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Preface

This is a set of lecture notes for the course Math 240BC given during the
Winter and Spring of 2009. The notes evolved as the course progressed and are
still somewhat rough, but we hope they are helpful. Starred sections represent
digressions are less central to the core subject matter of the course and can be
omitted on a first reading.

Our goal was to present the key ideas of Riemannian geometry up to the
generalized Gauss-Bonnet Theorem. The first chapter provides the foundational
results for Riemannian geometry. The second chapter provides an introduction
to de Rham cohomology, which provides prehaps the simplest introduction to
the notion of homology and cohomology that is so pervasive in modern geometry
and topology. In the third chapter we provide some of the basic theorem relating
the curvature to the topology of a Riemannian manifold—the idea here is to
develop some intuition for curvature. Finally in the fourth chapter we describe
Cartan’s method of moving frames and focus on its application to one of the
key theorems in Riemannian geometry, the generalized Gauss-Bonnet Theorem.

The last chapter is more advanced in nature and not usually treated in the
first-year differential geometry course. It provides an introduction to the theory
of characteristic classes, explaining how these could be generated by looking for
extensions of the generalized Gauss-Bonnet Theorem, and describes applications
of characteristic classes to the Atiyah-Singer Index Theorem and to the existence
of exotic differentiable structures on seven-spheres.
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Chapter 1

Riemannian geometry

1.1 Review of tangent and cotangent spaces

We will assume some familiarity with the theory of smooth manifolds, as pre-
sented, for example, in the first four chapters of [5].

Suppose that M is a smooth manifold and p ∈ M , and that F(p) denotes
the space of pairs (U, f) where U is an open subset of M containing p and
f : U → R is a smooth function. If φ = (x1, . . . , xn) : U → Rn is a smooth
coordinate system on M with p ∈ U , and (U, f) ∈ F(p), we define

∂

∂xi

∣∣∣∣
p

(f) = Di(f ◦ φ−1)(φ(p)) ∈ R,

whereDi denotes differentiation with respect to the i-th component. We thereby
obtain an R-linear map

∂

∂xi

∣∣∣∣
p

: F(p) −→ R,

called a directional derivative operator , which satisfies the Leibniz rule,

∂

∂xi

∣∣∣∣
p

(fg) =

(
∂

∂xi

∣∣∣∣
p

(f)

)
g(p) + f(p)

(
∂

∂xi

∣∣∣∣
p

(g)

)
,

and in addition depends only on the “germ” of f at p,

f ≡ g on some neighborhood of p ⇒ ∂

∂xi

∣∣∣∣
p

(f) =
∂

∂xi

∣∣∣∣
p

(g).

The set of all linear combinations
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p
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of these basis vectors comprises the tangent space to M at p and is denoted by
TpM . Thus for any given smooth coordinate system (x1, . . . , xn) on M , we have
a corresponding basis (

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

)
for the tangent space TpM .

The notation we have adopted makes it easy to see how the components (ai)
of a tangent vector transform under change of coordinates. If ψ = (y1, . . . , yn)
is a second smooth coordinate system on M , the new basis vectors are related
to the old by the chain rule,

∂

∂yi

∣∣∣∣
p

=
n∑
j=1

∂xj

∂yi
(p)

∂

∂xj

∣∣∣∣
p

, where
∂xj

∂yi
(p) = Di(xj ◦ ψ−1)(ψ(p)).

The disjoint union of all of the tangent spaces forms the tangent bundle

TM =
⋃
{TpM : p ∈M},

which has a projection π : TM →M defined by π(TpM) = p. If φ = (x1, . . . , xn)
is a coordinate system on U ⊂ M , we can define a corresponding coordinate
system

φ̃ = (x1, . . . , xn, ẋ1, . . . , ẋn) on π−1(U) ⊂ TM

by letting

xi

 n∑
j=1

aj
∂

∂xj

∣∣∣∣
p

 = xi(p), ẋi

 n∑
j=1

aj
∂

∂xj

∣∣∣∣
p

 = ai. (1.1)

For the various choices of charts (U, φ), the corresponding charts (π−1(U), φ̃)
form an atlas making TM into a smooth manifold of dimension 2n, as you saw
in Math 240A.

The cotangent space to M at p is simply the dual space T ∗pM to TpM . Thus
an element of T ∗pM is simply a linear map

α : TpM −→ R.

Corresponding to the basis (
∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

)

of TpM is the dual basis

(
dx1|p, . . . , dxn|p

)
, defined by dxi|p

(
∂

∂xj

∣∣∣∣
p

)
= δij =

{
1, if i = j,
0, if i 6= j.
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The elements of T ∗pM , called cotangent vectors, are just the linear combinations
of these basis vectors

n∑
i=1

aidx
i|p

Once again, under change of coordinates the basis elements transform by the
chain rule,

dyi|p =
n∑
j=1

∂yi

∂xj
(p)dxj |p.

An important example of cotangent vector is the differential of a function at
a point. If p ∈ U and f : U → R is a smooth function, then the differential of
f at p is the element df |p ∈ T ∗pM defined by df |p(v) = v(f). If (x1, . . . , xn) is a
smooth coordinate system defined on U , then

df |p =
n∑
i=1

∂f

∂xi
(p)dxi|p.

Just as we did for tangent spaces, we can take the disjoint union of all of
the cotangent spaces forms the cotangent bundle

T ∗M =
⋃
{T ∗pM : p ∈M},

which has a projection π : TM →M defined by π(TpM) = p. If φ = (x1, . . . , xn)
is a coordinate system on U ⊂ M , we can define a corresponding coordinate
system

φ̃ = (x1, . . . , xn, p1, . . . , pn) on π−1(U) ⊂ TM
by letting

xi

 n∑
j=1

aj
∂

∂xj

∣∣∣∣
p

 = xi(p), pi

 n∑
j=1

ajdx
j |p

 = ai.

For the various choices of charts (U, φ), the corresponding charts (π−1(U), φ̃)
form an atlas making T ∗M into a smooth manifold of dimension 2n.

We can generalize this construction and consider tensor products of tangent
and cotangent spaces. For example, the tensor product of the cotangent space
with itself, denoted by ⊗2T ∗pM , is the linear space of bilinear maps

g : TpM × TpM −→ R.

If φ = (x1, . . . , xn) : U → Rn is a smooth coordinate system on M with p ∈ U ,
we can define

dxi|p ⊗ dxj |p : TpM × TpM −→ R

by dxi|p ⊗ dxj |p

(
∂

∂xk

∣∣∣∣
p

,
∂

∂xl

∣∣∣∣
p

)
= δikδ

j
l .
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Then {
dxi|p ⊗ dxj |p : 1 ≤ i ≤ n, 1 ≤ j ≤ n

}
is a basis for ⊗2T ∗pM , and a typical element of ⊗2T ∗pM can be written as

n∑
i,j=1

gij(p)dxi|p ⊗ dxj |p,

where the gij(p)’s are elements of R.

1.2 Riemannian metrics

Definition. Let M be a smooth manifold. A Riemannian metric on M is a
function which assigns to each p ∈ M a (positive-definite) inner product 〈·, ·〉p
on TpM which “varies smoothly” with p ∈ M . A Riemannian manifold is a
pair (M, 〈·, ·〉) consisting of a smooth manifold M together with a Riemannian
metric 〈·, ·〉 on M .

Of course, we have to explain what we mean by “vary smoothly.” This is most
easily done in terms of local coordinates. If φ = (x1, . . . , xn) : U → Rn is a
smooth coordinate system on M , then for each choice of p ∈ U , we can write

〈·, ·〉p =
n∑

i,j=1

gij(p)dxi|p ⊗ dxj |p.

We thus obtain functions gij : U → R. To say that 〈·, ·〉p varies smoothly with
p simply means that the functions gij are smooth. We call the functions gij the
components of the metric.

Note that the functions gij satisfy the symmetry condition gij = gji and the
condition that the matrix (gij) be positive definite. We will sometimes write

〈·, ·〉|U =
n∑

i,j=1

gijdx
i ⊗ dxj .

If ψ = (y1, . . . , yn) is a second smooth coordinate system on V ⊆M , with

〈·, ·〉|V =
n∑

i,j=1

hijdy
i ⊗ dyj ,

it follows from the chain rule that, on U ∩ V ,

gij =
n∑

k.l=1

hkl
∂yk

∂xi
∂yl

∂xj
.
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We will sometimes adopt the Einstein summation convention and leave out the
summation sign:

gij = hkl
∂yk

∂xi
∂yl

∂xj
.

We remark in passing that this is how a “covariant tensor field of rank two”
transforms under change of coordinates.

Using a Riemannian metric, one can “lower the index” of a tangent vector
at p, producing a corresponding cotangent vector and vice versa. Indeed, if
v ∈ TpM , we can construct a corresponding cotangent vector αv by the formla

αv(w) = 〈v, w〉p.

In terms of components,

if v =
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

, then αv =
n∑

i,j=1

gij(p)ajdxi|p.

Similarly, given a cotangent vector α ∈ T ∗pM we “raise the index” to obtain a
corresponding tangent vector vα ∈ TpM . In terms of components,

if α =
n∑
i=1

aidx
i|p, then vα =

n∑
i,j=1

gij(p)aj
∂

∂xi

∣∣∣∣
p

,

where (gij(p)) is the matrix inverse to (gij(p)). Thus a Riemannian metric
transforms the differential df |p of a function to a tangent vector

grad(f)(p) =
n∑

i,j=1

gij(p)
∂f

∂xj
(p)

∂

∂xi

∣∣∣∣
p

,

called the gradient of f at p. Needless to say, in elementary several variable
calculus this raising and lowering of indices is done all the time using the usual
Euclidean dot product as Riemannian metric.

Example 1. Indeed, the simplest example of a Riemannian manifold is n-
dimensional Euclidean space En, which is simply Rn together with its standard
rectangular cartesian coordinate system (x1, . . . , xn), and the Euclidean metric

〈·, ·〉E = dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn.

In this case, the components of the metric are simply

gij = δij =

{
1, if i = j,
0, if i 6= j.

We will often think of the Euclidean metric as being defined by the dot product,〈
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

,

n∑
j=1

bj
∂

∂xj

∣∣∣∣
p

〉
=

(
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

)
·

 n∑
j=1

bj
∂

∂xj

∣∣∣∣
p

 =
n∑
i=1

aibi.

6



Example 2. Suppose that M is an n-dimensional smooth manifold and that
F : M → RN is a smooth imbedding. We can give RN the Euclidean metric
defined in the preceding example. For each choice of p ∈M , we can then define
an inner product 〈·, ·〉p on TpM by

〈v, w〉p = F∗p(v) · F∗p(w), for v, w ∈ TpM .

Here F∗p is the differential of F at p defined in terms of a smooth coordinate
system φ = (x1, . . . , xn) by the explicit formula

F∗p

(
∂

∂xi

∣∣∣∣
p

)
= Di(F ◦ φ−1)(φ(p)) ∈ RN .

Clearly, 〈v, w〉p is symmetric, and it is positive definite because F is an immer-
sion. Moreover,

gij(p) =

〈
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

〉
= F∗p

(
∂

∂xi

∣∣∣∣
p

)
· F∗p

(
∂

∂xj

∣∣∣∣
p

)
= Di(F ◦ φ−1)(φ(p)) ·Dj(F ◦ φ−1)(φ(p)),

so gij(p) depends smoothly on p. Thus the imbedding F induces a Riemannian
metric 〈·, ·〉 on M which we call the induced metric, and we write

〈·, ·〉 = F ∗〈·, ·〉E .

It is an interesting fact that this construction includes all Riemannian manifolds.

Definition. Let (M, 〈·, ·〉) be a Riemannian manifold, and suppose that EN
denotes RN with the Euclidean metric. An imbedding F : M → EN is said to
be isometric if 〈·, ·〉 = F ∗〈·, ·〉E .

Nash’s Imbedding Theorem If (M, 〈·, ·〉) is any smooth Riemannian man-
ifold, there exists an isometric imbedding F : M → EN into some Euclidean
space.

This was regarded as a landmark theorem when it first appeared [28]. The
proof is difficult, involves subtle techniques from the theory of nonlinear partial
differential equations, and is beyond the scope of this course.

A special case of Example 2 consists of two-dimensional smooth manifolds
which are imbedded in E3. These are usually called smooth surfaces in E3

and are studied extensively in undergraduate courses in “curves and surfaces.”
This subject was extensively developed during the nineteenth century and was
summarized in 1887-96 in a monumental four-volume work, Leçons sur la théorie
générale des surfaces et les applications géométriques du calcul infinitésimal , by
Jean Gaston Darboux. Indeed, the theory of smooth surfaces in E3 still provides
much geometric intuition regarding Riemannian geometry of higher dimensions.
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What kind of geometry does a Riemannian metric provide a smooth manifold
M? Well, to begin with, we can use a Riemannian metric to define the lengths
of tangent vectors. If v ∈ TpM , we define the length of v by the formula

‖v‖ =
√
〈v, v〉p.

Second, we can use the Riemannian metric to define angles between vectors:
The angle θ between two nonzero vectors v, w ∈ TpM is the unique θ ∈ [0, π]
such that

〈v, w〉p = ‖v‖‖w‖ cos θ.

Third, one can use the Riemannian metric to define lengths of curves. Suppose
that γ : [a, b]→M is a smooth curve with velocity vector

γ′(t) =
n∑
i=1

dxi

dt

∂

∂xi

∣∣∣∣
γ(t)

∈ Tγ(t)M, for t ∈ [a, b].

Then the length of γ is given by the integral

L(γ) =
∫ b

a

√
〈γ′(t), γ′(t)〉γ(t)dt.

We can also write this in local coordinates as

L(γ) =
∫ b

a

√√√√ n∑
i,j=1

gij(γ(t))
dxi

dt

dxj

dt
dt.

Note that if F : M → EN is an isometric imbedding, then L(γ) = L(F ◦ γ).
Thus the lengths of a curve on a smooth surface in E3 is just the length of the
corresponding curve in E3. Since any Riemannian manifold can be isometrically
imbedded in some EN , one might be tempted to try to study the Riemannian
geometry of M via the Euclidean geometry of the ambient Euclidean space.
However, this is not necessarily an efficient approach, since sometimes the iso-
metric imbedding is quite difficult to construct.

Example 3. Suppose that H2 = {(x, y) ∈ R2 : y > 0}, with Riemannian metric

〈·, ·〉 =
1
y2

(dx⊗ dx+ dy ⊗ dy).

A celebrated theorem of David Hilbert states that (H2, 〈·, ·〉) has no isometric
imbedding in E3 and although isometric imbeddings in Euclidean spaces of
higher dimension can be constructed, none of them is easy to describe. The
Riemannian manifold (H2, 〈·, ·〉) is called the Poincaré upper half-plane, and
figures prominently in the theory of Riemann surfaces.
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1.3 Geodesics

Our first goal is to generalize concepts from Euclidean geometry to Riemannian
geometry. One of principal concepts in Euclidean geometry is the notion of
straight line. What is the analog of this concept in Riemannian geometry? One
candidate would be the curve between two points in a Riemannian manifold
which has shortest length (if such a curve exists).

1.3.1 Smooth paths

Suppose that p and q are points in the Riemannian manifold (M, 〈·, ·〉). If a and
b are real numbers with a < b, we let

Ω[a,b](M ; p, q) = { smooth paths γ : [a, b]→M : γ(a) = p, γ(b) = q}.

We can define two functions L, J : Ω[a,b](M ; p, q)→ R by

L(γ) =
∫ b

a

√
〈γ′(t), γ′(t)〉γ(t)dt, J(γ) =

1
2

∫ b

a

〈γ′(t), γ′(t)〉γ(t)dt.

Although our goal is to understand the length L, it is often convenient to study
this by means of the closely related action J . Notice that L is invariant under
reparametrization of γ, so once we find a single curve which minimizes L we have
an infinite-dimensional family. This, together with the fact that the formula for
L contains a troublesome radical in the integrand, make J far easier to work
with than L.

It is convenient to regard J as a smooth function on the “infinite-dimensional”
manifold Ω[a,b](M ; p, q). At first, we use the notion of infinite-dimensional man-
ifold somewhat informally, but later we will return to make the notion precise.

Proposition 1. [L(γ)]2 ≤ 2(b − a)J(γ). Moreover, equality holds if and only
if 〈γ′(t)γ′(t)〉 is constant if and only if γ has constant speed.

Proof: We use the Cauchy-Schwarz inequality:

L(γ)]2 =

[∫ b

a

√
〈γ′(t), γ′(t)〉dt

]2

≤

[∫ b

a

dt

][∫ b

a

〈γ′(t), γ′(t)〉dt

]
= 2(b− a)J(γ). (1.2)

Equality holds if and only if the functions 〈γ′(t), γ′(t)〉 and 1 are linearly de-
pendent, that is, if and only if γ has constant speed.

Proposition 2. Suppose that M has dimension at least two. An element
γ ∈ Ω[a,b](M ; p, q) minimizes J if and only if it minimizes L and has constant
speed.

9



Sketch of proof: One direction is easy. Suppose that γ has constant speed and
minimizes L. Then, if λ ∈ Ω[a,b](M ; p, q),

2(b− a)J(γ) = [L(γ)]2 ≤ [L(λ)]2 ≤ 2(b− a)J(λ),

and hence J(γ) ≤ J(λ).
We will only sketch the proof of the other direction for now; later a complete

proof will be available. Suppose that γ minimizes J , but does not minimize L,
so there is λ ∈ Ω such that L(λ) < L(γ). Approximate λ by an immersion λ1

such that L(λ1) < L(γ); this is possible by a special case of an approximation
theorem due to Whitney (see [15], page 27). Since the derivative λ′1 is never
zero, the function s(t) defined by

s(t) =
∫ t

a

|λ′1(t)|dt

is invertible and λ1 can be reparametrized by arc length. It follows that we can
find an element of λ2 : [a, b]→M which is a reparametrization of λ1 of constant
speed. But then

2(b− a)J(λ2) = [L(λ2)]2 = [L(λ1)]2 < [L(γ)]2 ≤ 2(b− a)J(γ),

a contradiction since γ was supposed to minimize J . Hence γ must in fact
minimize L. By a similar argument, one shows that if γ minimizes J , it must
have constant speed.

The preceding propositions motivate use of the function J : Ω[a,b](M ; p, q)→ R
instead of L. We want to develop enough of the calculus on the “infinite-
dimensional manifold” Ω[a,b](M ; p, q) to enable us to find the critical points of
J . To start with, we need the notion of a smooth curve

ᾱ : (−ε, ε)→ Ω[a,b](M ; p, q) such that ᾱ(0) = γ,

where γ is a given element of Ω.
We would like to define smooth charts on the path space Ω[a,b](M ; p, q), but

for now a simpler approach will suffice. We will say that a variation of γ is a
map

ᾱ : (−ε, ε)→ Ω[a,b](M ; p, q)

such that ᾱ(0) = γ and if

α : (−ε, ε)× [a, b]→M is defined by α(s, t) = ᾱ(s)(t),

then α is smooth.

Definition. An element γ ∈ Ω[a,b](M ; p, q) is a critical point for J if

d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

= 0, for every variation ᾱ of γ. (1.3)
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Definition. An element γ ∈ Ω[a,b](M ; p, q) is called a geodesic if it is a critical
point for J .

Thus the geodesics are the candidates for curves of shortest length from p to q,
that is candidates for the notion of straight line in Riemannian geometry.

We would like to be able to determine the geodesics in Riemannian manifolds.
It is easiest to do this for the case of a Riemannian manifold (M, 〈·, ·〉) that
has been provided with an isometric imbedding in EN . Thus we imagine that
M ⊆ EN and thus each tangent space TpM can be regarded as a linear subspace
of RN . Moreover,

〈v, w〉p = v · w, for v, w ∈ TpM ⊆ EN ,

where the dot on the right is the dot product in EN . If

ᾱ : (−ε, ε)→ Ω[a,b](M ; p, q)

is a variation of an element γ ∈ Ω[a,b](M ; p, q), with corresponding map

α : (−ε, ε)× [a, b]→M ⊆ EN ,

then

d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

=
d

ds

[
1
2

∫ b

a

∂α

∂t
(s, t) · ∂α

∂t
(s, t)dt

]∣∣∣∣∣
s=0

=
∫ b

a

∂2α

∂s∂t
(s, t) · ∂α

∂t
(s, t)dt

∣∣∣∣∣
s=0

=
∫ b

a

∂2α

∂s∂t
(0, t) · ∂α

∂t
(0, t)dt,

where α is regarded as an EN -valued function. If we integrate by parts, and use
the fact that

∂α

∂s
(0, b) = 0 =

∂α

∂s
(0, a),

we find that

d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

= −
∫ b

a

∂α

∂s
(0, t) · ∂

2α

∂t2
(0, t)dt = −

∫ b

a

V (t) · γ′′(t)dt, (1.4)

where V (t) = (∂α/∂s)(0, t) is called the variation field of the variation field ᾱ.
Note that V (t) can be an arbitrary smooth EN -valued function such that

V (a) = 0, V (b) = 0, V (t) ∈ Tγ(t)M, for all t ∈ [a, b],

that is, V can be an arbitrary element of the “tangent space”

TγΩ = { smooth maps V : [a, b]→ EN

such that V (a) = 0 = V (b), V (t) ∈ Tγ(t)M for t ∈ [a, b] }.
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We can define a linear map dJ(γ) : TγΩ→ R by

dJ(γ)(V ) = −
∫ b

a

〈V (t), γ′′(t)〉 dt =
d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

,

for any variation ᾱ with variation field V . We think of dJ(γ) as the differential
of J at γ.

