental group of a compact Riemannian manifold with pos-
itive isotropic curvature. A remarkable recent result of Fraser [9] shows that a
compact Riemannian manifold with positive isotropic curvature cannot have a
fundamental group which contains the abelian group Z ⊕ Z.

As pointed out in [16], manifolds whose real sectional curvatures satisfy

1
4
κ < K(σ) ≤ κ, where κ : M → (0,∞)

have positive isotropic curvature. If κ is constant, this is exactly the condition
used by Berger and Klingenberg in their earlier version of the sphere theorem.
In odd dimensions, however, one might hope to weaken the inequality:
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Question 5. Does there exist a δ, 0 < δ < 1/4, such that an odd-dimensional
compact simply connected Riemannian manifold M whose real sectional curva-
tures satisfy

δκ < K(σ) ≤ κ, where κ : M → (0,∞)

is a smooth function, must be homeomorphic to S
n?

The answer is known to be yes if κ is constant by work of Abresch and Meyer
[1], but we suspect that an improvement might be possible by means of minimal
surfaces.

However, the key question in the Morse theory of minimal surfaces consists
of determining which cohomology classes in H∗(Map(Σ, M)) give rise to mini-
mal surfaces via the minimax construction. Note that the cohomology of this
space of mappings is quite rich; for example, in the case where Σ is a torus,
Map(Σ, M) is an iterated free loop space and its real cohomology could be
calculated via Sullivan’s method of minimal models just as in [32]. Since the
fibration Λ2(M) → Λ1(M) (the map being evaluation on a loop that is homo-
topically nontrivial in T 2) possesses a section, the Betti numbers Λ2(M) are at
least as large as those of Λ1(M). It has been conjectured that if M is rationally
hyperbolic, the sum of the first k Betti numbers of Λ1(M) grows exponentially
with k (see [8], page 519).

However, for some cohomology classes, the minimax construction degener-
ates as one moves to the boundary of Teichmüller space in (3). In other cases,
bubbling interferes with the limiting process. In yet other cases, we might expect
multiple covers or branched covers of other minimal surfaces. These difficulties
must be confronted in order to make progress on

Question 6. Let g be a fixed genus. Given any compact simply connected Rie-
mannian manifold Mn, must M possess infinitely many geometrically distinct
minimal surfaces of genus g?

Recall that Gromoll and Meyer used Morse theory to show that under weak
topological conditions a compact Riemannian manifold must have infinitely
many geometrically distinct smooth closed geodesics [10]. Vigué-Poirrier and
Sullivan [32] then showed that this topological condition was satisfied unless
the real cohomology of M was generated by a single element. Thus a first step
towards answering Question 6 would be to establish analogs of these results
within the Morse theory of minimal surfaces. One might expect the different
genera (g = 0, g = 1, g > 1) to require somewhat different techniques.
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[5] É. Cartan, Les systemes différentiels extérieurs et leurs applications
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[12] D. Hilbert, Über Flachen von konstanter Gausser Krümmung , Trans.
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