If dJ(γ)(V ) = 0 for all V ∈ TγΩ, then γ′′(t) must be perpendicular to Tγ(t)M
for all t ∈ [a, b]. In other words, γ : [a, b]→M is a geodesic if and only if

(γ′′(t))> = 0, for all t ∈ [a, b], (1.5)

where (γ′′(t))> denotes the orthogonal projection of γ′′(t) into Tγ(t)M . To see
this rigorously, we choose a smooth function η : [a, b]→ R such that

η(a) = 0 = η(b), η > 0 on (a, b),

and set
V (t) = η(t) (γ′′(t))> ,

which is clearly an element of TγΩ. Then dJ(γ)(V ) = 0 implies that∫ b

a

η(t) (γ′′(t))> · γ′′(t)dt =
∫ b

a

η(t)
∥∥∥(γ′′(t))>

∥∥∥2

dt = 0.

Since the integrand is nonnegative it must vanish identically, and (1.5) must
indeed hold.

We have thus obtained a simple equation (1.5) which characterizes geodesics
in a submanifold M of EN . The geodesic equation is a generalization of the
simplest second-order linear ordinary differential equation, the equation of a
particle moving with zero acceleration in Euclidean space, which asks for a
vector-valued function

γ : (a, b) −→ EN such that γ′′(t) = 0.

Its solutions are the constant speed straight lines. The simplest way to make
this differential equation nonlinear is to consider an imbedded submanifold M
of EN with the induced Riemannian metric, and ask for a function

γ : (a, b) −→M ⊂ EN such that (γ′′(t))> = 0.

In simple terms, we are asking for the curves which are as straight as possible
subject to the constraint that they lie within M .

Example. Suppose that

M = Sn = {(x1, . . . , xn+1) ∈ En+1 : (x1)2 + · · ·+ (xn+1)2 = 1}.

Let e1 and e2 be two unit-length vectors in Sn which are perpendicular to each
other and define the unit-speed great circle γ : [a, b]→ Sn by

γ(t) = cos te1 + sin te2.
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Then a direct calculation shows that

γ′′(t) = − cos te1 − sin te2 = −γ(t).

Hence (γ′′(t))> = 0 and γ is a geodesic on Sn. We will see later that all geodesics
on Sn are obtained in this manner.

1.3.2 Piecewise smooth paths

Instead of smooth paths, we could have followed Milnor [25], §11, and considered
the space of piecewise smooth maps,

Ω̂[a,b](M ; p, q) = { piecewise smooth paths γ : [a, b]→M : γ(a) = p, γ(b) = q}.

By piecewise smooth, we mean γ is continuous and there exist t0 < t1 < · · · < tN
with t0 = a and tN = b such that γ|[ti−1, ti] is smooth for 1 ≤ i ≤ N . In this a
variation of γ is a map

ᾱ : (−ε, ε)→ Ω̂[a,b](M ; p, q)

such that ᾱ(0) = γ and if

α : (−ε, ε)× [a, b]→M is defined by α(s, t) = ᾱ(s)(t),

then there exist t0 < t1 < · · · < tN with t0 = a and tN = b such that

α|(−ε, ε)× [ti−1, ti]

is smooth for 1 ≤ i ≤ N . As before, we find that

d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

=
∫ b

a

∂2α

∂s∂t
(0, t) · ∂α

∂t
(0, t)dt,

but now the integration by parts is more complicated because γ′(t) is not con-
tinuous at t1, . . . , tN−1. If we let

γ′(ti−) = lim
t→ti−

γ′(t), γ′(ti+) = lim
t→ti+

γ′(t),

a short calculation shows that (1.4) becomes

d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

= −
∫ b

a

V (t) · γ′′(t)dt−
N−1∑
i=1

V (ti) · (γ′(ti+)− γ′(ti−)),

whenever ᾱ is any variation of γ with variation field V . If

dJ(γ)(V ) =
d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

= 0
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for all variation fields V in the tangent space

TγΩ̂ = { piecewise smooth maps V : [a, b]→ EN

such that V (a) = 0 = V (b), V (t) ∈ Tγ(t)M for t ∈ [a, b] },

it follows that γ′(ti+) = γ′(ti−) for every i and (γ′′(t))> = 0. Thus critical
points on the more general space of piecewise smooth paths are also smooth
geodesics.

Exercise I. Suppose that M2 is the right circular cylinder defined by the equa-
tion x2 + y2 = 1 in E3. Show that for each choice of real numbers a and b the
curve

γ : R→M2 ⊆ E3 defined by γa,b(t) =

cos(at)
sin(at)
bt


is a geodesic.

1.4 Hamilton’s principle

Of course, we would like a formula for geodesics that does not depend upon
the existence of an isometric imbedding. To derive such a formula, it is conve-
nient to regard the action J in a more general context, namely that of classical
mechanics.

Definition. A simple mechanical system is a triple (M, 〈·, ·〉, φ), where (M, 〈·, ·〉)
is a Riemannian manifold and φ : M → R is a smooth function.

We call M the configuration space of the simple mechanical system. If γ :
[a, b]→M represents the motion of the system,

1
2
〈γ′(t), γ′(t)〉 = (kinetic energy at time t),

φ(γ(t)) = (potential energy at time t).

Example 1. If a planet of mass m is moving around a star of mass M with
M >> m, the star assumed to be stationary, we might take

M = R3 − {(0, 0, 0)},
〈·, ·〉 = m(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz),

φ(x, y, z) =
−GMm√
x2 + y2 + z2

.

Here G is the gravitational constant. Sir Isaac Newton derived Kepler’s three
laws from this simple mechanical system.
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Example 2. To construct an interesting example in which the configuration
space M is not Euclidean space, we take M = SO(3), the group of real orthogo-
nal 3×3 matrices of determinant one, regarded as the space of “configurations”
of a rigid body B in R3 which has its center of mass located at the origin. We
want to describe the motion of the rigid body as a path γ : [a, b]→M . If p is a
point in the rigid body with coordinates (x1, x2, x3) at time t = 0, we suppose
that the coordinates of this point at time t will be

γ(t)

x1

x2

x3

 , where γ(t) =

a11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)
a31(t) a32(t) a33(t)

 ∈ SO(3),

and γ(0) = I, the identity matrix. Then the velocity v(t) of the particle p at
time t will be

v(t) = γ′(t)

x1

x2

x3

 =

∑3
i=1 a

′
1i(t)x

i∑3
i=1 a

′
2i(t)x

i∑3
i=1 a

′
3i(t)x

i

 ,

and hence

v(t) · v(t) =
3∑

i,j,k=1

a′ki(t)a
′
kj(t)x

ixj .

Suppose now that ρ(x1, x2, x3) is the density of matter at (x1, x2, x3) within the
rigid body. Then the total kinetic energy within the rigid body at time t will
be given by the expression

K =
1
2

∑
i,j,k

(∫
B

ρ(x1, x2, x3)xixjdx1dx2dx3

)
a′ki(t)a

′
kj(t).

We can rewrite this as

K =
1
2

∑
i,j,k

cija
′
ki(t)a

′
kj(t), where cij =

∫
B

ρ(x1, x2, x3)xixjdx1dx2dx3,

and define a Riemannian metric 〈·, ·〉 on M = SO(3) by

〈γ′(t), γ′(t)〉 =
∑
i,j,k

cija
′
ki(t)a

′
kj(t).

Then once again (1/2)〈γ′(t), γ′(t)〉 represents the kinetic energy, this time of the
rigid body B when its motion is represented by the curve γ : (a, b) → M . We
remark that the constants

Iij = Trace(cij)δij − cij

are called the moments of inertia of the rigid body.
A smooth function φ : SO(3) → R can represent the potential energy for

the rigid body. In classical mechanics books, the motion of a top is described
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by means of a simple mechanical system which has configuration space SO(3)
with a suitable left-invariant metric and potential φ. Applied to the rotating
earth, the same equations explain the precession of the equinoxes, according to
which the axis of the earth traverses a circle in the celestial sphere once every
26,000 years.

In Lagrangian mechanics, the equations of motion for a simple mechanical sys-
tem are derived from a variational principle. The key step is to define the
Lagrangian to be the kinetic energy minus the potential energy. More pre-
cisely, for a simple mechanical system (M, 〈·, ·〉, φ), we define the Lagrangian
L : TM → R by

L(v) =
1
2
〈v, v〉 − φ(π(v)),

where π : TM → M is the usual projection. We can then define the action
J : Ω[a,b](M ; p, q)→ R by

J(γ) =
∫ b

a

L(γ′(t))dt.

As before, we say that γ ∈ Ω is a critical point for J if (1.3) holds. We can than
formulate Lagrangian classical mechanics as follows:

Hamilton’s principle. If γ represents the motion of a simple mechanical
system, then γ is a critical point for J .

Thus the problem of finding curves from p to q of shortest length is put into a
somewhat broader context.

It can be shown that if γ ∈ Ω[a,b](M ; p, q) is a critical point for J and
[c, d] ⊆ [a, b], then the restriction of γ to [c, d] is also a critical point for J ,
this time on the space Ω[c,d](M ; r, s), where r = γ(c) and s = γ(d). Thus we
can assume that γ([a, b]) ⊆ U , where (U, x1, . . . , xn) is a coordinate system on
M , and we can express L in terms of the coordinates (x1, . . . , xn, ẋ1, . . . , ẋn) on
π−1(U) described by (1.1). If

γ(t) = (x1(t), . . . , xn(t)), and γ′(t) = (x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t)),

then
L(γ′(t)) = L(x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t)).

Theorem 1. A point γ ∈ Ω[a,b](M ; p, q) is a critical point for the action J ⇔
its coordinate functions satisfy the Euler-Lagrange equations

∂L
∂xi
− d

dt

(
∂L
∂ẋi

)
= 0. (1.6)

Proof: We prove only the implication⇒, and leave the other half (which is quite
a bit easier) as an exercise. We make the assumption that γ([a, b]) ⊆ U , where
U is the domain of local coordinates as described above.
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For 1 ≤ i ≤ n, let ψi : [a, b] → R be a smooth function such that ψi(a) =
0 = ψi(b), and define a variation

α : (−ε, ε)× [a, b]→ U by α(s, t) = (x1(t) + sψ1(t), . . . , xn(t) + sψn(t)).

Let ψ̇i(t) = (d/dt)(ψi)(t). Then

J(ᾱ(s)) =
∫ b

a

L(· · · , xi(t) + sψi(t), . . . , ẋi(t) + sψ̇i(t), . . .)dt,

so it follows from the chain rule that

d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

=
∫ b

a

n∑
i=1

[
∂L
∂xi

(xi(t), ẋi(t))ψi(t) +
∂L
∂ẋi

(xi(t), ẋi(t))ψ̇i(t)
]
dt.

Since ψi(a) = 0 = ψi(b),

0 =
∫ b

a

n∑
i=1

d

dt

(
∂L
∂ẋi

ψi
)
dt =

∫ b

a

n∑
i=1

d

dt

(
∂L
∂ẋi

)
ψidt+

∫ b

a

n∑
i=1

∂L
∂ẋi

ψ̇idt,

and hence

d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

=
∫ b

a

n∑
i=1

[
∂L
∂xi

ψi − d

dt

(
∂L
∂ẋi

)
ψi
]
dt.

Thus if γ is a critical point for J , we must have

0 =
∫ b

a

n∑
i=1

[
∂L
∂xi
− d

dt

(
∂L
∂ẋi

)]
ψidt,

for every choice of smooth functions ψ(t). In particular, if η : [a, b] → R is a
smooth function such that

η(a) = 0 = η(b), η > 0 on (a, b),

and we set

ψi(t) = η(t)
[
∂L
∂xi

(xi(t), ẋi(t))− d

dt

(
∂L
∂ẋi

(xi(t), ẋi(t))
)]

,

then ∫ b

a

η(t)
[
∂L
∂xi
− d

dt

(
∂L
∂ẋi

)]2

dt = 0.

Since the integrand is nonnegative, it must vanish identically and hence (1.6)
must hold.

For a simple mechanical system, the Euler-Lagrange equations yield a derivation
of Newton’s second law of motion. Indeed, if

〈·, ·〉 =
n∑

i,j=1

gijdx
idxj ,
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then in the standard coordinates (x1, . . . , xn, ẋ1, . . . , ẋn),

L(γ′(t)) =
1
2

n∑
i,j=1

gij(x1, . . . , xn)ẋiẋj − φ(x1, . . . xn).

Hence
∂L
∂xi

=
1
2

n∑
j,k=1

∂gjk
∂xi

ẋj ẋk − ∂φ

∂xi
,

∂L
∂ẋi

=
n∑
j=1

gij ẋ
j ,

d

dt

(
∂L
∂ẋi

)
=

n∑
j,k=1

∂gij
∂xk

ẋj ẋk +
n∑
j=1

gij ẍ
j ,

where ẍj = d2xj/dt2. Thus the Euler-Lagrange equations become

n∑
j=1

gij ẍ
j +

n∑
j,k=1

∂gij
∂xk

ẋj ẋk =
1
2

n∑
j,k=1

∂gjk
∂xi

ẋj ẋk − ∂φ

∂xi

or
n∑
j=1

gij ẍ
j +

1
2

n∑
j,k=1

(
∂gij
∂xk

+
∂gik
∂xj

− ∂gjk
∂xi

)
ẋj ẋk = − ∂φ

∂xi
.

We multiply through by the matrix (gij) which is inverse to (gij) to obtain

ẍl +
n∑

j,k=1

Γljkẋ
j ẋk = −

n∑
i=1

gli
∂φ

∂xi
, (1.7)

where

Γlij =
n∑
i=1

gli
(
∂gij
∂xk

+
∂gik
∂xj

− ∂gjk
∂xi

)
. (1.8)

The expressions Γlij are called the Christoffel symbols. Note that if (x1, . . . , xn)
are rectangular cartesian coordinates in Euclidean space, the Christoffel symbols
vanish.

We can interpret the two sides of (1.7) as follows:

ẍl +
n∑

j,k=1

Γljkẋ
j ẋk = (acceleration)l,

−
n∑
i=1

gli
∂φ

∂xi
= (force per unit mass)l.

Hence equation (1.7) is just the statement of Newton’s second law, force equals
mass times acceleration, for simple mechanical systems.

In the case where φ = 0, we obtain the differential equations for geodesics,

ẍi +
n∑

j,k=1

Γijkẋ
j ẋk = 0, (1.9)
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where the Γijk’s are the Christoffel symbols.

Example. In the case of Euclidean space En with the standard Euclidean
metric, gij = δij , the Christoffel symbols vanish and the equations for geodesics
become

d2xi

dt2
= 0.

The solutions are
xi = ait+ bi,

the straight lines parametrized with constant speed.

Note that the Euler-Lagrange equations can be written as follows:{
dxl

dt = ẋl,
dẋl

dt = −
∑n
j,k=1 Γljkẋ

j ẋk −
∑n
i=1 g

li ∂φ
∂xi .

(1.10)

This is a first-order system in canonical form, and hence it follows from the
fundamental existence and uniqueness theorem from the theory of ordinary dif-
ferential equations ([5], Chapter IV, §4) that given an element v ∈ TpM , there
is a unique solution to this system, defined for t ∈ (−ε, ε) for some ε > 0, which
satisfies the initial conditions

xi(0) = xi(p), ẋi(0) = ẋi(v).

In the special case where φ = 0, we can restate this as:

Theorem 2. Given p ∈ M and v ∈ TpM , there is a unique geodesic γ :
(−ε, ε)→M for some ε > 0 such that γ(0) = p and γ′(0) = v.

Exercise II. Consider the upper half-plane H2 = {(x, y) ∈ R2 : y > 0}, with
Riemannian metric

〈·, ·〉 =
1
y2

(dx⊗ dx+ dy ⊗ dy),

the so-called Poincaré upper half plane.

a. Calculate the Christoffel symbols Γkij .

b. Write down the equations for the geodesics, obtaining two equations

d2x

dt2
= · · · , d2y

dt2
= · · · .

c. Assume that y = y(x) and eliminate t from these two equations by using the
relation

d2y

dt2
=

d

dt

(
dy

dx

dx

dt

)
=
d2y

dx2

(
dx

dt

)2

+
dy

dx

d2x

dt2
.

Solve the resulting differential equation to determine the paths traced by the
geodesics in the Poincaré upper half plane.
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1.5 The Levi-Civita connection

In modern differential geometry, the Christoffel symbols Γkij are regarded as the
components of a connection. We now describe how that goes.

You may recall from Math 240A that a smooth vector field on the manifold
M is a smooth map

X : M → TM such that π ◦X = idM ,

where π : TM →M is the usual projection, or equivalently a smooth map

X : M → TM such that X(p) ∈ TpM.

The restriction of a vector field to the domain U of a smooth coordinate system
(x1, . . . , xn) can be written as

X|U =
n∑
i=1

f i
∂

∂xi
, where f i : U → R.

If we evaluate at a given point p ∈ U this specializes to

X(p) =
n∑
i=1

f i(p)
∂

∂xi

∣∣∣∣
p

.

A vector field X can be regarded as a first-order differential operator. Thus, if
g : M → R is a smooth function, we can operate on g by X, thereby obtaining
a new smooth function Xg : M → R by (Xg)(p) = X(p)(g).

We let X (M) denote the space of all smooth vector fields on M . It can
be regarded as a real vector space or as an F(M)-module, where F(M) is
the space of all smooth real-valued functions on M , where the multiplication
F(M)×X (M)→ X (M) is defined by (fX)(p) = f(p)X(p).

Definition. A connection on the tangent bundle TM is an operator

∇ : X (M)×X (M) −→ X (M)

that satisfies the following axioms (where we write ∇XY for ∇(X,Y ):

∇fX+gY Z = f∇XZ + g∇Y Z, (1.11)

∇Z(fX + gY ) = (Zf)X + f∇ZX + (Zg)Y + g∇ZY, (1.12)

for f, g ∈ F(M) and X,Y, Z ∈ X (M).

Note that (4.19) is the usual “Leibniz rule” for differentiation. We often call
∇XY the covariant derivative of Y in the direction of X.

Lemma 1. Any connection ∇ is local; that is, if U is an open subset of M ,

X|U ≡ 0 ⇒ (∇XY )|U ≡ 0 and (∇YX)|U ≡ 0,

20



for any Y ∈ X (M).

Proof: Let p be a point of U and choose a smooth function f : M → R such
that f ≡ 0 on a neighborhood of p and f ≡ 1 outside U . Then

X|U ≡ 0⇒ fX ≡ X.

Hence

(∇XY )(p) = ∇fXY (p) = f(p)(∇XY )(p) = 0,
(∇YX)(p) = ∇Y (fX)(p) = f(p)(∇YX)(p) + (Y f)(p)X(p) = 0.

Since p was an arbitrary point of U , we conclude that (∇XY )|U ≡ 0 and
(∇YX)|U ≡ 0.

This lemma implies that if U is an arbitrary open subset of M a connection ∇
on TM will restrict to a unique well-defined connection ∇ on TU .

Thus we can restrict to the domain U of a local coordinate system (x1, . . . , xn)
and define the components Γkij : U → R of the connection by

∇∂/∂xi
∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
.

Then if X and Y are smooth vector fields on U , say

X =
n∑
i=1

f i
∂

∂xi
, Y =

n∑
j=1

gj
∂

∂xj
,

we can use the connection axioms and the components of the connection to
calculate ∇XY :

∇XY =
n∑
i=1

 n∑
j=1

f j
∂gi

∂xj
+

n∑
j,k=1

Γijkf
jgk

 ∂

∂xi
. (1.13)

Lemma 2. (∇XY )(p) depends only on X(p) and on the values of Y along some
curve tangent to X(p).

Proof: This follows immediately from (1.13).

Because of the previous lemma, we can ∇vX ∈ TpM , whenever v ∈ TpM and
X is a vector field defined along some curve tangent to v at p, by setting

∇vX = (∇Ṽ X̃)(p),

for any choice of extensions Ṽ of v and X̃ of X. In particular, if γ : [a, b] →
M is a smooth curve, we can define the vector field ∇γ′γ′ along γ. Recall
that we define the Lie bracket of two vector fields X and Y by [X,Y ](f) =
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X(Y (f))− Y (X(f)). If X and Y are smooth vector fields on the domain U of
local corrdinates (x1, . . . , xn), say

X =
n∑
i=1

f i
∂

∂xi
, Y =

n∑
j=1

gj
∂

∂xj
,

then

[X,Y ] =
n∑

i,j=1

f i
∂gj

∂xi
∂

∂xj
−

n∑
i,j=1

gj
∂f i

∂xj
∂

∂xi
.

Fundamental Theorem of Riemannian Geometry. If (M, 〈·, ·〉) is a Rie-
mannian manifold, there is a unique connection on TM such that

1. ∇ is symmetric, that is, ∇XY −∇YX = [X,Y ], for X,Y ∈ X (M),

2. ∇ is metric, that is, X〈Y,Z〉 = 〈∇XY,Z〉+〈Y,∇XZ〉, for X,Y, Z ∈ X (M).

This connection is called the Levi-Civita connection of the Riemannian manifold
(M, 〈·, ·〉).

To prove the theorem we express the two conditions in terms of local coordinates
(x1, . . . , xn) defined on an open subset U of M . In terms of the components of
∇, defined by the formula

∇∂/∂xi
∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
, (1.14)

the first condition becomes

Γkij = Γkji, since
[
∂

∂xi
,
∂

∂xj

]
= 0.

Thus the Γkij ’s are symmetric in the lower pair of indices. If we write

〈·, ·〉 =
n∑

i,j=1

gijdx
i ⊗ dxj ,

then the second condition yields

∂gij
∂xk

=
∂

∂xk

〈
∂

∂xi
,
∂

∂xj

〉
=
〈
∇∂/∂xk

∂

∂xi
,
∂

∂xj

〉
+
〈

∂

∂xi
,∇∂/∂xk

∂

∂xj

〉
=

〈
n∑
l=1

Γlki
∂

∂xl
,
∂

∂xj

〉
+

〈
∂

∂xi
,

n∑
l=1

Γlkj
∂

∂xl

〉
=

n∑
l=1

gljΓlki +
n∑
l=1

gilΓlkj .

In fact, the second condition is equivalent to

∂gij
∂xk

=
n∑
l=1

gljΓlki +
n∑
l=1

gilΓlkj . (1.15)
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We can permute the indices in (1.15), obtaining

∂gjk
∂xi

=
n∑
l=1

glkΓlij +
n∑
l=1

gjlΓlik. (1.16)

and
∂gki
∂xj

=
n∑
l=1

gliΓljk +
n∑
l=1

gklΓlji. (1.17)

Subtracting (1.15) from the sum of (1.16) and (1.17), and using the symmetry
of Γlij in the lower indices, yields

∂gjk
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

= 2
n∑
l=1

glkΓlij .

Thus if we let (gij) denote the matrix inverse to gij), we find that

Γlij =
1
2

n∑
i=1

gli
(
∂gij
∂xk

+
∂gik
∂xj

− ∂gjk
∂xi

)
, (1.18)

which is exactly the formula (1.8) we obtained before by means of Hamilton’s
principle.

This proves uniqueness of the connection which is both symmetric and met-
ric. For existence, we define the connection locally by (1.14), where the Γlij ’s are
defined by (1.18) and check that the resulting connection is both symmetric and
metric. (Note that by uniqueness, the locally defined connections fit together
on overlaps.)

In the special case where the Riemannian manifolds is Euclidean space EN
the Levi-Civita connection is easy to describe. In this case, we have global
rectangular cartesian coordinates (x1, . . . , xN ) on EN and any vector field Y on
EN can be written as

Y =
N∑
i=1

f i
∂

∂xi
, where f i : EN → R.

In this case, the Levi-Civita connection ∇E has components Γkij = 0, and there-
fore the operator ∇E satisfies the formula

∇EXY =
N∑
i=1

(Xf i)
∂

∂xi
.

It is easy to check that this connection which is symmetric and metric for the
Euclidean metric.

If M is an imbedded submanifold of EN with the induced metric, then one
can define a connection ∇ : X (M)×X (M)→ X (M) by

(∇XY )(p) = (∇EXY (p))>,
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where (·)> is the orthogonal projection into the tangent space. (Use Lemma 5.2
to justify this formula.) It is a straightforward exercise to show that ∇ is
symmetric and metric for the induced connection, and hence ∇ is the Levi-
Civita connection for M . Note that if γ : [a, b]→M is a smooth curve, then

(∇γ′γ′)(t) = (γ′′(t))>,

so a smooth curve in M ⊆ EN is a geodesic if and only if ∇γ′γ′ ≡ 0. If we want
to develop the subject independent of Nash’s imbedding theorem, we can make
the

Definition. If (M, 〈·, ·〉) is a Riemannian manifold, a smooth path γ : [a, b]→
M is a geodesic if it satisfies the equation ∇γ′γ′ ≡ 0, where ∇ is the Levi-Civita
connection.

In terms of local coordinates, if

γ′ =
n∑
i=1

d(xi ◦ γ)
dt

∂

∂xi
,

then a straightforward calculation yields

∇γ′γ′ =
n∑
i=1

d2(xi ◦ γ)
dt2

+
n∑

j,k=1

Γijk
d(xj ◦ γ)

dt

d(xk ◦ γ)
dt

 ∂

∂xi
. (1.19)

This reduces to the equation (1.9) we obtained before from Hamilton’s principle.
Note that

d

dt
〈γ′, γ′〉 = γ′〈γ′, γ′〉 = 2〈∇γ′γ′, γ′〉 = 0,

so geodesics automatically have constant speed.
More generally, if γ : [a, b]→ M is a smooth curve, we call ∇γ′γ′ the accel-

eration of γ. Thus if (M, 〈·, ·〉, φ) is a simple mechanical system, its equations
of motion can be written as

∇γ′γ′ = −grad(φ), (1.20)

where in local coordinates, grad(φ) =
∑
gji(∂V /∂xi)(∂/∂xj).

1.6 First variation of J

Now that we have the notion of connection available, it might be helpful to
review the argument that the function

J : Ω[a,b](M ; p, q),→ R defined by J(γ) =
1
2

∫ b

a

〈γ′(t), γ′(t)〉dt,

has geodesics as its critical points, and recast the argument in a form that is
independent of choice of isometric imbedding.
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In fact, the argument we gave before goes through with only one minor
change, namely given a variation

ᾱ : (−ε, ε)→ Ω with corresponding α : (−ε, ε)× [a, b]→M,

we must make sense of the partial derivatives

∂α

∂s
,

∂α

∂t
, . . . ,

since we can no longer regard α as a vector valued function.
But these is a simple remedy. We look at the first partial derivatives as maps

∂α

∂s
,
∂α

∂t
: (−ε, ε)× [a, b]→ TM

such that π ◦
(
∂α

∂s

)
= α, π ◦

(
∂α

∂t

)
= α.

In terms of local coordinates, these maps are defined by(
∂α

∂s

)
(s, t) =

n∑
i=1

∂(xi ◦ α)
∂s

(s, t)
∂

∂xi

∣∣∣∣
α(s,t)

,

(
∂α

∂t

)
(s, t) =

n∑
i=1

∂(xi ◦ α)
∂t

(s, t)
∂

∂xi

∣∣∣∣
α(s,t)

.

We define higher order derivatives via the Levi-Civita connection. Thus for
example, in terms of local coordinates, we set

∇∂/∂s
(
∂α

∂t

)
=

n∑
k=1

∂2(xk ◦ α)
∂s∂t

+
n∑

i,j=1

(Γkij ◦ α)
∂(xi ◦ α)

∂s

∂(xi ◦ α)
∂t

 ∂

∂xk

∣∣∣∣
α

,

thereby obtaining a map

∇∂/∂s
(
∂α

∂t

)
: (−ε, ε)× [a, b]→ TM such that π ◦ ∇∂/∂s

(
∂α

∂t

)
= α.

Similarly, we define

∇∂/∂t
(
∂α

∂t

)
, ∇∂/∂t

(
∂α

∂s

)
,

and so forth. In short, we replace higher order derivatives by covariant deriva-
tives using the Levi-Civita connection for the Riemmannian metric.

The properties of the Levi-Civita connection imply that

∇∂/∂s
(
∂α

∂t

)
= ∇∂/∂t

(
∂α

∂s

)
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and

∂

∂t

〈
∂α

∂s
,
∂α

∂t

〉
=
〈
∇∂/∂t

(
∂α

∂s

)
,
∂α

∂t

〉
+
〈
∂α

∂s
,∇∂/∂t

(
∂α

∂t

)〉
.

With these preparations out of the way, we can now proceed as before and
let

ᾱ : (−ε, ε)→ Ω[a,b](M ; p, q)

be a smooth path with ᾱ(0) = γ and

∂α

∂s
(0, t) = V (t),

where V is an element of the tangent space

TγΩ = { smooth maps V : [a, b]→ TM

such that π ◦ V (t) = γ(t) for t ∈ [a, b], and V (a) = 0 = V (b) }.

Then just as before,

d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

=
d

ds

[
1
2

∫ b

a

〈
∂α

∂t
(s, t),

∂α

∂t
(s, t)dt

〉]∣∣∣∣∣
s=0

=
∫ b

a

〈
∇∂/∂s

(
∂α

∂t

)
(0, t),

∂α

∂t
(0, t)

〉
dt

=
∫ b

a

〈
∇∂/∂t

(
∂α

∂s

)
(0, t),

∂α

∂t
(0, t)

〉
dt

=
∫ b

a

[
∂

∂t

〈
∂α

∂s
(0, t),

∂α

∂t
(0, t)

〉
−
〈
∂α

∂s
(0, t),∇∂/∂t

∂α

∂t
(0, t)

〉]
dt.

Since
∂α

∂s
(0, b) = 0 =

∂α

∂s
(0, a),

we obtain
d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

= −
∫ b

a

〈V (t), (∇γ′γ′)(t)〉dt.

We call this the first variation of J in the direction of V , and write

dJ(γ)(V ) = −
∫ b

a

〈V (t), (∇γ′γ′)(t)〉dt. (1.21)

A critical point for J is a point γ ∈ Ω[a,b](M ; p, q) at which dJ(γ) = 0, and
the above argument shows that the critical points for J are exactly the geodesics
for the Riemannian manifold (M, 〈·, ·〉).

Of course, we could modify the above derivation to determine the first vari-
ation of the action

J(γ) =
1
2

∫ b

a

〈γ′(t), γ′(t)〉dt−
∫ b

a

φ(γ(t))dt
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for a simple mechanical system (M, 〈·, ·〉, φ). We would find after a short calcu-
lation that

dJ(γ)(V ) = −
∫ b

a

〈V (t), (∇γ′γ′)(t)〉dt−
∫ b

a

dφ(V )(γ(t)dt

= −
∫ b

a

〈V (t), (∇γ′γ′)(t)− grad(φ)(γ(t))〉 dt.

Once again, the critical points would be solutions to Newton’s equation (1.20).

1.7 Lorentz manifolds

The notion of Riemmannian manifold has a generalization which is extremely
useful in Einstein’s theory of general relativity, as described for example is the
standard texts [27] or [35].

Definition. Let M be a smooth manifold. A pseudo-Riemannian metric on M
is a function which assigns to each p ∈ M a nondegenerate symmetric bilinear
map

〈·, ·〉p : TpM × TpM −→ R

which which varies smoothly with p ∈ M . As before , varying smoothly with
p ∈M means that if φ = (x1, . . . , xn) : U → Rn is a smooth coordinate system
on M , then for p ∈ U ,

〈·, ·〉p =
n∑

i,j=1

gij(p)dxi|p ⊗ dxj |p,

where the functions gij : U → R are smooth. The conditions that 〈·, ·〉p be
symmetric and nondegenerate are expressed in terms of the matrix (gij) by
saying that (gij) is a symmetric matrix and has nonzero determinant.

It follows from linear algebra that for any choice of p ∈M , local coordinates
(x1, . . . , xn) can be chosen so that

(gij(p)) =
(
−Ip×p 0

0 Iq×q

)
,

where Ip×p and Iq×ql are p× p and q× q identity matrices with p+ q = n. The
pair (p, q) is called the signature of the pseudo-Riemannian metric.

Note that a pseudo-Riemannian metric of signature (0, n) is just a Rieman-
nian metric. A pseudo-Riemannian metric of signature (1, n − 1) is called a
Lorentz metric.

A pseudo-Riemannian manifold is a pair (M, 〈·, ·〉) where M is a smooth
manifold and 〈·, ·〉 is a pseudo-Riemannian metric on M . Similarly, a Lorentz
manifold is a pair (M, 〈·, ·〉) where M is a smooth manifold and 〈·, ·〉 is a Lorentz
metric on M .
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Example. Let Rn+1 be given coordinates (t, x1, . . . , xn), with t being regarded
as time and (x1, . . . , xn) being regarded as Euclidean coordinates in space, and
consider the Lorentz metric

〈·, ·〉 = −c2dt⊗ dt+
n∑
i=1

dxi ⊗ dxi,

where the constant c is regarded as the speed of light. When endowed with this
metric, Rn+1 is called Minkowski space-time and is denoted by Ln+1. Four-
dimensional Minkowski space-time is the arena for special relativity .

The arena for general relativity is a more general four-dimensional Lorentz man-
ifold (M, 〈·, ·〉), also called space-time. In the case of general relativity, the
components gij of the metric are regarded as potentials for the gravitational
forces.

In either case, points of space-time can be thought of as events that happen
at a given place in space and at a given time. The trajectory of a moving particle
can be regarded as curve of events, called its world line.

If p is an event in a Lorentz manifold (M, 〈·, ·〉), the tangent space TpM
inherits a Lorentz inner product

〈·, ·〉p : TpM × TpM −→ R.

We say that an element v ∈ TpM is

1. timelike if 〈v, v〉 < 0,

2. spacelike if 〈v, v〉 > 0, and

3. lightlike if 〈v, v〉 = 0.

A parametrized curve γ : [a, b] → M into a Lorentz manifold (M, 〈·, ·〉) is
said to be timelike if γ′(u) is timelike for all u ∈ [a, b]. If a parametrized curve
γ : [a, b] → M represents the world line of a massive object, it is timelike and
the integral

L(γ) =
1
c

∫ b

a

√
−〈γ′(u)γ′(u)〉du (1.22)

is the elapsed time measured by a clock moving along the world line γ. We call
L(]gamma) the proper time of γ.

The Twin Paradox. The fact that elapsed time is measured by the integral
(1.22) has counterintuitive consequences. Suppose that γ : [a, b] → L4 is a
timelike curve in four-dimensional Minkowski space-time, parametrized so that

γ(t) = (t, x1(t), x2(t), x3(t)).

Then

γ′(t) =
∂

∂t
+

3∑
i=1

dxi

dt

∂

∂xi
, so 〈γ′(t), γ′(t)〉 = −c2 +

3∑
i=1

(
dxi

dt

)2

,
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and hence

L(γ) =
∫ b

a

1
c

√√√√c2 −
3∑
i=1

(
dxi

dt

)2

dt =
∫ b

a

√√√√1− 1
c2

3∑
i=1

(
dxi

dt

)2

dt. (1.23)

Thus if a clock is at rest with respect to the coordinates, that is dxi/dt ≡ 0, it
will measure the time interval b − a, while if it is in motion it will measure a
somewhat shorter time interval. This failure of clocks to synchronize is what is
called the twin paradox.

Equation (1.23 ) states that in Minkowski space-time, straight lines maximize
L among all timelike world lines from an event p to an event q. When given
an affine parametrization such curves have zero acceleration. One might hope
that in general relativity, the world line of a massive body, not subject to any
forces other than gravity, would also maximize L, and if it was appropriately
parametrized, would have zero acceleration in terms of the Lorentz metric 〈·, ·〉.
Just as in the Riemannian case, it is easier to describe the critical point behavior
of the closely related action

J : Ω[a,b](M : p, q)→ R, defined by J(γ) =
1
2

∫ b

a

〈γ′(t), γ′(t)〉dt.

The critical points of J are called geodesics.
How does one determine the geodesics in a Lorentz manifold? Fortunately,

the fundamental theorem of Riemannian geometry generalizes immediately to
pseudo-Riemannian metrics;

Fundamental Theorem of pseudo-Riemannian Geometry. If 〈·, ·〉 is a
pesudo-Riemannian metric on a smooth manifold M , there is a unique connec-
tion on TM such that

1. ∇ is symmetric, that is, ∇XY −∇YX = [X,Y ], for X,Y ∈ X (M),

2. ∇ is metric, that is, X〈Y,Z〉 = 〈∇XY,Z〉+〈Y,∇XZ〉, for X,Y, Z ∈ X (M).

The proof is identical to the proof we gave before. Moreover, just as before,
we can define the Christoffel symbols for local coordinates, and they are given
by exactly the same formula (1.18). Finally, by the first variation formula, one
shows that a smooth parametrized curve γ : [a, b] → M is a geodesics if and
only if it satisfies the equation ∇γ′γ′ ≡ 0.

As described in more detail in [35], there are two main components to gen-
eral relativity: The Einstein field equations describe how the distribution of
matter in the universe determines a Lorentz metric on space-time, while time-
like geodesics are exactly the world lines of massive objects which are subjected
to no forces other than gravity. Lightlike geodesics are the trajectories of light
rays.
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1.8 The Riemann-Christoffel curvature tensor

Let (M, 〈·, ·〉) be a Riemannian manifold (or more generally a pseudo-Riemannian
manifold) with Levi-Civita connection ∇. If X (M) denotes the space of smooth
vector fields on M , we define

R : X (M)×X (M)×X (M) −→ X (M)

by
R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

We call R the Riemann-Christoffel curvature tensor of (M, 〈·, ·〉).

Proposition 1. The operator R is multilinear over functions, that is,

R(fX, Y )Z = R(X, fY )Z = R(X,Y )fZ = fR(X,Y )Z.

Proof: We prove only the equality R(X,Y )fZ = fR(X,Y )Z, leaving the others
as easy exercises:

R(X,Y )fZ = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)
= ∇X((Y f)Z + f∇Y Z)−∇Y ((Xf)Z + f∇XZ)− [X,Y ](f)Z − f∇[X,Y ](Z)

= XY (f)Z + (Y f)∇XZ + (Xf)∇Y Z + f∇X∇Y Z
− Y X(f)Z − (Xf)∇Y Z − (Y f)∇XZ − f∇Y∇Y Z

− [X,Y ](f)Z − f∇[X,Y ](Z)
= f(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z) = fR(X,Y )Z.

Since the connection ∇ can be localized by Lemma 5.1, so can the curvature;
that is, if U is an open subset of M , (R(X,Y )Z)|U depends only X|U , Y |U
and Z|U . Thus the curvature tensor is determined in local coordinates by its
component functions Rlijk : U → R, defined by the equations

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=

n∑
l=1

Rlijk
∂

∂xl
.

Proposition 2. The components Rlijk of the Riemann-Christoffel curvature

tensor are determined from the Christoffel symbols Γljk by the equations

Rlijk =
∂

∂xi
(Γljk)− ∂

∂xj
(Γlik) +

n∑
m=1

ΓlmiΓ
m
jk −

n∑
m=1

ΓlmjΓ
m
ik.

The proof is a straightforward computation.

The simplest example of course is Euclidean space EN . In this case, the metric
coefficients (gij are constant, and hence it follows from (1.18) that the Christoffel
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symbols Γkij = 0. Thus it follows from Proposition 8.2 that the curvature tensor
R is identically zero. Recall that in this case, the Levi-Civita connection ∇E on
EN is given by the simple formula

∇EX

(
N∑
i=1

f i
∂

∂xi

)
=

N∑
i=1

X(f i)
∂

∂xi
.

It is often easy to calculate the curvature of submanifolds on EN with the
induced Riemannian metric by means of the so-called Gauss equation, as we
now explain. Thus suppose that ι : M → EN is an imbedding and agree to
identify p ∈ M with ι(p) ∈ EN and v ∈ TpM with its image ι∗(v) ∈ TpEN . If
p ∈M and v ∈ TpEN , we let

v = v> + v⊥, where v> ∈ TpM and v⊥⊥TpM.

Thus (·)> is the orthogonal projection into the tangent space and (·)⊥ is the
orthogonal projection into the normal space, the orthogonal complement to the
tangent space. We have already noted we can define the Levi-Civita connection
∇ : X (M)×X (M)→ X (M) by the formula

(∇XY )(p) = (∇EXY (p))>.

If we let X⊥(M) denote the space of vector fields in EN which are defined at
points of M and are perpendicular to M , then we can define

α : X (M)×X (M)→ X⊥(M) by α(X,Y ) = (∇EXY (p))⊥.

We call α the second fundamental form of M in EN .

Proposition 3. The second fundamental form satisfies the identities:

α(fX, Y ) = α(X, fY ) = fα(X,Y ), α(X,Y ) = α(Y,X).

Indeed,
α(fX, Y ) = (∇EfXY )⊥ = f(∇EXY )⊥ = fα(X,Y ),

α(X, fY ) = (∇EX)(fY ))⊥ = ((Xf)Y + f∇EXY )⊥ = fα(X,Y ),

so α is bilinear over functions. It therefore suffices to establish α(X,Y ) =
α(Y,X) in the case where [X,Y ] = 0, but in this case

α(X,Y )− α(Y,X) = (∇EXY −∇EYX)⊥ = 0.

There is some special terminology that is used in the case where γ : (a, b) →
M ⊆ EN is a unit speed curve. In this case, we say that the acceleration
γ′′(t) ∈ Tγ(t)EN is the curvature of γ, while

(γ′′(t))> = (∇γ′γ′)(t) = (geodesic curvature of γ at t),
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(γ′′(t))⊥ = α(γ′(t), γ′(t)) = (normal curvature of γ at t).

Thus if x ∈ TpM is a unit length vector, α(x, x) can be interpreted as the normal
curvature of some curve tangent to x at p.

Gauss Theorem. The curvature tensor R of a submanifold M ⊆ EN is given
by the Gauss equation

〈R(X,Y )W,Z〉 = α(X,Z) · α(Y,W )− α(X,W ) · α(Y,Z), (1.24)

where X, Y , Z and W are elements of X (M), and the dot on the right denotes
the Euclidean metric in the ambient space EN .

Proof: Since Euclidean space has zero curvature,

∇EX∇EYW −∇EY∇EXW −∇E[X,Y ]W = 0,

and hence

0 = (∇EX∇EYW ) · Z − (∇EY∇EXW ) · Z −∇E[X,Y ]W · Z

= X(∇EYW · Z)−∇EYW · ∇EXZ − Y (∇EXW · Z) +∇EXW · ∇EY Z −∇E[X,Y ]W · Z
= X〈∇YW,Z〉 − 〈∇YW,∇XZ〉 − α(Y,W ) · α(X,Z)

− Y 〈∇XW,Z〉 − 〈∇XW,∇Y Z〉 − α(X,W ) · α(Y,Z)− 〈∇[X,Y ]W,Z〉.

Thus we find that

0 = 〈∇X∇YW,Z〉 − α(Y,W ) · α(X,W )
− 〈∇Y∇XW,Z〉+ α(X,W ) · α(Y,W )− 〈∇[X,Y ]W,Z〉.

This yields

〈∇X∇YW −∇Y∇XW −∇[X,Y ]W,Z〉 = α(Y,W ) ·α(X,W )−α(X,W ) ·α(Y,W ),

which is exactly (1.24).

For example, we can consider the sphere of radius a about the origin in En+1:

Sn(a) = {(x1, . . . , xn+1) ∈ En+1 : (x1)2 + · · ·+ (xn+1)2 = a2}.

If γ : (−ε, ε)→ Sn ⊆ En+1 is a unit speed great circle, say

γ(t) = a cos((1/a)t)e1 + a sin((1/a)t)e2,

where (e1, e2) are orthonormal vectors located at the origin in En+1, then a
direct calculation shows that

γ′′(t) = −1
a

N(γ(t)),
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where N(p) is the outward pointing unit normal to Sn(a) at the point p ∈ Sn(a).
Thus the second fundamental form of Sn(a) in En+1 satisfies

α(x, x) = −1
a

N(p), for all unit length x ∈ TpSn(a).

If x does not have unit length, then

α

(
x

‖x‖
,
x

‖x‖

)
= −1

a
N(p) ⇒ α(x, x) = −1

a
〈x, x〉N(p).

By polarization, we obtain

α(x, y) =
−1
a
〈x, y〉N(p), for all x, y ∈ TpSn(a).

Thus substitution into the Gauss equation yields

〈R(x, y)w, z〉 =
(
−1
a
〈x, z〉N(p)

)
·
(
−1
a
〈y, w〉N(p)

)
−
(
−1
a
〈x,w〉N(p)

)
·
(
−1
a
〈y, x〉N(p)

)
.

Thus we finally obtain a formula for the curvature of Sn(a):

〈R(x, y)w, z〉 =
1
a2

(〈x, z〉〈y, w〉 − 〈x,w〉〈y, z〉).

In a similar fashion, one can sometimes calculate the curvature of spacelike
hypersurfaces in Minkowski space-time. The metric coefficients for Minkowski
space time Ln+1 are constant, so once again Γkij = 0 and the curvature of
Minkowski space-time is zero. In this case, the Levi-Civita connection ∇L is
defined by

∇LX

(
f0 ∂

∂t
+

N∑
i=1

f i
∂

∂xi

)
= X(f0)

∂

∂t
+

N∑
i=1

X(f i)
∂

∂xi
.

Suppose that M is an n-dimensional manifold and ι : M → Ln+1 is an
imbedding. We say that ι(M) is a spacelike hypersurface if the standard Lorentz
metric on Ln+1 induces a positive-definite Riemannian metric on M . For sim-
plicity, let us set the speed of light c = 1 so that the Lorentz metric on Ln+1 is
simply

〈·, ·〉L = −dt⊗ dt+
n∑
i=1

dxi ⊗ dxi.

Just as in the case where the ambient space is Euclidean space, we find that
the Levi-Civita connection ∇ : X (M)×X (M)→ X (M) on TM is given by the
formula

(∇XY )(p) = (∇LXY (p))>,
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where (·)> is the orthogonal projection into the tangent space. If we let X⊥(M)
denote the vector field in LN which are defined at points of M and are perpen-
dicular to M , we can define the second fundamental form of M in Ln+1 by

α : X (M)×X (M)→ X⊥(M) by α(X,Y ) = (∇EXY (p))⊥,

where (·)⊥ is the orthogonal projection to the orthogonal complement to the
tangent space. Moreover, the curvature of the spacelike hypersurface is given
by the Gauss equation

〈R(X,Y )W,Z〉 = 〈α(X,Z), α(Y,W )〉L − 〈α(X,W ), α(Y,Z)〉L, (1.25)

where X, Y , Z and W are elements of X (M).
As a key example, we can set

Hn(a) = {(t, x1 . . . , xn) ∈ Ln+1 : t2 − (x1)2 − · · · − (xn)2 = a2, t > 0},

the set of future-pointed unit timelike vectors situated at the origin in Ln+1.
Clearly Hn(a) is an imbedded submanifold of Ln+1 and we claim that the in-
duced metric on Hn(a) is positive-definite.

To prove this, we could consider (x1, . . . , xn) as global coordinates on Hn(a),
so that

t =
√
a2 + (x1)2 + · · ·+ (xn)2.

Then

dt =
∑n
i=1 x

idxi√
a2 + (x1)2 − · · ·+ (xn)2

,

and the induced metric on Hn(a) is

〈·, ·〉 = −
∑
xixjdxi ⊗ dxj

a2 + (x1)2 − · · ·+ (xn)2
+ dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn.

Thus

gij = δij −
∑
xixj

a2 + (x1)2 − · · ·+ (xn)2
,

and from this expression we immediately see that the induced metric on Hn(a)
is indeed positive-definite.

Of course, Hn(a) is nothing other than the upper sheet of a hyperboloid of
two sheets. Suppose that p ∈ Hn(a), that e0 is a future-pointing unit length
timelike vector such that p = ae0 and Π is a two-dimensional plane that passes
through the origin and contains e0. Using elementary linear algebra, Π must
also contain a unit length spacelike vector e1 such that 〈e0, e1〉L = 0. Then the
smooth curve

γ : (−ε, ε)→ Hn(a) defined by γ(t) = a cosh(t/a)e0 + a sinh(t/a)e1

is spacelike and direct calculation shows that

〈γ′(t), γ′(t)〉L = −(sinh(t/a))2 + (cosh(t/a))2 = 1.
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Moreover,

γ′′(t) =
1
a

(cosh(t/a)e0 + sinh(t/a)e1) =
1
a

N(γ(t)),

where N(p) is the unit normal to Hn(a) at p. Thus

(∇γ′γ′)(t) = (γ′′(t))> = 0,

so γ is a geodesic and

α(γ′(t), γ′(t)) = (γ′′(t))⊥ =
1
a

N(γ(t)).

Note that we can construct a unit speed geodesic γ in M as above with γ(0) = p
for any p ∈ Hn(a) and γ′(0) = e1 for any unit length e1 ∈ TpHn(a).

Thus just as in the case of the sphere, we can use the Gauss equation (1.25)
to determine the curvature of Hn(a). Thus the second fundamental form of
Hn(a) in Ln+1 satisfies

α(x, x) = −1
a

N(p), for all unit length x ∈ TpHn(a),

where N(p) is the future-pointing unit normal to M . If x does not have unit
length, then

α

(
x

‖x‖
,
x

‖x‖

)
=

1
a

N(p) ⇒ α(x, x) =
1
a
〈x, x〉N(p).

By polarization, we obtain

α(x, y) =
1
a
〈x, y〉N(p), for all x, y ∈ TpNn(a).

Thus substitution into the Gauss equation yields

〈R(x, y)w, z〉 =
(

1
a
〈x, z〉N(p)

)
·
(

1
a
〈y, w〉N(p)

)
−
(

1
a
〈x,w〉N(p)

)
·
(

1
a
〈y, x〉N(p)

)
.

Since N(p) is timelike and hence 〈N(p),N(p)〉L = −1, we finally obtain a for-
mula for the curvature of Sn(a):

〈R(x, y)w, z〉 =
−1
a2

(〈x, z〉〈y, w〉 − 〈x,w〉〈y, z〉).

The Riemannian manifold Hn(a) is called hyperbolic space, and its geome-
try is called hyperbolic geometry . We have constructed a model for hyperbolic
geometry, the upper sheet of the hyperboloid of two sheets in Ln+1, and have
seen that the geodesics in this model are just the intersections with two-planes
passing through the origin in Ln+1.
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1.9 Curvature symmetries; sectional curvature

The Riemann-Christoffel curvature tensor is the basic local invariant of a pseudo-
Riemannian manifold. If M has dimension n, one would expect R to have n4

independent components Rlijk, but the number of independent components is
cut down considerably because of the curvature symmetries:

Proposition 1. The curvature tensor R of a pseudo-Riemannian manifold
(M, 〈·, ·〉) satisfies the identities:

1. R(X,Y ) = −R(Y,X),

2. R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

3. 〈R(X,Y )W,Z〉 = −〈R(X,Y )Z,W 〉, and

4. 〈R(X,Y )W,Z〉 = −〈R(W,Z)X,Y 〉.

Remark 1. If we assumed the Nash imbedding theorem (in the Riemannian
case), we could derive these identities immediately from the Gauss equation
(1.24).

Remark 2. We can write the above curvature symmetries in terms of the
components Rlijk of the curvature tensor. Actually, it is easier to express these
symmetries if we lower the index and write

Rijlk =
n∑
p=1

glpR
l
ijk.

This lowering of the index into the third position is consistent with regarding
the Rijlk’s as the components of the map

R : TpM × TpM × TpM × TpM → R by R(X,Y, Z,W ) = 〈R(X,Y )W,Z〉.

In terms of these components, the curvature symmetries are

Rijlk = −Rjilk, Rijlk +Rjkli +Rkilj = 0,
Rijlk = −Rijkl, Rijlk = Rlkij .

Proof of proposition: Note first that since R is a tensor, we can assume without
loss of generality that all brackets of X, Y , Z and W are zero. Then

R(X,Y ) = ∇X∇Y −∇Y∇X = −(∇Y∇X −∇X∇Y ) = −R(Y,X),

establishing the first identity. Next,

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = ∇X∇Y Z −∇Y∇XZ
+∇Y∇ZX −∇Z∇YX +∇Z∇XY −∇X∇ZY

= ∇X(∇Y Z −∇ZY ) +∇Y (∇ZX −∇XZ) +∇Z(∇XY −∇YX) = 0,
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the last equality holding because ∇ is symmetric. For the third identity, we
calculate

〈R(X,Y )Z,Z〉 = 〈∇X∇Y Z,Z〉 − 〈∇Y∇XZ,Z〉
= X〈∇Y Z,Z〉 − 〈∇Y Z,∇XZ〉 − Y 〈∇XZ,Z〉+ 〈∇XZ,∇Y Z〉

=
1
2
XY 〈Z,Z〉 − 1

2
Y X〈Z,Z〉 =

1
2

[X,Y ]〈Z,Z〉 = 0.

Hence the symmetric part of the bilinear form

(W,Z) 7→ 〈R(X,Y )W,Z〉

is zero, from which the third identity follows. Finally, it follows from the first
and second identities that

〈R(X,Y )W,Z〉 = −〈R(Y,X)W,Z〉 = 〈R(X,W )Y, Z〉+ 〈R(W,Y )X,Z〉,

and from the third and second that

〈R(X,Y )W,Z〉 = −〈R(X,Y )Z,W 〉 = 〈R(Y,Z)X,W 〉+ 〈R(Z,X)Y,W 〉.

Adding the last two expressions yields

2〈R(X,Y )W,Z〉 = 〈R(X,W )Y,Z〉
+ 〈R(W,Y )X,Z〉+ 〈R(Y,Z)X,W 〉+ 〈R(Z,X)Y,W 〉. (1.26)

Exchanging the pair (X,Y ) with (W,Z) yields

2〈R(W,Z)X,Y 〉 = 〈R(W,X)Z, Y 〉
+ 〈R(X,Z)W,Y 〉+ 〈R(Z, Y )W,X〉+ 〈R(Y,W )Z,X〉. (1.27)

Each term on the right of (4.29) equals one of the terms on the right of (1.27),
so

〈R(X,Y )W,Z〉 = 〈R(W,Z)X,Y 〉,

finishing the proof of the proposition.

Proposition 2. Let

R,S : TpM × TpM × TpM × TpM → R

be two quadrilinear functions which satisfy the curvature symmetries. If

R(x, y, x, y) = S(x, y, x, y), for all x, y ∈ TpM ,

then R = S.

Proof: Let T = R− S. Then T satisfies the curvature symmetries and

T (x, y, x, y) = 0, for all x, y ∈ TpM .
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Hence

0 = T (x, y + z, x, y + z)
= T (x, y, x, y) + T (x, y, x, z) + T (x, z, x, y) + T (x, z, x, z)

= 2T (x, y, x, z),

so T (x, y, x, z) = 0. Similarly,

0 = T (x+ z, y, x+ z, w) = T (x, y, z, w) + T (z, y, x, w),

0 = T (x+ w, y, z, x+ w) = T (x, y, z, w) + T (w, y, z, x).

Finally,

0 = 2T (x, y, z, w) + T (z, y, x, w) + T (w, y, z, x)
= 2T (x, y, z, w)− T (y, z, x, w)− T (z, y, x, w) = 3T (x, y, z, w).

So T = 0 and R = S.

This proposition shows that the curvature is completely determined by the sec-
tional curvatures, defined as follows:

Definition. Suppose that σ is a two-dimensional subspace of TpM such that
the restriction of 〈·, ·〉 to σ is nondegenerate. Then the sectional curvature of σ
is

K(σ) =
〈R(x, y)y, x〉

〈x, x〉〈y, y〉 − 〈x, y〉2
,

whenever (x, y) is a basis for σ. The curvature symmetries imply that K(σ) is
independent of the choice of basis.

Recall our key three examples, the so-called spaces of constant curvature:
If M = En, then K(σ) ≡ 0 for all two-planes σ ⊆ TpM .
If M = Sn(a), then K(σ) ≡ 1/a2for all two-planes σ ⊆ TpM .
If M = Hn(a), then K(σ) ≡ −1/a2 for all two-planes σ ⊆ TpM .

The spaces of constant curvature are the most symmetric Riemannian manifolds
possible.

Definition. If (M, 〈·, ·〉) is a pseudo-Riemannian manifold, a diffeomorphism
φ : M →M is said to be an isometry if

〈(φ∗)p(v), (φ∗)p(w)〉 = 〈v, w〉, for all v, w ∈ TpM and all p ∈M . (1.28)

Of course, we can rewrite (1.28) as φ∗〈·, ·〉 = 〈·, ·〉, where

φ∗〈v, w〉 = 〈(φ∗)p(v), (φ∗)p(w)〉, for v, w ∈ TpM .
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Note that the orthogonal group O(n + 1) acts as a group of isometries on
Sn(a). In this case, we have an isometry group of dimension (1/2)n(n + 1).
Similarly, the group of isometries of En, the group of Euclidean motions, is a
Lie group of dimension (1/2)n(n + 1). The group of isometries on Hn(a) also
has dimension (1/2)n(n+ 1); it is called the Lorentz group.

In each of the three cases there is an isometry φ which takes any point p of
M to any other point q and any orthonormal basis of TpM to any orthonormal
basis of TqM . This allows us to construct non-Euclidean geometries for Sn(a)
and Hn(a) which are quite similar to Euclidean geometry. In the case of Hn(a)
all the postulates of Euclidean geometry are satisfied except for the parallel
postulate.

1.10 Gaussian curvature of surfaces

We now make contact with the theory of surfaces in E3 as described in un-
dergraduate texts such as [29]. If (M, 〈·, ·〉) is a two-dimensional Riemannian
manifold, then there is only one two-plane at each point p, namely TpM . In
this case, we can define a smooth function K : M → R by

K(p) = K(TpM) = (sectional curvature of TpM).

The function K is called the Gaussian curvature of M .
An important special case is that of a two-dimensional smooth surface M2

imbedded in R3, with M2 given the induced Riemannian metric. We assume
that it is possible to choose a smooth unit normal N to M ,

N : M2 → S2, with N(p) perpendicular to TpM .

Such a choice of unit normal determines an orientation of M2.
If NpM is the orthogonal complement to TPM , then the second fundamental

form α : TpM ×TpM → NpM determined a symmetric bilinear form h : TpM ×
TpM → R by the formula

h(x, y) = α(x, y) ·N(p), for x, y ∈ TpM ,

which is also called the second fundamental form in the theory of surfaces.
Recall that if (x1, x2) is a smooth coordinate system on M , we can define

the components of the induced Riemannian metric on M2 by the formulae

gij =
〈

∂

∂xi
,
∂

∂xj

〉
, for i, j = 1, 2.

If F : M2 → E3 is the imbedding than the components of the induced Rieman-
nian metric (also called the first fundamental form) are given by the formula

gij =
∂F

∂xi
· ∂F
∂xj

.
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Similarly, we can define the components of the second fundamental form by

hij = h

(
∂

∂xi
,
∂

∂xj

)
, for i, j = 1, 2.

These components can be found by the explicit formula

hij =
(
∇E∂/∂xi

∂

∂xj

)
·N =

∂2F

∂xi∂xj
·N.

Let
X =

∂

∂x1
, Y =

∂

∂x2
.

Then it follows from the definition of Gaussian curvature and the Gauss equation
that

K =
〈RX,Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2

=
α(X,X) · α(Y, Y )− α(X,Y ) · α(X,Y )

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2

=
h11h22 − h2

12

g11g22 − g2
12

=

∣∣∣∣h11 h12

h21 h22

∣∣∣∣∣∣∣∣g11 g12

g21 g22

∣∣∣∣ .

Example. Let us consider the catenoid , the submanifold of R3 defined by the
equation

r =
√
x2 + y2 = cosh z,

where (r, θ, z) are cylindrical coordinates. This is obtained by rotating the
catenary around the z-axis. As parametrization, we can take M2 = R×S1 and

F : R× S1 → S by x(u, v) =

 coshu cos v
coshu sin v

u

 .

Here v is the coordinate on S1 which is just the quotient group R/Z , where Z
is the cyclic group generated by 2π. Then

∂F

∂u
=

 sinhu cos v
sinhu sin v

1

 and
∂F

∂v
=

 − coshu sin v
coshu cos v

0

 ,

and hence the coefficients of the first fundamental form in this case are

g11 = 1 + sinh2 u = cosh2 u, g12 = 0, and g22 = cosh2 u.
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The induced Riemannian metric (or first fundamental form) in this case is

〈·, ·〉 = cosh2 u(du⊗ du+ dv ⊗ dv).

To find a unit normal, we first calculate

∂F

∂u
× ∂F

∂v
=

∣∣∣∣∣∣
i sinhu cos v − coshu sin v
j sinhu sin v coshu cos v
k 1 0

∣∣∣∣∣∣ =

 − coshu cos v
− coshu sin v
coshu sinhu

 .

Thus a unit normal to S can be given by the formula

N =
∂F
∂u ×

∂F
∂v∣∣∂F

∂u ×
∂F
∂v

∣∣ =
1

coshu

 − cos v
− sin v
sinhu

 .

To calculate the second fundamental form, we need the second order partial
derivatives,

∂2F

∂u2
=

 coshu cos v
coshu sin v

0

 ,
∂2F

∂u∂v
=

 − sinhu sin v
sinhu cos v

0

 ,

and
∂2x
∂v2

=

 − coshu cos v
− coshu sin v

0

 .

These give the coefficients of the second fundamental form

h11 =
∂2F

∂u2
·N = 1, h12 = h21 =

∂2F

∂u∂v
·N = 0,

and

h22 =
∂2F

∂v2
·N = −1.

K =
−1

(coshu)4
.

Exercise III. Consider the torus M2 = S1 × S1 with imbedding

F : U → S by x(u, v) =

 (2 + cosu) cos v
(2 + cosu) sin v

sinu

 ,

where u and v are the angular coordinates on the two S1 factors, with u+2π = u,
v + 2π = v.

a. Calculate the components gij of the induced Riemannian metric on M2.

b. Calculate a continuously varying unit normal N and the components hij of
the second fundamental form of M2.

c. Determine the Gaussian curvature K.
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1.11 Review of Lie groups

In addition to the spaces of constant curvature, there is another class of man-
ifolds for which the geodesics and curvature can be computed relatively easily,
the compact Lie groups with biinvariant Riemannian metrics. Before discussing
this class of examples, we provide a brief review of Lie groups and Lie algebras,
following Chapters 3 and 4 of [5].

Suppose now that G is a Lie group and σ ∈ G. We can then define the left
translation by σ,

Lσ : G→ G by Lσ(τ) = στ,

a map which is clearly a diffeomorphism. Similarly, we can define right transla-
tion

Rσ : G→ G by Rσ(τ) = τσ.

A vector field X on G is said to be left invariant if (Lσ)∗(X) = X for all σ ∈ G,
where

(Lσ)∗(X)(f) = X(f ◦ Lσ) ◦ L−1
σ .

A straightforward calculation shows that if X and Y are left invariant vector
fields on G, then so is their bracket [X,Y ]. (See Theorem 7.9 in Chapter 4 of
[5].) Thus the space

g = {X ∈ X (G) : (Lσ)∗(X) = X for all σ ∈ G }

is closed under Lie bracket, and the real bilinear map

[·, ·] : g× g→ g

is skew-symmetric (that is, [X,Y ] = −[Y,X]), and satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Thus g is a Lie algebra and we call it the Lie algebra of G. If e is the identity
of the Lie group, restriction to TeG yields an isomorphism α : g → TeG. The
inverse β : TeG→ g is defined by β(v)(σ) = (Lσ)∗(v).

The most important examples of Lie groups are the general linear group

GL(n,R) = { n× n matrices A with real entries : detA 6= 0},

and its subgroups. For 1 ≤ i, j ≤ n, we can define coordinates

xij : GL(n,R)→ R by xij((a
i
j)) = aij .

Of course, these are just the rectangular cartesian coordinates on an ambient
Euclidean space in which GL(n,R) sits as an open subset. If X = (xij) ∈
GL(n,R), left translation by X is a linear map, so is its own differential. Thus

(LX)∗

 n∑
i,j=1

aij
∂

∂xij

 =
n∑

i,j,k=1

xika
k
j

∂

∂xij
.
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If we allow X to vary over GL(n,R) we obtain a left invariant vector field

XA =
n∑

i,j,k=1

aijx
k
i

∂

∂xkj

which is defined on GL(n,R). It is the unique left invariant vector field on
GL(n,R) which satisfies the condition

XA(I) =
n∑

i,j=1

aij
∂

∂xij

∣∣∣∣∣
I

,

where I is the identity matrix, the identity of the Lie group GL(n,R). Every
left invariant vector field on GL(n,R) is obtained in this way, for some choice
of n× n matrix A = (aij). A direct calculation yields

[XA, XB ] = X[A,B], where [A,B] = AB −BA, (1.29)

which gives an alternate proof that left invariant vector fields are closed under
Lie brackets in this case. Thus the Lie algebra of GL(n,R) is isomorphic to

gl(n,R) ∼= TIG = { n× n matrices A with real entries },

with the usual bracket of matrices as Lie bracket.

Exercise IV. Prove equation (1.29).

For a general Lie group G, if X ∈ g, the integral curve θX for X such that
θX(0) = e satisfies the identity θX(s+ t) = θX(s) · θX(t) because the derivatives
at t = 0 for fixed s are the same. From this fact, one easily concludes that θX
extends to a Lie group homomorphism

θX : R −→ G.

We call θX the one-parameter group which corresponds to X ∈ g. Since the
vector field X is left invariant, the curve

t 7→ Lσ(θX(t)) = σθX(t) = RθX(t)(σ)

is the integral curve for X which passes through σ at t = 0, and therefore the
one-parameter group of diffeomorphisms on G corresponding to X ∈ g is

φt = RθX(t), for t ∈ R.

In the case where G = GL(n,R) the one-parameter groups are easy to
describe. In this case, if A ∈ gl(n,R), we claim that the corresponding one-
parameter group is

θA(t) = etA = I + tA+
1
2!
t2A2 +

1
2!
t3A3 + · · · .
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Indeed, it follows from the identity

d

dt
(etA) = AetA = etAA

that θA is an integral curve for the left invariant vector field determined by A
and that θ′A(0) = A.

If G is a Lie subgroup of GL(n,R), then its left invariant vector fields are
defined by taking elements of TIG ⊆ TIGL(n,R) and spreading them out over
G by left translations of G. Thus the left invariant vector fields on G are just
the restrictions of the elements of gl(n,R) which are tangent to G.

We can use the one-parameter groups to determine which elements of gl(n,R)
are tangent to G at I. Consider, for example, the orthogonal group,

O(n) = {A ∈ GL(n,R) : ATA = I},

where (·)T denotes transpose. Its Lie algebra is

o(n) = {A ∈ gl(n,R) : etA ∈ O(n) for all t ∈ R }.

Differentiating the equation

(etA)T etA = I yields (etA)TAT etA + (etA)TAetA = 0,

and evaluating at t = 0 yields a formula for the Lie algebra of the orthogonal
group,

o(n) = {A ∈ gl(n,R) : AT +A = 0},

the Lie algebra of skew-symmetric matrices.
The complex general linear group,

GL(n,C) = { n× n matrices A with complex entries : detA 6= 0},

is also frequently encountered, and its Lie algebra is

gl(n,C) ∼= TeG = { n× n matrices A with complex entries },

with the usual bracket of matrices as Lie bracket. It can be regarded as a Lie
subgroup of GL(2n,R). The unitary group is

U(n) = {A ∈ GL(n,C) : ĀTA = I},

and its Lie algebra is

u(n) = {A ∈ gl(n,C) : ĀT +A = 0},

the Lie algebra of skew-Hermitian matrices.
With these basic ideas it should be easy to calculate the Lie algebras of most

other commonly encountered Lie groups.
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If G and H are Lie groups and h : G → H is a Lie group homomorphism,
we can define a map

h∗ : g→ h by h∗(X) = β[(h∗)e(X(e))].

One can check that this is a Lie algebra homomorphism; see Corollary 7.10 in
Chapter 4 of [5]. This gives rise to a “covariant functor” from the category of
Lie groups and Lie group homomorphisms to the category of Lie algebras and
Lie algebra homomorphisms. A somewhat deeper theorem shows that for any
Lie algebra g there is a unique simply connected Lie group G with Lie algebra
g. This correspondence between Lie groups and Lie algebras often reduces
problems regarding Lie groups to Lie algebras, which are much simpler objects
that can be studied via techniques of linear algebra.

1.12 Lie groups with biinvariant metrics

Definition. Suppose that G is a Lie group. A pseudo-Riemannian metric on G
is biinvariant if the diffeomorphisms Lσ and Rσ are isometries for every σ ∈ G.

Example 1. For can define a Riemannian metric on GL(n,R) by

〈·, ·〉 =
n∑

i,j=1

dxij ⊗ dxij . (1.30)

This is just the Euclidean metric that GL(n,R) inherits as an open subset of
En2

. The metric on GL(n,R) is not biinvariant, but we claim that the metric
it induces on the subgroup O(n) is biinvariant.

To prove this, it suffices to show that the metric (1.30) is invariant under LA
and RA, when A ∈ O(n). If A = (aij) ∈ O(n) and B = (bij) ∈ GL(n,R), then

(xij ◦ LA)(B) = xij(AB) =
n∑
k=1

xik(A)xkj (B) =
n∑
k=1

aikx
k
j (B),

so that

L∗A(xij) = xij ◦ LA =
n∑
k=1

aikx
k
j .

It follows that

L∗A(dxij) =
n∑
k=1

aikdx
k
j ,

and hence

L∗A〈·, ·〉 =
n∑

i,j=1

L∗A(dxij)⊗ L∗A(dxij)

=
n∑

i,j,k,l=1

aikdx
k
j ⊗ aildxlj =

n∑
i,j,k,l=1

(aika
i
l)dx

k
j ⊗ dxlj .
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Since ATA = I,
∑n
i=1 a

i
ka
i
l = δil, and hence

L∗A〈·, ·〉 =
n∑

j,k,l=1

δkldx
k
j ⊗ dxlj = 〈·, ·〉.

By a quite similar computation, one shows that

R∗A〈·, ·〉 = 〈·, ·〉, for A ∈ O(n).

Hence the Riemannian metric defined by (1.30) is indeed invariant under right
and left translations by elements of the compact group O(n). Thus (1.30) in-
duces a biinvariant Riemannian metric on O(n), as claimed. Note that if we
identify TIO(n) with the Lie algebra o(n) of skew-symmetric matrices, this Rie-
mannian metric is given by

〈X,Y 〉 = Trace(XTY ), for X,Y ∈ o(n).

Example 2. The unitary group U(n) is an imbedded subgroup of GL(2n,R)
which lies inside O(n), and hence if 〈·, ·〉E is the Euclidean metric induced on
GL(2n,R),

L∗A〈·, ·〉E = 〈·, ·〉E = R∗A〈·, ·〉E , for A ∈ U(n).

Thus the Euclidean metric on GL(2n,R) induces a biinvariant Riemannian met-
ric on U(n). If we identify TIU(n) with the Lie algebra u(n) of skew-Hermitian
matrices, one can check that this Riemannian metric is given by

〈X,Y 〉 = 2Re
(
Trace(XT Ȳ )

)
, for X,Y ∈ u(n). (1.31)

Remark. Once we have integration at our disposal, we will be able to prove
that any compact Lie group has a biinvariant Riemannian metric. (See § 2.3.)

Proposition 1. Suppose that G is a Lie group with a biinvariant pseudo-
Riemannian metric 〈·, ·〉. Then

1. geodesics passing through the identity e ∈ G are just the one-parameter
subgroups of G,

2. the Levi-Civita connection on TG is defined by

∇XY =
1
2

[X,Y ], for X,Y ∈ g,

3. the curvature tensor is given by

〈R(X,Y )W,Z〉 =
1
4
〈[X,Y ], [Z,W ]〉, for X,Y, Z,W ∈ g. (1.32)
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Before proving this, we need to some facts about the Lie bracket that are proven
in [5]. Recall that if X is a vector field on a smooth manifold M with one-
parameter group of local diffeomorphisms {φt : t ∈ R} and Y is a second smooth
vector field on M , then the Lie bracket [X,Y ] is determined by the formula

[X,Y ](p) = − d

dt
((φt)∗(Y )(p))

∣∣∣∣
t=0

. (1.33)

(See the discussion surrounding Theorem 7.8 in Chapter 4 of [5].)

Definition. A vector fieldX on a pseudo-Riemannian manifold (M, 〈·, ·〉) is said
to be Killing if its one-parameter group of local diffeomorphisms {φt : t ∈ R}
consists of isometries.

The formula (1.33) for the Lie bracket has the following consequence needed in
the proof of the theorem:

Lemma 2. If X is a Killing field, then

〈∇YX,Z〉+ 〈Y,∇ZX〉 = 0, for Y,Z ∈ X (M).

Proof: Note first that if X is fixed

〈∇YX,Z〉(p) and 〈X,∇Y Z〉(p)

depend only on X(p) and Y (p). Thus we can assume without loss of general-
ity that 〈Y,Z〉 is constant. Then, since X is Killing, 〈(φt)∗(Y ), (φt)∗(Z)〉) is
constant, and

0 =
〈
d

dt
((φt)∗(Y ))

∣∣∣∣
t=0

, Z

〉
+
〈
Y,

d

dt
((φt)∗(Z))

∣∣∣∣
t=0

〉
= −〈[X,Y ], Z〉 − 〈Y, [X,Z]〉.

On the other hand, since ∇ is the Levi-Civita connection,

0 = X〈Y, Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉.

Adding the last two equations yields the statement of the lemma.

Application. IfX is a Killing field on the pseudo-Riemannian manifold (M, 〈·, ·〉)
and γ : (a, b)→M is a geodesic, then since 〈∇YX,Y 〉 = 0,

d

dt
〈γ′, X〉 = 〈∇γ′γ′, X〉+ 〈γ′,∇γ′X〉 = 0.

Thus 〈γ′, X〉 is constant along the geodesic. This often gives very useful con-
straints on geodesic flow.

We now turn to the proof of Theorem 1: First note that since the metric 〈·, ·〉
is left invariant,

X,Y ∈ g ⇒ 〈X,Y 〉 is constant.
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Since the metric is right invariant, each RθX(t) is an isometry, and hence X is a
Killing field. Thus

〈∇YX,Z〉+ 〈∇ZX,Y 〉 = 0, for X,Y, Z ∈ g.

In particular,

〈∇XX,Y 〉 = −〈∇YX,X〉 = −1
2
Y 〈X,X〉 = 0.

Thus ∇XX = 0 for X ∈ g and the integral curves of X must be geodesics.
Next note that

0 = ∇X+Y (X + Y ) = ∇XX +∇XY +∇YX +∇Y Y = ∇XY +∇YX.

Averaging the equations

∇XY +∇YX = 0, ∇XY −∇YX = [X,Y ]

yields the second assertion of the proposition.
Finally, if X,Y, Z ∈ g, use of the Jacobi identity yields

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

=
1
4

[X, [Y,Z]]− 1
4

[Y, [X,Z]]− 1
2

[[X,Y ], Z] = −1
4

[[X,Y ], Z].

On the other hand, if X,Y, Z ∈ g,

0 = 2X〈Y, Z〉 = 2〈∇XY,Z〉+ 2〈Y,∇XZ〉 = 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉.

Thus we conclude that

〈R(X,Y )W,Z〉 = −1
4
〈[[X,Y ],W ], Z〉 =

1
4
〈[X,Y ], [Z,W ]〉,

finishing the proof of the third assertion.

Remark. If G is a Lie group with a biinvariant pseudo-Riemannian metric, the
map

ν : G→ G defined by ν(σ) = σ−1,

is an isometry. Indeed, it is immediate that (ν∗)e = −id is an isometry, and the
identity

ν = Rσ−1 ◦ ν ◦ Lσ−1

shows that (ν∗)σ is an isometry for each σ ∈ G. Thus ν is an isometry of
G which reverses geodesics through the identity e. More generally, the map
Iσ = Lσ−1 ◦ ν ◦ Lσ is an isometry which reverses geodesics through σ

A Riemannian symmetric space is a Riemannian manifold (M, 〈·, ·〉) such
that for each p ∈M there is an isometry Ip : M →M which reverses geodesics
through p. Examples include not just the Lie groups with biinvariant Rieman-
nian metrics and the spaces of constant curvature, but many other important
examples, including the Grassmann manifolds to be described in the next sec-
tion.
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1.13 Grassmann manifolds

If G is a compact Lie group with biinvariant Riemannian metric 〈·, ·〉, certain
submanifolds M ⊆ G inherit Riemannian metrics for which geodesics and cur-
vature can be easily computed. These include the complex projective space with
its “Fubini-Study” metric, a space which occurs in algebraic geometry and other
contexts.

To explain these examples, we assume as known the basic theory of homo-
geneous spaces. As described in Chapter 4, §9 of [5], if G is a Lie group and H
is a compact subgroup, the homogeneous space of left cosets G/H is a smooth
manifold and the projection π : G → G/H is a smooth submersion. Moreover,
the map G×G/H → G/H, defined by (σ, τH)→ στH, is smooth.

Suppose now that H is a compact subgroup of G and that s : G → G is a
group homomorphism such that:

1. s2 = id, and

2. H = {σ ∈ G : s(σ) = σ}.

Given such a triple (G,H, s), the group homomorphism s induces a Lie algebra
homomorphism s∗ : g→ g such that s2

∗ = id. We let

h = {X ∈ g : s∗(X) = X}, p = {X ∈ g : s∗(X) = −X}.

Moreover, g = h⊕ p is a direct sum decomposition, and the fact that s∗ is a Lie
algebra homomorphism implies that

[h, h] ⊆ h, [h, p] ⊆ p, [p, p] ⊆ h.

Finally, note that h is the Lie algebra of H and hence is isomorphic to the
tangent space to H at the identity e, while p is the tangent space to G/K at
eK.

Under these conditions we can define a map

f : G/H → G defined by f(σH) = σs(σ−1).

Indeed, if h ∈ H then f(σh) = σhs(h−1σ−1) = σs(σ−1), so f is a well-defined
map on the homogeneous space G/H. Moreover,

σs(σ−1) = τs(τ−1) ⇔ τ−1σ = s(τ−1σ) ⇔ τ−1σ ∈ H,

so f is injective. Finally, one checks that

X ∈ p ⇒ t 7→ s(e−tX)

is a one-parameter group and checking the derivative at t = 0 shows that
s(e−tX) = etX and hence f(etX) = e2tX . Moreover,

f(σetX) = σetXs(e−tX)s(σ−1) = Lσ ◦Rσ−1(e2tX). (1.34)
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From these facts it follows that f is a one-to-one immersion from G/H into G,
and hence an imbedding which exhibits G/H as an imbedded submanifold of
G.

We can therefore define an induced Riemannian metric 〈·, ·〉G/H = f∗〈·, ·〉G
such that

〈X,Y 〉G/H = 4〈X,Y 〉G, for X,Y ∈ p. (1.35)

Since Lσ ◦Rσ−1 is an isometry, the geodesics in the induced submanifold metric
on G/H are just the curves t 7→ f(σetX). It follows that G acts as a group of
isometries on G/H when G/H is given the induced metric.

We mention two examples:

Example 1. Suppose G = O(n) and s is conjugation with the element

Ip,q =
(
−Ip×p 0

0 Iq×q

)
, where p+ q = n.

Thus
s(A) = Ip,qAIp,q, for A ∈ O(n),

and it is easily verified that s preserves the biinvariant metric and is a group
homomorphism. In this case H = O(p) × O(q) and the quotient O(n)/O(p) ×
O(q) is the Grassmann manifold of real p-planes in n-space.

Example 2. Suppose G = U(n) and s is conjugation with the element

Ip,q =
(
−Ip×p 0

0 Iq×q

)
, where p+ q = n.

In this case H = U(p)×U(q) and the quotient U(n)/U(p)×U(q) is the Grass-
mann manifold of complex p-planes in n-space. The special case U(n)/U(1)×
U(n−1) of complex one-dimensional subspaces of U(n) is also known as complex
projective space CPn−1.

Theorem. Given a triple (G,H, s) satisfying the above conditions, the curva-
ture of f(G//H is given by the formula

〈R(X,Y )W,Z〉 = 4〈[X,Y ], [Z,W ]〉, for X,Y, Z,W ∈ TeK(G/H) ∼= p.

Sketch of proof: The curvature formula follows from the Gauss equation for a
submanifold M of a Riemannian manifold (N, 〈·, ·〉), when M is given the in-
duced submanifold metric. To prove such an equation one follows the discussion
already given in §1.8, except that we replace the ambient Euclidean space EN
with a general Riemannian manifold (N, 〈·, ·〉).

Thus if p ∈M ⊆ N and v ∈ TpN , we let

v = v> + v⊥, where v> ∈ TpM and v⊥⊥TpM,
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(·)> and (·)⊥ being the orthogonal projection into the tangent space and normal
space. The Levi-Civita connection ∇M on M is then defined by the formula

(∇MX Y )(p) = (∇NXY (p))>,

where ∇N is the Levi-Civita connection on N . If we let X⊥(M) denote the
vector fields in N which are defined at points of M and are perpendicular to
M , then we can define the second fundamental form

α : X (M)×X (M)→ X⊥(M) by α(X,Y ) = (∇NXY (p))⊥.

As before, it satisfied the identities:

α(fX, Y ) = α(X, fY ) = fα(X,Y ), α(X,Y ) = α(Y,X).

If γ : (a, b) → M ⊆ EN is a unit speed curve, we call (∇Nγ′γ′) the geodesic
curvature of γ in N , while(

∇Nγ′γ′
)>

= ∇Mγ′ γ′ = (geodesic curvature of γ in M),(
∇Nγ′γ′

)⊥
= α(γ, γ′) = (normal curvature of γ).

Under these circumstances, one can show that the curvature tensor RM of
M ⊆ EN is given by the Gauss equation

〈RM (X,Y )W,Z〉 = 〈RN (X,Y )W,Z〉+〈α(X,Z), α(Y,W )〉−〈α(X,W ), α(Y,Z)〉,
(1.36)

whenever X, Y , Z and W are elements of X (M). The proof of (1.36) is identical
to the proof of the Gauss equation we gave before in §1.8.

In our application, since geodesics in f(G/H) are geodesics in the ambient
manifold G, α = 0 and the theorem follows directly from (1.36), together with
(1.32) and the fact that the differential of the map f : G/H → G multiplies
every element of p = TeK(G/H) by two.

Example. We consider the special case in which G = U(n) and s is conjugation
with

I1,n−1 =
(
−1 0
0 I(n−1)×(n−1)

)
,

so that the fixed point set of the automorphism s is H = U(1)× U(n− 1) and
G/H = CPn−1.

Recall that the Lie algebra u(n) divides into a direct sum u(n) = h⊕p, where

h = {X ∈ g : s∗(X) = X}, p = {X ∈ g : s∗(X) = −X},

where h is the Lie algebra of U(1)× U(n− 1). We consider two elements

X =


0 −ξ̄2 · · · −ξ̄n
ξ2 0 · · · 0
· · · · · · · · · ·
ξn 0 · · · 0

 and Y =


0 −η̄2 · · · −η̄n
η2 0 · · · 0
· · · · · · · · · ·
ηn 0 · · · 0


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of p, and determine their Lie bracket [X,Y ] ∈ h.
It is easier to do this by carrying out the multiplication in matrix terms. To

simplify notation, we write

X =
(

0 −ξ̄T
ξ 0

)
and Y =

(
0 −η̄T
η 0

)
, (1.37)

so that

XY =
(
−ξ̄T η 0

0 −ξη̄T
)
, Y X =

(
−η̄T ξ 0

0 −ηξ̄T
)

and

[X,Y ] =
(
−ξ̄T η + η̄T ξ 0

0 −ξη̄T + ηξ̄T

)
.

We next use the formula for the curvature of G/H to show that the sectional
curvatures K(σ) for CPn−1 satisfy the inequalities a2 ≤ K(σ) ≤ 4a2 for some
a2 > 0. As inner product on TIU(n), we use

〈A,B〉 =
1
2

Re
(
Trace(AT B̄)

)
, for A,B ∈ u(n).

This differs by a factor of four from the Riemannian metric induced by the
natural imbedding into E(2n)2 , but with the rescaled metric

〈X,Y 〉 = Re(ξT η̄),

when X and Y are given by (1.37). To simplify the calculations, assume that

〈X,X〉 = 〈Y, Y 〉 = 1, and 〈X,Y 〉 = 0.

Then
|ξ|2 = |η|2 = 1 and ξT η̄ = −ηT ξ̄,

the latter since ξT η̄ is purely imaginary. Then

〈[X,Y ], [X,Y ]〉

=
1
2

Trace
(
−ηT ξ̄ + ξT η̄ 0

0 −η̄ξT + ξ̄ηT

)(
−ξT η̄ + ηT ξ̄ 0

0 −ξ̄ηT + η̄ξT

)
=

1
2

Trace
(

4
∣∣Im(ξT η̄)

∣∣2 0
0 (−η̄ξT + ξ̄ηT )(−ξ̄ηT + η̄ξT )

)
= 2

∣∣Im(ξT η̄)
∣∣2 + |ξ||η|2 +

∣∣Im(ξT η̄)
∣∣2

= |ξ||η|2 + 3
∣∣Im(ξT η̄)

∣∣2 .
The last expression ranges between 1 and 4, and it follows from the Cauchy-
Schwarz inequality that it achieves its maximum when η = iξ. Thus if σ is the
two-plane spanned by X and Y ,

K(σ) =
4〈[X,Y ], [X,Y ]〉

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2
= 4

[
|ξ||η|2 + 3

∣∣Im(ξT η̄)
∣∣2]
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lies in the interval [4, 16], achieving both extreme values when n− 1 ≥ 2.

The Riemannian metric we have defined on G/H = CPn−1 is called the Fubini-
Study metric. It occurs frequently in algebraic geometry.

1.14 The exponential map

Our next goal is to develop a system of local coordinates centered at a given
point p in a Riemannian manifold which are as Euclidean as possible.

Proposition 1. Suppose that (M, 〈·, ·〉) is a pseudo-Riemannian manifold and
p ∈M . Then there is an open neighborhood V of 0 in TpM such that if v ∈ TpM
the unique geodesic γv in M which satisfies the initial conditions γv(0) = p and
γ′v(0) = v is defined on the interval [0, 1].

Proof: According to ODE theory applied to the second-order system of differ-
ential equations

d2xi

dt2
+

n∑
j,k=1

Γijk
dxj

dt
dxkdt = 0,

there is a neighborhood W of 0 in TpM and an ε > 0 such that the geodesic
γw is defined on [0, ε] for all w ∈ W . Let V = εW . Then if v ∈ V , v = εw
for some w ∈ W , and since γv(t) = γw(εt), γv is defined on [0, 1], proving the
proposition.

Definition. Define the exponential map

exppV →M by expp(v) = γv(1).

Remark. Note that if G = O(n) with the standard biinvariant metric 〈·, ·〉
which we constructed in §1.12,

expIA = etA, for A ∈ TIO(n).

This explains the origin of the term “exponential map.”

Note that if v ∈ V , t 7→ expp(tv) is a geodesic (because expp(tv) = γtv(1) =
γv(t)), and hence expp takes straight line segments through the origin in TpM
to geodesic segments through p in M .

Proposition 2. There is an open neighborhood Ũ of 0 in TpM which expp
maps diffeomorphically onto an open neighborhood U of p in M .

Proof: By the inverse function theorem, it will suffice to show that

((expp)∗)0 : T0(TpM) −→ TpM

is an isomorphism. We identify T0(TpM) with TpM . If v ∈ TpM , define

λv : R→ TpM by λv(t) = tv.
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Then λ′v(0) = v and

((expp)∗)0(v) = ((expp)∗)0(λ′v(0)) = (expp) ◦ λv)′(0)

=
d

dt
(expp(tv))

∣∣∣∣
t=0

=
d

dt
(γv(t))

∣∣∣∣
t=0

= v,

so ((expp)∗)0 is indeed an isomorphism.

It will sometimes be useful to have a stronger version of the above proposition,
proven by the same method, but making use of the map

exp : (neighborhood of 0-section in TM) −→M ×M,

defined by
exp(v) = (p, expp(v)), for v ∈ TpM .

Proposition 3. Given a point p0 ∈ M there is an open neighborhood W̃
of the zero vector 0 of Tp0M which exp maps diffeomorphically onto an open
neighborhood W of (p0, p0) in M ×M .

Proof: If 0 denotes the zero vector in Tp0M , it suffices to show that

(exp∗)0 : T0(TM) −→ T(p0,p0)(M ×M)

is an isomorphism. Since both vector spaces have the same dimension it suffices
to show that (exp∗)0 is an epimorphism. Let

π1 : M ×M →M, π2 : M ×M →M

denote the projections on the first and second factors, respectively. Then πi ◦
exp : TM →M is the bundle projection TM →M and hence ((π1 ◦ exp)∗)0 is
an epimorphism. On the other hand, the composition

Tp0M ⊆ TM
exp−−→M ×M π2−→M

is just expp0 and hence ((π2 ◦ exp)∗)0 is an epimorphism by the previous propo-
sition. Hence (exp∗)0 is indeed an epimorphism as claimed.

Corollary 4. Suppose that (M, 〈·, ·〉) is a Riemannian manifold and p0 ∈ M .
Then there is an open neighborhood U of p0 and an ε > 0 such that expp maps

{v ∈ TpM : 〈v, v〉 < ε2}

diffeomorphically onto an open subset of M for all p ∈ U .

If (M, 〈·, ·〉) is a Riemannian manifold and p ∈ M . If we choose a basis
(e1, . . . , en) for TpM , orthonormal with respect to the inner product 〈· · · , ·〉p,
we can define “Euclidean” coordinates (ẋ1, . . . , ẋn) on TpM by

ẋi(v) = ai ⇔ v =
n∑
i+1

aiei.
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If U is an open neighborhood of p ∈M such that expp maps an open neighbor-
hood Ũ of 0 ∈ TpM diffeomorphically onto U , we can define coordinates

(x1, . . . , xn) : U → Rn by xi ◦ expp = ẋi.

The coordinate (x1, . . . , xn) are called Riemannian normal coordinates on M
centered at p, or simply normal coordinates. These normal coordinates are the
coordinates which are as Euclidean as possible near p.

Suppose that in terms of the normal coordinates

〈·, ·〉 =
n∑

i,j=1

gijdx
i ⊗ dxj .

It is interesting to determine the Taylor series expansion of the gij ’s in normal
coordinates. Of course, we have gij(p) = δij .

To evaluate the first order derivatives, we note that whenever a1, . . . , an are
constants, the curve γ defined by

xi ◦ γ(t) = ait

is a geodesic in M by definition of the exponential map. Thus the functions
xi = xi ◦ γ must satisfy the geodesic equation

ẍk +
n∑

i,j=1

Γkij ẋ
iẋj = 0.

Substitution into this equation yields

n∑
i,j=1

Γkij(p)a
iaj = 0.

Since this holds for all choices of the constants (a1, . . . , an) we conclude that
Γkij(p) = 0. It then follows from (1.15) that

∂gij
∂xk

(p) = 0.

Later we will see that the Taylor series for the Riemannian metric in normal
coordinates centered at p is given by

gij = δij −
1
3

n∑
k,l=1

Rikjl(p)xkxl + (higher order terms).

This formula gives a very explicit formula for how much the Riemannian metric
differs from the Euclidean metric near a given point p. Before proving this, we
will need the so-called Gauss lemma.
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1.15 The Gauss Lemma

We now suppose that (x1, . . . , xn) are normal coordinates centered at a point p
in a Riemannian manifold (M, 〈·, ·〉), and defined on an open neighborhood U
of p. We can then define a radial function

r : U → R by r =
√

(x1)2 + · · ·+ (xn)2,

and a radial vector field S on U − {p} by

S =
n∑
i=1

xi

r

∂

∂xi
.

For 1 ≤ i, j ≤ n, let Eij be the rotation vector field on U defined by

Eij = xi
∂

∂xj
− xj ∂

∂xi
.

Lemma 1. [Eij , S] = 0.

Proof: This can be verified by direct calculation. For a more conceptual ar-
gument, one can note that the one-parameter group of local diffeomorphisms
{φt : t ∈ R} on U induced by Eij consists of rotations in terms of the normal
coordinates, so (φt)∗(R) = R, so

[Eij , R] = − d

dt
((φt)∗(R))

∣∣∣∣
t=0

= 0.

Lemma 2. If ∇ is the Levi-Civita connection on M , then ∇SS = 0.

Proof: If (aq, . . . , an) are real numbers such that
∑

(ai)2 = 1, then the curve γ
defined by

xi(γ(t) = ait

is an integral curve for S. On the other hand,

γ(t) = expp

(
n∑
i=1

ait
∂

∂xi

∣∣∣∣
p

)
,

and hence γ is a geodesic. We conclude that all integral curves for S are geodesics
and hence ∇SS = 0.

Lemma 3. 〈S, S〉 ≡ 1.

Proof: If γ is as in the preceding lemma,

d

dt
〈γ′(t), γ′(t)〉 = 2〈∇γ′(t)γ′(t), γ′(t)〉 = 0,
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so γ′(t) must have constant length. But

〈γ′(0), γ′(0)〉 =
n∑
i=1

(ai)2 = 1,

so we conclude that 〈S, S〉 ≡ 1.

Lemma 4. 〈S,Eij〉 ≡ 0.

Proof: We calculate the derivative of 〈S,Eij〉 in the radial direction:

S〈S,Eij〉 = 〈∇SS,Eij〉+ 〈S,∇SEij〉 = 〈S,∇SEij〉

= 〈S,∇EijS〉 =
1
2
Eij〈S, S〉 = 0.

Thus 〈S,Eij〉 is constant along the geodesic rays emanating from p. let ‖X‖ =√
〈X,X〉. Then as (x1, . . . , xn)→ (0, . . . 0),

|〈S,Eij〉| ≤ ‖S‖‖Eij‖ = ‖Eij‖ → 0.

If follows that the constant 〈S,Eij〉 must be zero.

Before proving the next lemma, we observe that

S(r) = 1, Eij(r) = 0.

These fact can be verified by direct computation.

Lemma 5. dr = 〈S, ·〉; in other words, dr(X) = 〈S,X〉, whenever X is a
smooth vector field on U − {p}.

Proof: It clearly suffices to prove this when either X = S or X = Eij . In the
first case,

dr(S) = S(r) = 1 = 〈S, S〉,

while in the second,

dr(Eij) = Eij(r) = 0 = 〈S,Eij〉.

Remark. It is Lemma 4 which is often called the Gauss Lemma.

1.16 Curvature in normal coordinates

Our next goal is to prove the following theorem, which explains how the curva-
ture of a Riemannian manifold (M, 〈·, ·〉) measures deviation from the Euclidean
metric.
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Taylor Series Theorem. The Taylor series for the Riemannian metric (gij)
normal coordinates centered at a point p is given by

gij = δij −
1
3

n∑
k,l=1

Rikjl(p)xkxl + (higher order terms).

To prove this, we make use of “constant extensions” of vectors in TpM , relative
to the normal coordinates (x1, . . . , xn). Suppose that w ∈ TpM and

w =
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

.

Then the constant extension of w is the vector field

W =
n∑
i=1

ai
∂

∂xi
.

Since there is a genuine constant vector field in TpM which is expp-related to
W , W depends only on w, not on the choice of normal coordinates.

We define a quadrilinear map

G : TpM × TpM × TpM × TpM −→ R

as follows:
G(x, y, z, w) = XY 〈Z,W 〉(p),

where X, Y , Z and W and the constant extensions of x, y, z and w. Thus the
components of G will be the second order derivatives of the metric tensor.

Lemma. The quadralinear form G satisfies the following symmetries:

1. G(x, y, z, w) = G(y, x, z, w),

2. G(x, y, z, w) = G(x, y, w, z),

3. G(x, x, x, x) = 0,

4. G(x, x, x, y) = 0,

5. G(x, y, z, w) = G(z, w, x, y), and

6. G(x, y, z, w) +G(x, z, w, y) +G(x,w, y, z) = 0.

Proof: The second of these identities is immediate and the first follows from
equality of mixed partials. The other identities require more work.

For the identity G(w,w,w,w) = 0, we let W =
∑
ai(∂/∂xi); then the curve

γ defined by
xi(γ(t)) = ait
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is an integral curve for W such that γ(0) = p. It is also a constant speed geodesic
and hence

WW 〈W,W 〉(p) = 0.

We next check that G(w,w,w, z) = 0. It clearly suffices to prove this when z
is unit length and perpendicular to a unit length w. We can choose our normal
coordinates so that

W =
∂

∂x1
, Z =

∂

∂x2
.

We consider the curve γ in M defined by

x1 ◦ γ(t) = t, xi ◦ γ(t) = 0, for i > 1.

Along γ we have W = S and Z = (1/x1)E12, so it follows from Lemma 12.4
that 〈W,Z〉 ≡ 0 along γ, and hence

WW 〈W,Z〉(p) = 0.

it follows from the first two symmetries that whenever u, v ∈ TpM and t ∈ R,

0 = G(u+ tv, u+ tv, u+ tv, u− tv)

= t3(something) + t2[G(v, v, u, u)−G(u, u, v, v)] + t(something).

Since this identity must hold for all t, the coefficient of t2 must be zero, so

G(u, u, v, v) = G(v, v, u, u),

which yields the fifth symmetry.
To obtain the final identity, we let

v1, v2, v3, v4 ∈ TpM and t1, t2, t3, t4 ∈ R,

and note that

G
(∑

tivi,
∑

tjvj ,
∑

tkvk,
∑

tlvl

)
= 0.

The coefficient of t1t2t3t4 must vanish, and hence∑
σ∈S4

G
(
vσ(1), vσ(2), vσ(3), vσ(4)

)
= 0.

This, together with the earlier symmetries, yields the last symmetry.

Now we let

gij,kl = G

(
∂

∂xk

∣∣∣∣
p

,
∂

∂xl

∣∣∣∣
p

,
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
.

Lemma . Riljk(p) = gij,lk − gik,lj .
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Proof: Since the Christoffel symbols Γkij vanish at p, it follows that

∂

∂xi
(Γljk)(p) =

1
2
∂

∂xi

[
∂glj
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

]
(p),

∂

∂xj
(Γlik)(p) =

1
2
∂

∂xj

[
∂gli
∂xk

+
∂glk
∂xi
− ∂gik

∂xl

]
(p),

and hence we conclude from Proposition 2 from §1.8 that

Rijlk(p) =
1
2

[
∂2gjl
∂xi∂xk

− ∂2gjk
∂xi∂xl

+
∂2gik
∂xj∂xl

− ∂2gil
∂xj∂xk

]
(p)

=
1
2

[gjl,ik + glk,jl − gjk,il − gil,jk] = gik,jl − gil,jk,

the last step following from the third symmetry of G.

From the last two lemmas, we now conclude that

Rikjl(p) +Riljk(p) = gil,jk − gij,lk + gik,lj − gij,lk = −3gij,kl.

We therefore conclude that

∂2gij
∂xk∂xl

(p) = −1
3

[Rikjl(p) +Riljk(p)].

Substitution into the Taylor expansion

gij = δij +
1
2

n∑
k,l=1

∂2gij
∂xk∂xl

(p)xkxl + (higher order terms)

now yields the Taylor Series Theorem.

1.17 Riemannian manifolds as metric spaces

We can use the normal coordinates constructed in the previous sections to es-
tablish the following important result:

Local Minimization Theorem. Suppose that (Mn, 〈·, ·〉) is a Riemannian
manifold and that Ũ is an open ball of radius ε > 0 centered at 0 ∈ TpM which
expp maps diffeomorphically onto an open neighborhood U of p in M . Suppose

that v ∈ Ũ and that γ : [0, 1] → M is the geodesic defined by γ(t) = expp(tv).
Let q = expp(v). If λ : [0, 1] → M is any smooth curve with λ(0) = p and
λ(1) = q, then

1. L(λ) ≥ L(γ), with equality holding only if λ is a reparametrization of γ,
and

2. J(λ) ≥ J(γ), with equality holding only if λ = γ.
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To prove the first of these assertions, we use normal coordinates (x1, . . . , xn)
defined on U . Note that L(γ) = r(q). Suppose that λ : [0, 1] → M is any
smooth curve with λ(0) = p and λ(1) = q.

Case I. Suppose that λ does not leave U . Then

L(λ) =
∫ 1

0

√
〈λ′(t), λ′(t)〉dt =

∫ 1

0

‖λ′(t)‖dt ≥
∫ 1

0

〈λ′(t), R(λ(t)〉dt

≥
∫ 1

0

dr(λ′(t))dt = (r ◦ λ)(1)− (r ◦ λ)(0) = L(γ).

Moreover, equality holds only if λ′(t) is a nonnegative multiple of R(λ(t)) which
holds only if λ is a reparametrization of γ.

Case II. Suppose that λ leaves U at some time t0 ∈ (0, 1). Then

L(λ) =
∫ 1

0

√
〈λ′(t), λ′(t)〉dt >

∫ t0

0

‖λ′(t)‖dt ≥
∫ 1

0

〈λ′(t), R(λ(t)〉dt

≥
∫ t0

0

dr(λ′(t))dt = (r ◦ λ)(t0)− (r ◦ λ)(0) = ε > L(γ).

The second assertion is proven in a similar fashion.

If (M, 〈·, ·〉) is a Riemannian manifold, we can define a distance function

d : M ×M −→ R

by setting

d(p, q) = inf{ L(γ) such that γ : [0, 1]→M is a smooth path
with γ(0) = p and γ(1) = q }.

Then the previous theorem shos that d(p, q) = 0 implies that p = q. Hence

1. d(p, q) ≥ 0, with equality holding if and only if p = q,

2. d(p, q) = d(q, p), and

3. d(p, r) ≤ d(p, q) + d(q, r).

Thus (M,d) is a metric space. It is relatively straightforward to show that the
metric topology on M agrees with the usual topology of M .

Definition. If p and q are points in a Riemannian manifold M , a minimal
geodesic from p to q is a geodesic γ : [a, b]→M such that

γ(a) = p, γ(b) = q and L(γ) = d(p, q).

61



An open set U ⊂ M is said to be geodesically convex if whenever p and q are
elements of U , there is a unique minimal geodesic from p to q and moreover,
that minimal geodesic lies entirely within U .

Geodesic Convexity Theorem. Suppose that (Mn, 〈·, ·〉) is a Riemannian
manifold. Then M has an open cover by geodesically convex open sets.

A proof could be constructed based upon the preceding arguments, but we omit
the details. (One proof is outlined in Problem 6.4 from [20].)

1.18 Completeness

We return now to the variational problem with which we started this chapter.
Given two points p and q in a Riemannian manifold M , does there exist a
minimal geodesic from p to q? For this variational problem to have a solution
we need an hypothesis on the Riemannian metric.

Definition. A pseudo-Riemannian manifold (M, 〈·, ·) is said to be geodesically
complete if geodesics in M can be extended indefinitely without running off
the manifold. Equivalently, (M, 〈·, ·) is geodesically complete if expp is globally
defined for all p ∈M .

Examples: The spaces of constant curvature En, Sn(a) and Hn(a) are all
geodesically complete, as are the compact Lie groups with biinvariant metrics
and the Grassmann manifolds. On the other hand, nonempty proper open
subsets of any of these spaces are not geodesically complete.

Minimal Geodesic Theorem I. Suppose that (Mn, 〈·, ·〉) is connected and
geodesically complete. Then any two points p and q of M can be connected by
a minimal geodesic.

The idea behind the proof is extremely simple. Given p ∈ M , the geodesic
completeness assumption implies that expp is globally defined. Let a = d(p, q),
then we should have q = expp(bv), where v is a unit length vector in TpM which
“points in the direction” of q.

More precisely, let B̃ε be a closed ball of radius ε centered at 0 in TpM , and
suppose that B̃ε is contained in a an open set which is mapped diffeomorphically
by expp onto an open neighborhood of p in M . Let S̃ε be the boundary of B̃ε
and let S be the image of S̃ under expp. Since S is a compact subset of M there
is a point m ∈ S of minimal distance from q. We can write m = expp(εv) for
some unit length v ∈ TpM . Finally, we define

γ : [0, a]→M by γ(t) = expp(tv).

Then γ is a candidate for the minimal geodesic from p to q.
To finish the proof, we need to show that γ(a) = q. It will suffice to show

that
d(γ(t), q) = a− t, (1.38)

62



for all t ∈ [0, a]. Note that d(γ(t), q) ≥ a− t, because if d(γ(t), q) < a− t, then

d(p, q) ≤ d(p, γ(t)) + d(γ(t), q) < t+ (a− t) = a.

Moreover, if (1.38) holds for t0 ∈ [0, a], it also holds for all t ∈ [0, t0], because if
t ∈ [0, t0], then

d(γ(t), q) ≤ d(γ(t), γ(t0)) + d(γ(t0), q) ≤ (t0 − t) + (a− t0) = a− t.

We let
t0 = sup{t ∈ [0, a] : d(γ(t), q) = a− t},

and note that d(γ(t0), q) = a− t0 by continuity. We will show that:

1. t0 ≥ ε, and

2. 0 < t0 < a leads to a contradiction.

To establish the first of these assertions, we note that by the Theorem from
§1.17,

d(p, q) = inf{d(p, r) + d(r, q) : r ∈ S} = ε+ inf{d(r, q) : r ∈ S} = ε+ d(m, q),

and hence a = ε+ d(m, q) = ε+ d(γ(ε), q).
To prove the second assertion, we construct a sphere S about γ(t0) as we

did for p, and let m be the point on S of minimal distance from q. Then

d(γ(t0), q) = inf{d(γ(t0), r) + d(r, q) : r ∈ S} = ε+ d(m, q),

and hence
a− t0 = ε+ d(m, q), so a− (t0 + ε) = d(m, q).

Note that d(p,m) ≥ t0 + ε because otherwise

d(p, q) ≤ d(p,m) + d(m, q) < t0 + ε+ a− (t0 + ε) = a,

so the broken geodesic from p to γ(t0) to m has length t0 + ε = d(p,m). If
the broken geodesic had a corner it could be shortened by rounding off the
corner. Hence m must lie on the image of γ, so γ(t0 + ε) = m, contradicting the
maximality of t0.

It follows that t0 = a, d(γ(a), q) = 0 and γ(a) = q, finishing the proof of the
theorem.

For a Riemannian manifold, we also have a notion of completeness in terms of
metric spaces. Fortunately, the two notions of completeness coincide:

Hopf-Rinow Theorem. Suppose that (Mn, 〈·, ·〉) is a connected Riemannian
manifold. Then (M,d) is complete as a metric space if and only if (M, 〈·, ·) is
geodesically complete.

To prove this theorem, suppose first that (Mn, 〈·, ·〉) is complete as a metric
space but not geodesically complete. Then there is some unit speed geodesic
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γ : [0, b) → M which extends to no interval [0, b + δ) for δ > 0. Let (ti) be a
sequence from [0, b) such that ti → b. If pi = γ(ti), then d(pi, pj) ≤ |ti − tj |,
so (pi) is a Cauchy sequence in (M,d). Let p0 be the limit of (pi). Then by
Corollary 4 from §1.14, we see that there is some fixed ε > 0 such that exppi(v) is
defined for all |v| < ε when i is sufficiently large. This implies γ can be extended
a distance ε beyond pi when i is sufficiently large, yielding a contradiction.

Thus we need only show that when (M, 〈·, ·) is geodesically complete, (M,d)
is complete as a metric space. Let p be a fixed point in M and (qi) a Cauchy
sequence in (M,d). We need to show that (qi) converges to a point q ∈ M .
We can assume that d(qi, qj) < ε for some ε > 0, and let K = d(p, q1). Then
d(p, qi) ≤ K + ε for all i, and hence qi = expp(vi) where ‖vi‖ ≤ K + ε. It
follows that (vi) has a convergent subsequence, which converges to some point
v ∈ TpM . Then q = expp(v) is a limit of the Cauchy sequence (qi), and (M,d)
is indeed a complete metric space.

1.19 Smooth closed geodesics

If we are willing to strengthen completeness to compactness, we can give an-
other proof of the Minimal Geodesic Theorem, which is quite intuitive and
illustrates techniques that are commonly used for calculus of variations prob-
lems. Moreover, this approach is easily modified to give a proof that a compact
Riemannian manifold which is not simply connected must possess a nonconstant
smooth closed geodesic.

Simplifying notation a little, we let

Ω(M ; p, q) = { smooth maps γ : [0, 1]→M such that γ(0) = p and γ(1) = q }

and let Ω(M ; p, q)a = {γ ∈ Ω(M ; p, q) : J(γ) < a}.

Assuming that M is compact, we can conclude that there is a δ > 0 such
that any p and q in M with d(p, q) < δ are connected by a unique minimal
geodesic

γp,q : [0, 1]→M with L(γp,q) = d(p, q).

Moreover, if δ > 0 is sufficiently small, the ball of radius δ about any point is
geodesically convex and γp,q depends smoothly on p and q. If γ : [a, a+ ε]→M
is a smooth path and

ε <
δ2

2a
, then J(γ) ≤ a ⇒ L(γ) ≤

√
2aε < δ.

as we see from (1.2).
Choose N ∈ N such that 1/N < ε, and if γ ∈ Ω(M ; p, q)a, let pi = γ(i/N),

for 0 ≤ i ≤ N . Then γ is approximated by the map γ̃ : [0, 1]→M such that

γ̃(t) = γpi−1pi

(
(i− 1) + t

N

)
, for t ∈

[
i− 1
N

,
i

N

]
.
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Thus γ̃ lies in the space of “broken geodesics,”

BGN (M ; p, q) = { maps γ : [0, 1]→M such that

γ|
[
i− 1
N

,
i

N

]
is a constant speed geodesic },

and Ω(M ; p, q)a is approximated by

BGN (M ; p, q)a = {γ ∈ BGN (M ; p, q) : J(γ) < a}.

Suppose that γ is an element of BGN (M ; p, q)a. Then if

pi = γ

(
i

N

)
, then d(pi−1, pi) ≤

√
2a
N

<
√

2aε < δ,

so γ is completely determined by

(p0, p1, . . . , pi, . . . , pN ), where p0 = p, pN = q.

Thus we have an injection

j : BGN (M ; p, q)a →
N−1︷ ︸︸ ︷

M ×M × · · · ×M,

j(γ) =
(
γ

(
1
N

)
, . . . , γ

(
N − 1
N

))
.

We also have a map r : Ω(M ; p, q)a → BGN (M ; p, q)a defined as follows: If
γ ∈ Ω(M ; p, q)a, let r(γ) be the broken geodesic from

p = p0 to p1 = γ

(
1
N

)
to · · · to pN−1 = γ

(
N − 1
N

)
to q.

We can regard r(γ) as the closest approximation to γ in the space of broken
geodesics.

Minimal Geodesic Theorem II. Suppose that (Mn, 〈·, ·〉) is a compact con-
nected Riemannian manifold. Then any two points p and q of M can be con-
nected by a minimal geodesic.

To prove this, let
µ = inf{J(γ) : γ ∈ Ω(M ; p, q)}.

Choose a > µ, so that Ω(M ; p, q)a is nonempty, and let (γj) be a sequence in
Ω(M ; p, q)a such that J(γj) → µ. Let γ̃j = r(γj), the corresponding broken
geodesic from

p = p0j to p1j = γ

(
1
N

)
to · · · to p(N−1)j = γ

(
N − 1
N

)
to q,
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and note that J(γ̃j) ≤ J(γj).
Since M is compact, we can choose a subsequence (jk) such that (pijk) con-

verges to some point pi ∈M for each i. Hence a subsequence of (γ̃j) converges
to an element γ̃ ∈ BGN (M ; p, q)a. Moreover,

J(γ̃j) ≤ limj→∞J(γ̃j) ≤ limj→∞J(γj) = µ.

The curve γ̃ must be of constant speed, because otherwise we could decrease J
be reparametrizing γ̃. Hence γ̃ must also minimize length L on BGN (M ; p, q)a.

Finally, γ̃ cannot have any corners, because if it did, we could decrease
length by rounding corners. (This follows from the first variation formula for
piecewise smooth curves given in §1.3.2.) We conclude that γ̃ : [0, 1] → M is a
smooth geodesic with L(γ̃) = d(p, q), that is, γ̃ is a minimal geodesic from p to
q, finishing the proof of the theorem.

Remark. Note that BGN (M ; p, q)a can be regarded as a finite-dimensional
manifold which approximates the infinite-dimensional space Ω(M ; p, q)a. This
is a powerful idea which Marston Morse used in his critical point theory for
geodesics. (See [25] for a thorough working out of this approach.)

Although the preceding theorem is weaker than the one presented in the previous
section, the technique of proof can be extended to other contexts. We say that
two smooth curves

γ1 : S1 →M and γ2 : S1 →M

are freely homotopic if there is a continuous path

Γ : [0, 1]× S1 →M such that Γ(0, t) = γ1(t) and Γ(1, t) = γ2(t).

We say that M is simply connected if any smooth path γ : S1 → M is freely
homotopic to a constant path. Thus M is simply connected if and only if its
fundamental group, as defined in [14], is zero.

As before, we can approximate the space Map(S1,M) of smooth maps γ :
S1 → M by a finite-dimensional space, where S1 is regarded as the interval
[0, 1] with the points 0 and 1 identified. This time the finite-dimensional space
is the space of “broken geodesics,”

BGN (S1,M) = { maps γ : [0, 1]→M such that

γ|
[
i− 1
N

,
i

N

]
is a constant speed geodesic and γ(0) = γ(1) }.

Just as before, when a is sufficiently small, then

Map(S1,M)a = {γ ∈ Map(S1,M) : J(γ) < a}

is approximated by

BGN (S1,M)a = {γ ∈ BGN (S1,M) : J(γ) < a}.

66



Moreover, if pi = γ(i/N), then γ is completely determined by

(p1, p2, . . . , pi, . . . , pN ).

Thus we have an injection

j : BGN (S1,M)a →
N︷ ︸︸ ︷

M ×M × · · · ×M,

j(γ) =
(
γ

(
1
N

)
, . . . , γ

(
N − 1
N

)
, γ(1)

)
.

We also have a map r : Map(S1,M)a → BGN (S1,M)a defined as follows: If
γ ∈ Map(S1,M)a, let r(γ) be the broken geodesic from

γ(0) to p1 = γ

(
1
N

)
to · · · to pN−1 = γ

(
N − 1
N

)
to pN = γ(1).

Closed Geodesic Theorem. Suppose that (Mn, 〈·, ·〉) is a compact connected
Riemannian manifold which is not simply connected. Then there is a noncon-
stant smooth closed geodesic in M which minimizes length among all noncon-
stant smooth closed curves in Mn.

The proof is virtually identical to that for the Minimal Geodesic Theorem II
except for a minor change in notation. We note that since M is not simply
connected, the space

F = {γ ∈ Map(S1,M) : γ is not freely homotopic to a constant }

is nonempty, and we let

µ = inf{J(γ) : γ ∈ F}.

Choose a > µ, so that Fa = {γ ∈ F : J(γ) < a} is nonempty, and let (γj) be a
sequence in Fa such that J(γj)→ µ. Let γ̃j = r(γj), the corresponding broken
geodesic and from

pNj = γ(0) to p1j = γ

(
1
N

)
to · · · to p(N−1)j = γ

(
N − 1
N

)
to pNj = γ(1),

and note that J(γ̃j) ≤ J(γj).
Since M is compact, we can choose a subsequence (jk) such that (pijk) con-

verges to some point pi ∈M for each i. Hence a subsequence of (γ̃j) converges
to an element γ̃ ∈ BGN (S1,M)a. Moreover,

J(γ̃j) ≤ limj→∞J(γ̃j) ≤ limj→∞J(γj) = µ.

The curve γ̃ must be of constant speed, because otherwise we could decrease J
be reparametrizing γ̃. Hence γ̃ must also minimize length L on BGN (S1,M)a.

Finally, γ̃ cannot have any corners, because if it did, we could decrease
length by rounding corners. (This follows again from the first variation formula
for piecewise smooth curves given in §1.3.2.) We conclude that γ̃ : S1 →M is a
smooth geodesic which is not constant since it cannot even be freely homotopic
to a constant.
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Chapter 2

Differential forms

2.1 Tensor algebra

The key advantage of differential forms over more general tensor fields is that
they pull back under smooth maps. In the next several sections, we explain how
this leads to one of the simplest ways of constructing a topological invariant of
smooth manifolds, namely the de Rham cohomology.

Recall that T ∗pM is the vector space of linear maps α : TpM → R. We define
the k-fold tensor product ⊗kT ∗pM to be the vector space of R-multilinear maps

φ :

k︷ ︸︸ ︷
TpM × TpM × · · · × TpM −→ R.

Thus ⊗1T ∗pM is just the space of linear functionals on TpM which is T ∗pM itself,
while by convention ⊗0T ∗PM = R.

We can define a product on it as follows. If φ ∈ ⊗kT ∗pM and ψ ∈ ⊗lT ∗pM ,
we define φ⊗ ψ ∈ ⊗k+lT ∗pM by

(φ⊗ ψ)(v1, . . . , vk+l) = φ(v1, . . . , vk)ψ(vk+1, . . . , vk+l).

This multiplication is called the tensor product and is bilinear,

(aφ+ φ̃)⊗ ψ = aφ⊗ ψ + φ̃⊗ ψ, φ⊗ (aψ + ψ̃) = aφ⊗ ψ + φ⊗ ψ̃,

as well as associative,

(φ⊗ ψ)⊗ ω = φ⊗ (ψ ⊗ ω).

Hence we can write φ⊗ψ⊗ω with no danger of confusion. The tensor product
makes the direct sum

⊗∗T ∗pM =
∞∑
i=0

⊗kT ∗pM

into a graded algebra over R, called the tensor algebra of T ∗pM .
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Proposition 1. If (x1, . . . , xn) are smooth coordinates defined on an open
neighborhood of p ∈M , then

{dxi1 |p ⊗ · · · ⊗ dxik |p : 1 ≤ i1 ≤ n, . . . , 1 ≤ ik ≤ n}

is a basis for ⊗kT ∗pM . Thus ⊗kT ∗pM has dimension nk.

Sketch of proof: For linear independence, suppose that∑
ai1···ikdx

i1 |p ⊗ · · · ⊗ dxik |p = 0.

Then

0 =
∑

ai1···ikdx
i1 |p ⊗ · · · ⊗ dxik |p

(
∂

∂xj1

∣∣∣∣
p

, . . . ,
∂

∂xjk

∣∣∣∣
p

)

=
∑

ai1···ikdx
i1 |p

(
∂

∂xj1

∣∣∣∣
p

)
dxik |p

(
∂

∂xjk

∣∣∣∣
p

)
= aj1···jk .

To show that the elements span, suppose that φ ∈ ⊗kT ∗pM , and show that

φ =
∑

ai1···ikdx
i1 |p ⊗ · · · ⊗ dxik |p,

where
∑

ai1···ik = φ

(
∂

∂xi1

∣∣∣∣
p

, . . . ,
∂

∂xik

∣∣∣∣
p

)
.

We let ΛkT ∗pM denote the space of skew-symmetric elements of φ ∈ ⊗kT ∗pM .
By skew-symmetric, we mean that the value of φ changes sign when two distinct
arguments are interchanged,

φ(v1, . . . , vi, · · · , vj , . . . , vk) = −φ(v1, . . . , vj , · · · , vi, . . . , vk),

whenever i 6= j.
This can be expressed in terms of the symmetric group Sk on k letters.

Recall that by definition, Sk is the group of bijections from the set {1, . . . , k}
onto itself, with composition being the group operation. We define a function

sgn : Sk → {±1} by sgn(σ) =
∏
i<j

σ(i)− σ(j)
i− j

,

and check that it is a group homomorphism. We say that an element σ ∈ Sk is
even if sgn(σ) = 1, odd if sgn(σ) = −1. Then a multlinear map

φ :

k︷ ︸︸ ︷
TpM × TpM × · · · × TpM −→ R

is skew-symmetric if

φ(vσ(1), . . . , vσ(k)) = (sgnσ)φ(v1, . . . vk),
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for all σ ∈ Sk.
Note that ΛkT ∗pM is a linear subspace of ⊗kT ∗pM . We define a projection

Alt : ⊗kT ∗pM −→ ΛkT ∗pM

by

Alt(φ)(v1, . . . , vk) =
1
k!

∑
σ∈Sk

(sgnσ)(vσ(1), . . . , vσ(k)).

It is a straightforward exercise to show that

Alt(Alt(φ⊗ ψ)⊗ ω) = Alt(φ⊗ ψ ⊗ ω) = Alt(φ⊗Alt(ψ ⊗ ω). (2.1)

For details, one can check the argument for Lemma 6.6 of Chapter 5 in [5].
If φ ∈ ΛkT ∗pM and ψ ∈ ΛlT ∗pM , we can define φ ∧ ψ ∈ Λk+lT ∗pM by

φ ∧ ψ =
(k + l)!
k!l!

Alt(φ⊗ ψ).

This multiplication is called the wedge product . It is bilinear,

(aφ+ φ̃) ∧ ψ = aφ ∧ ψ + φ̃ ∧ ψ, φ ∧ (aψ + ψ̃) = aφ ∧ ψ + φ ∧ ψ̃,

skew-commutative

φ ∧ ψ = (−1)klψ ∧ φ, for φ ∈ ΛkT ∗pM and ψ ∈ ΛlT ∗pM,

and associative
(φ ∧ ψ) ∧ ω = φ ∧ (ψ ∧ ω).

Only the last fact is nontrivial, and it follows rather quickly from identity (2.1).
This product makes the direct sum

Λ∗T ∗pM =
n∑
i=0

ΛkT ∗pM

into a graded commutative algebra over R, called the exterior algebra of T ∗pM .

Proposition 2. If (x1, . . . , xn) are smooth coordinates defined on an open
neighborhood of p ∈M , then

{dxi1 |p ∧ · · · ∧ dxik |p : 1 ≤ i1 < i2 < · · · < ik ≤ n}

is a basis for ⊗kT ∗pM . Thus ⊗kT ∗pM has dimension
(
n
k

)
.

the proof is quite similar to that of Proposition 1.
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2.2 The exterior derivative

We now let ΛkT ∗M =
⋃
{ΛkT ∗pM}, a disjoint union. Just as in the case of

the tangent and cotangent bundles, ΛkT ∗M has a smooth manifold structure,
together with a projection π : ΛkT ∗M → M such that π(ΛkT ∗pM) = p. We
can describe the coordinates for the smooth structure on ΛkT ∗M as follows: If
(x1, . . . , xn) are smooth coordinates on an open set U ⊆ M , the corresponding
smooth coordinates on π−1(U) are are the pullbacks of (x1, . . . , xn) to π−1(U),
together with the additional coordinates pi1···ik : π−1(U)→ R defined by

pi1···ik

 ∑
j1<···<jk

aj1···jkdx
j1 |p ∧ · · · ∧ dxjk |p

 = ai1···ik .

If U is an open subset of M , a differential k-form or a differential form
of degree k on U is a smooth map ω : U → ΛkT ∗pM such that π ◦ ω = idU .
Informally, we can say that a differential k-form on U is a function ω which
assigns to each point p ∈ U an element ω(p) ∈ ΛkT ∗pM in such a way that ω(p)
varies smoothly with p.

Let Ωk(U) denote the real vector space of differential k-forms on U . If
(U, (x1, . . . , xn)) is a smooth coordinate system on M , we can define

dxi1 ∧ · · · ∧ dxik ∈ Ωk(U) by (dxi1 ∧ · · · ∧ dxik)(p) = dxi1 |p ∧ · · · ∧ dxik |p.

Then any element ω ∈ Ωk(U) can be written uniquely as a sum

ω =
∑

i1<···<ik

fi1···ikdx
i1 ∧ · · · ∧ dxik ,

where fi1···ik : U → R is a smooth function. If ω ∈ Ωk(U) and φ ∈ Ωl(U), then
we can define the wedge product ω ∧ φ ∈ Ωk+l(U) by

(ω ∧ φ)(p) = ω(p) ∧ φ(p).

Note that if f ∈ Ω0(M) = F(M) and ω ∈ Ωk(M), then f ∧ ω = fω.

Exterior Derivative Theorem. There is a unique collection of linear maps
of real vector spaces,

d : Ωk(M) −→ Ωk+1(M),

which satisfy the following conditions:

1. If ω is a k-form, the value dω(p) depends only on ω and its derivatives at
p.

2. If f is a smooth real-valued function regarded as a differential 0-form, d(f)
is the differential of f defined before.

3. d ◦ d = 0.
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4. If ω is a k-form and φ is an l-form, then

d(ω ∧ φ) = (dω) ∧ φ+ (−1)kω ∧ (dφ).

We call d the exterior derivative.

We begin the proof of the theorem by establishing uniqueness. By property 1,
it suffices to prove uniqueness in the case where M = U , where U is the domain
of a local coordinate system (x1, . . . , xn). If ω ∈ Ωk(U), we can write

ω =
∑

i1<···<ik

fi1···ikdx
i1 ∧ · · · ∧ dxik ,

where fi1···ik : U → R is a smooth function. Using linearity and the axiom for
products we now find that

dω =
∑

i1<···<ik

d
(
fi1···ikdx

i1 ∧ · · · ∧ dxik
)

=
∑

i1<···<ik

dfi1···ik ∧ dxi1 ∧ · · · ∧ dxik +
∑

i1<···<ik

fi1···ikd
(
dxi1 ∧ · · · ∧ dxik

)
.

Using the axiom for products, the fact that d ◦ d = 0 and induction, one shows
that

d
(
dxi1 ∧ · · · ∧ dxik

)
= 0.

Hence
dω =

∑
i1<···<ik

dfi1···ik ∧ dxi1 ∧ · · · ∧ dxik , (2.2)

where dfi1···ik ∈ Ω1(U) is the previously defined differential of a function. This
formula establishes uniqueness.

We next prove local existence, existence on U where U is the domain of
a local coordinate system (x1, . . . , xn). To do this, we can define dω by (2.2)
and check that it satisfies the axioms. The first two axioms are immediate. To
establish the last axiom, we use the easily proven formula

d(fg) = g(df) + f(dg).

Suppose that

ω =
∑

i1<···<ik

fi1···ikdx
i1 ∧ · · · ∧ dxik and φ =

∑
j1<···<jl

gj1···jldx
j1 ∧ · · · ∧ dxjl .

Then

ω ∧ φ =
∑

fi1···ikgj1···jldx
i1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl ,
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and hence

d(ω ∧ φ) =
∑

d(fi1···ikgj1···jl) ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

=
∑

gj1···jldfi1···ik ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

+
∑

fi1···ikdgj1···jl ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

= dω ∧ φ+ (−1)kω ∧ dφ.

For the third axiom, we use the equality of mixed partial derivatives. First,
we note that if f ∈ Ω0(M), then

d(df) = d

 n∑
j=1

∂f

∂xj
dxj

 =
n∑

i,j=1

∂2f

∂xi∂xj
dxi ∧ dxj

=
∑
i<j

[
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

]
dxi ∧ dxj = 0.

In general, if ω ∈ Ωk(U), say

ω =
∑

i1<···<ik

fi1···ikdx
i1 ∧ · · · ∧ dxik ,

we find that

d(dω) = d

( ∑
i1<···<ik

dfi1···ik ∧ dxi1 ∧ · · · ∧ dxik
)

=
∑

i1<···<ik

d(dfi1···ik)∧dxi1∧· · ·∧dxik−
∑

i1<···<ik

dfi1···ik∧d(dxi1∧· · ·∧dxik) = 0.

This finishes the proof of local existence. To prove global existence, we
note that the locally defined exterior derivative operators must fit together on
overlaps due to uniqueness, and hence they fit together to form a globally defined
exterior derivative operator on M .

Example. The exterior derivative is actually an extension of the gradient,
divergence and curl operators one meets in several variable calculus. Thus
suppose that M = E3 with the standard euclidean coordinates (x, y, z) and let

dx = dxi + dyj + dzk, NdA = (dy ∧ dz)i + (dz ∧ dx)j + (dx ∧ dy)k,

where (i, j,k) is the usual orthonormal basis. If f ∈ Ω0(E3) is a smooth function,

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dx = (gradient of f) · dx.
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If θ = F · dx is an element of Ω1(E3), where F is a vector field, say θ =
Pdx+Qdy +Rdz, then

dθ =
(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz

+
(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

= (curl of F) ·NdA.

Finally, if ω = F ·NdA is an element of Ω2(E3), say

ω = Pdy ∧ dz +Qdy ∧ dx+Rdx ∧ dy,

then

dω =
(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz = (divergence of F)dx ∧ dy ∧ dz.

The exterior derivative extends these familiar operations from calculus to ar-
bitrary smooth manifolds in such a way that they are “natural under smooth
maps.”

We now explain what we mean by natural under smooth maps. Suppose that
F : M → N is a smooth map. If p ∈M , the linear map

(F∗)p : TpM −→ TF (p)N

induces a linear map
F ∗p : ΛkT ∗F (p)N −→ ΛkT ∗pM

By
F ∗p (φ)(v1, . . . , vk) = φ((F∗)p(v1), . . . , (F∗)p(vk)).

This in turn induces a linear map

F ∗ : Ωk(N)→ Ωk(M) by F ∗(ω)(p) = F ∗p (ω(F (p))).

If f ∈ Ω0(M), we agree to let F ∗(f) = f ◦ F .

Proposition. The map F ∗ preserves wedge products and exterior derivatives:

1. F ∗(ω ∧ θ) = F ∗(ω) ∧ F ∗(θ).

2. d(F ∗(ω)) = F ∗(dω).

We leave the proof of the first of these facts as an easy exercise. We first check
the second for the case of a function f ∈ Ω0(M). In this case, if v ∈ TpM ,

F ∗(df)(v) = df((F∗)p(v)) = (F∗)p(v)(f)
= v(f ◦ F ) = d(f ◦ F )(v) = d(F ∗(f))(v).
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We next check in the case where N = U , the domain of a local coordinate
system (x1, . . . , xn). In this case,

ω =
∑

i1<···<ik

fi1···ikdx
i1 ∧ · · · ∧ dxik ,

and
dω =

∑
i1<···<ik

dfi1···ik ∧ dxi1 ∧ · · · ∧ dxik .

Using the first assertion of the proposition, we see that

F ∗(dω) =
∑

i1<···<ik

F ∗(dfi1···ik) ∧ F ∗(dxi1) ∧ · · · ∧ F ∗(dxik)

=
∑

i1<···<ik

d(fi1···ik ◦ F ) ∧ d(xi1 ◦ F ) ∧ · · · ∧ d(xik ◦ F ). (2.3)

On the other hand,

F ∗ω =
∑

i1<···<ik

(fi1···ik ◦ F )d(xi1 ◦ F ) ∧ · · · ∧ d(xik ◦ F ),

so
dF ∗ω =

∑
i1<···<ik

d(fi1···ik ◦ F ) ∧ d(xi1 ◦ F ) ∧ · · · ∧ d(xik ◦ F ). (2.4)

Comparing (2.3) and (2.4) we see that F ∗ ◦ d = d ◦ F ∗, when N has a global
coordinate system.

Since the operators are local, F ∗ ◦ d = d ◦ F ∗ on any smooth manifold M .

If ω ∈ Ωk(M) and X1, . . . , Xk are smooth vector fields on M , we can define a
smooth function ω(X1, . . . , Xk) on M by

ω(X1, . . . , Xk)(p) = ω(p)(X1(p), . . . , Xk(p)).

Exercise V. Show that if X and Y are smooth vector fields on M and θ ∈
Ω1(M) is a smooth one-form, then

dθ(X,Y ) = X(θ(Y ))− Y (θ(X))− θ([X,Y ]).

Hint: Use local coordinates.

2.3 Integration of differential forms

The way to think of differential forms of degree n is that they are integrands
for multiple integrals over n-dimensional oriented manifolds.

Two smooth charts (U, (x1, . . . , xn)) and V, (y1, . . . , yn)) on an n-dimensional
smooth manifold M are said to be coherently oriented if

det
(
∂yi

∂xj

)
> 0,
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where defined. We say that M is orientable if it possesses an atlas of coherently
oriented charts. Such an atlas is called an orientation for M . An oriented
smooth manifold is a smooth manifold together with a choice of orientation.

Suppose that M is a smooth manifold with orientation defined by the atlas
A of coherently oriented charts. A chart V, (y1, . . . , yn)) on M is said to be
positively oriented if

det
(
∂yi

∂xj

)
> 0,

where defined, for every chart (U, (x1, . . . , xn)) in A.

Local integration of n-forms: Suppose that ω is a smooth n-form with com-
pact support in an open subset U of a smooth n-dimensional oriented manifold
M . If φ = (x1, . . . , xn) are positively oriented coordinates on U , we can write

fdx1 ∧ dx2 ∧ · · · ∧ dxn.

We can then define the integral of ω over U by the formula∫
U

ω =
∫ n

R
(f ◦ φ−1)dx1 · · · dxn.

Thus to integrate an n-form over an oriented n-manifolds, we essentially we just
leave out the wedges and take the ordinary Riemann integral.

We need to check that this definition is independent of choice of positively
oriented smooth coordinates. To do this, note that if ψ = (y1, . . . , yn) is a
second positively oriented coordinate system on U , then

dxi =
n∑
j=1

∂xi

∂yj
dyj ,

and hence

dx1 ∧ · · · ∧ dxn =
n∑

j1=1

· · ·
n∑

jn=1

∂x1

∂yj1
· · · ∂x

n

∂yjn
dyj1 ∧ · · · ∧ yjn

=
∑
σ∈Sn

∂x1

∂yσ(1)
· · · ∂xn

∂yσ(n)
dyσ(1) ∧ · · · ∧ yσ(n)

=
∑
σ∈Sn

(sgnσ)
∂x1

∂yσ(1)
· · · ∂xn

∂yσ(n)
dy1 ∧ · · · ∧ dyn.

Recall that if A = (aij) is an arbitrary n× n matrix,

detA =
∑
σ∈Sn

(sgnσ)a1
σ(1) · · · a

n
σ(n),

and since the two coordinate systems are coherently oriented,

dx1 ∧ · · · ∧ dxn = det
(
∂yi

∂xj

)
dy1 ∧ · · · ∧ dyn =

∣∣∣∣det
(
∂yi

∂xj

)∣∣∣∣ dy1 ∧ · · · ∧ dyn.
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Thus the two expressions for the integral of ω over U will agree if and only if∫ n

R
(f ◦ φ−1)dx1 · · · dxn =

∫ n

R
(f ◦ ψ−1)

∣∣∣∣det
(
∂yi

∂xj

)∣∣∣∣ dx1 · · · dxn.

But this is just the formula for change of variable in a multiple integral familiar
from several variable calculus. A proof can be found in any undergraduate text
on real analysis, such as Rudin [31], Theorem 9.32.

Local integration of differential forms has the usual linearity property:∫
U

(c1ω1 + c1ω2) = c1

∫
U

ω1 + c2

∫
U

ω2,

where c1 and c2 are constants and ω1 and ω2 are n-forms with compact support
within U .

Global integration of n-forms: Suppose now that ω is a smooth n-form with
compact support on a smooth oriented n-dimensional manifold. Choose an open
covering {Uα : α ∈ A} such that each Uα is the domain of a positively oriented
coordinate system, and let {ψα : α ∈ A}be a partition of unity subordinate to
the open cover {Uα : α ∈ A}. Then we can apply the preceding construction to
each differential form ψαω and define the integral of ω over M by the formula∫

M

ω =
∑
α∈A

∫
Uα

ψαω.

The sum is actually finite, since ω has compact support and the supports of
{ψα : α ∈ A} are locally finite.

We need to check that this definition is independent of choice of cover and
partition of unity. Suppose that {Vβ : β ∈ A} is another open cover by domains
of positively oriented coordinate systems and that {ηβ : β ∈ B} is a subordinate
partition of unity. Then∑

α∈A

∫
Uα

ψαω =
∑
α∈A

∑
β∈B

∫
Uα∩Vβ

ψαηβω =
∑
β∈B

∫
Vβ

ηβω.

We can now make precise what we mean when we say that k-forms are integrands
for integrals over k-dimensional manifolds. Suppose that M is an n-dimensional
manifold and S is a k-dimensional oriented submanifold of M with inclusion
ι : S →M . If ω ∈ Ωk(M), we can define the integral of ω over S,∫

S

ι∗ω.

In fact, if F : S → M is simply a smooth map, we can define the integral of ω
over the singular manifold (S, F ) as∫

S

F ∗ω.
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A diffeomorphism F : M → N from an oriented manifold M to an oriented
manifold N is orientation preserving if whenever (x1, . . . , xn) is a positively
oriented coordinate system on U ⊆ N , then (x1 ◦ F, . . . , xn ◦ F ) is a positively
oriented coordinate system on F−1(U) ⊆M . It is easily verified that if M and
N are compact oriented manifolds and F : M → N is an orientation-preserving
diffeomorphism, then ∫

M

F ∗ω =
∫
N

ω, for ω ∈ Ωn(N).

(To see this, just note that if one performs the integration with respect to
the pulled back coordinate systems one must get the same result.) Here is an
important application of integration over compact oriented manifolds:

Theorem. Let G be a compact Lie group. Then G possesses a biinvariant
Riemannian metric.

Sketch of proof: A one-form ω is left invariant if L∗σ(ω) = ω for every σ ∈ G.
The left invariant one-forms on G form a vector space g∗ which is dual to the
Lie algebra. Ir (ω1, . . . , ωn) is a basis for g∗, then ω1∧· · ·∧ωn is a left invariant
n-form on G. We normalize the basis so that∫

G

ω1 ∧ · · · ∧ ωn = 1,

and define the Haar integral of a function f : G→ R by∫
G

f(σ)dσ =
∫
G

fω1 ∧ · · · ∧ ωn.

The key feature of the Haar integral is that it is invariant under left translation,∫
G

f(σ)dσ =
∫
G

f(τσ)dσ, for τ ∈ G,

because
L∗τ (fω1 ∧ · · · ∧ ωn) = (f ◦ Lτ )ω1 ∧ · · · ∧ ωn.

Any positive definite inner product

〈·, ·〉 : g× g −→ R

defines a left invariant Riemannian metric on G. We want to construct a Rie-
mannian metric which is also right invariant. For σ ∈ G, we can define a map

Ad(σ)g→ g by Ad(σ)(X) = (Lσ)∗(Rσ−1)∗(X).

It is easily checked that Ad is a group homomorphism from G into the group
Aut(g) of linear automorphisms of g. The left invariant metric defined by a
positive definite inner product 〈·, ·〉 is also right invariant if

〈Ad(σ)(X),Ad(σ)(X)〉 = 〈X,X〉, for all X ∈ g and all σ ∈ G. (2.5)
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We can define such a metric

〈〈·, ·〉〉 : g× g −→ R

by setting

〈〈X,Y 〉〉 =
∫
G

〈Ad(σ)X,Ad(σ)Y 〉dσ,

thereby obtaining the desired biinvariant metric on G.

Remark: Note that this argument requires G to be compact. Most noncompact
Lie groups do not possess biinvariant Riemannian metrics. However, if G is any
Lie group with Lie algebra g and

ad(X) : g→ g by ad(X)(Y ) = [X,Y ],

for X ∈ g, then the “Killing form”

〈·, ·〉 : g× g→ R defined by 〈X,Y 〉 = Trace(ad(X)ad(Y ))

satisfies (2.5). Hence if it is nondegenerate it defines a biinvariant pseudo-
Riemannian metric on G and geodesics and curvature can be calculated exactly
as in §1.12. A Lie group is said to be semisimple if its Killing form is nonde-
generate. Many noncompact Lie groups are semisimple; for example, with some
effort one could show that

SL(n,R) = {A ∈ GL(n,R : detA = 1}

is semisimple. Thus we can obtain many examples of biinvariant pseudo-Riemannian
metrics this way.

Exercise VI. For 1 ≤ i, j ≤ n, define functions xij , y
i
j : GL(n,R)→ R by

xij

a1
1 · · · a1

n

· · · · ·
an1 · · · ann

 = aij , yij = xij(A
−1).

a. Show that the differential form

ωij =
n∑
k=1

yikdx
k
j

is left invariant.

b. Establish the Maurer-Cartan equations for GL(n,R):

dωij = −
n∑
k=1

ωik ∧ ωkj .
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2.4 Theorem of Stokes

The Theorem of Stokes generalizes Green’s Theorem from several variable cal-
culus to manifolds of arbitrary dimension. To set up the context, we first define
manifolds with boundary. Let

Rn− = {(x1, . . . , xn) : x1 ≤ 0}, ∂Rn− = {(x1, . . . , xn) : x1 = 0}.

In this section, we will identify ∂Rn− with Rn−1.

Definition. An n-dimensional smooth manifold with boundary is a metrizable
space M together with a collection A = {(Uα, φα) : α ∈ A} such that:

1. Each φα is a homeomorphism from an open subset Uα of M onto an open
subset of Rn−.

2.
⋃
{Uα : α ∈ A} = M .

3. φβ ◦ φ−1
α is C∞ where defined.

The boundary of M is

∂M = {p ∈M : φα(p) ∈ ∂Rn− for some α ∈ A }.

Lemma. If φα(p) ∈ ∂Rn− for some α ∈ A, then φβ(p) ∈ ∂Rn− for all β ∈ A for
which φβ(p) is defined.

Proof: Suppose on the contrary that φβ(p) lies in the interior of Rn− for some β.
Note that φα ◦φ−1

β has a nonsingular differential at φβ(p). Hence by the inverse
function theorem, φα ◦ φ−1

β maps some neighborhood Vβ of φβ(p) onto an open
neighborhood Vα of φα(p). Then Vα is open in Rn and Vα ⊆ Rn−. Hence φα(p)
lies in the interior of Rn−, a contradiction.

If α ∈ A, we let Vα = Uα ∩ ∂M and let ψα = φα|Vα. The lemma shows that ψα
is Rn−1-valued. Thus ∂M become a (n− 1)-dimensional smooth manifold with
smooth atlas {Vα, ψα) : α ∈ A}.

Orientation: Suppose that M is an oriented n-dimensional manifold with
boundary, so that M has an atlas A whose elements are coherently oriented.
Thus is (U, (x1, . . . , xn)) and (V, (y1, . . . , yn)) are two elements of A, then

det
(
∂yi

∂xj

)
> 0,

where defined.
Then (U ∩ ∂M, (x2, . . . , xn)) and (V ∩ ∂M, (y2, . . . , yn)) are smooth coordi-

nate systems on ∂M . We claim that they are coherently oriented. Indeed, if
p ∈ ∂M ∩ (U ∩ V ),

∂y1

∂xi
(p) = 0, for 2 ≤ i ≤ n, since

∂

∂xi

∣∣∣∣
p
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is tangent to ∂M and y1 is constant along ∂M . On the other hand, (∂/∂x1)|p
points out of M , that is in the direction of increasing y1. Hence

det


(∂y1/∂x1)(p) 0 · · · 0

∗ (∂y2/∂x2)(p) · · · (∂y2/∂xn)(p)
∗ · · · · ·
∗ (∂yn/∂x2)(p) · · · (∂yn/∂xn)(p)

 > 0

implies that

det

(∂y2/∂x2)(p) · · · (∂y2/∂xn)(p)
· · · · ·

(∂yn/∂x2)(p) · · · (∂yn/∂xn)(p)

 > 0,

and hence (U ∩ ∂M, (x2, . . . , xn)) and (V ∩ ∂M, (y2, . . . , yn)) are indeed coher-
ently oriented.

We conclude that an orientation on a smooth manifold with boundary in-
duces an orientation on its boundary.

Stokes’ Theorem. Let M be an oriented smooth manifold with boundary
∂M , and given ∂M the induced orientation. Let ι : ∂M → M be the inclusion
map. If θ is a smoth (n− 1)-form on M with compact support, then∫

∂M

ι∗θ =
∫
M

dθ. (2.6)

Proof: Cover M by positively oriented charts {(Uα, φα) : α ∈ A} such that if
αinA, either

φα(Uα) = (a1
α, b

1
α)× · · · × (anα, b

n
α), or (2.7)

φα(Uα) = (a1
α, 0]× · · · × (anα, b

n
α). (2.8)

Let {ψα : α ∈ A} be a partition of unity subordinate to the open cover {Uα :
α ∈ A}.

It will suffice to prove Stokes’ Theorem for the special case where the support
of θ is contained in some Uα for α ∈ A. Indeed, assuming this special case, we
find that if θ is an arbitrary (n− 1)-form with compact support,∫

∂M

ι∗θ =
∫
∂M

ι∗

(∑
α∈A

ψαθ

)
=
∑
α∈A

∫
∂M

ι∗(ψαθ)

=
∑
α∈A

∫
∂M

d(ψαθ) =
∫
∂M

d

(∑
α∈A

ψαθ

)
=
∫
M

dθ.

Thus it suffices to prove Stokes’ Theorem in the special case where the
support of θ is contained in U , where U is the domain of a chart (U, φ) of type
(2.7) or (2.8). Since the case of type (2.7) is simpler, we consider only the case
of type (2.8), and suppose that

φ(U) = (a1, 0]× · · · × (an, bn).
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Indeed, we can assume that φ is the identity and that U itself is a rectangular
set in Rn−.

Thus we let (x1, . . . , xn) be the usual rectangular cartesian coordinates on
U and that the inclusion ι : ∂Rn− → Rn− is defined by

ι(x2, . . . , xn) = (0, x2, . . . , xn).

If θ is a smooth (n− 1)-form on U with compact support in U , we can write

θ =
n∑
i=1

(−1)i−1fidx
1 ∧ · · · dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn.

Then
ι∗θ = (f1 ◦ ι)dx2 ∧ · · · ∧ dxn,

while

dθ =
n∑
i=1

∂f i

∂xi
dx1 ∧ · · · ∧ dxn.

To verify Stokes’ Theorem, we need to calculate the two integrals appearing
in (2.6) with M = U . For the right-hand integral, we obtain∫

U

dθ =
n∑
i=1

∫
U

∂f i

∂xi
(x1, . . . , xn)dx1 · · · dxn

=
n∑
i=1

∫ bn

an
· · ·
∫ b2

a2

∫ 0

a1

∂f i

∂xi
(x1, . . . , xn)dx1 · · · dxn.

Now we note that for 2 ≤ i ≤ n,∫ bn

an
· · ·
∫ b2

a2

∫ 0

a1

∂f i

∂xi
(x1, . . . , xn)dx1 · · · dxn

=
∫ bn

an
· · ·
∫ bi+1

ai+1

∫ bi−1

ai−1
· · ·
∫ 0

a1

[f(x1, . . . bi, · · · , xn)− f(x1, . . . ai, · · · , xn)]

dx1 · · · dxi−1dxi+1 · · · dxn = 0,

because f i has compact support in U , while in the remaining case, we get∫ bn

an
· · ·
∫ b2

a2

∫ 0

a1

∂f1

∂x1
(x1, . . . , xn)dx1 · · · dxn

=
∫ bn

an
· · ·
∫ b2

a2
[f(0, . . . , xn)− f(a1, . . . , xn)]dx2 · · · dxn

=
∫ bn

an
· · ·
∫ b2

a2
f(0, . . . , xn)dx2 · · · dxn.
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Thus ∫
U

dθ =
∫ bn

an
· · ·
∫ b2

a2
f(0, . . . , xn)dx2 · · · dxn. (2.9)

On the other hand,∫
∂U

ι∗θ =
∫
∂U

(f1 ◦ ι)(x2, . . . , xn)dx2 · · · dxn

=
∫ bn

an
· · ·
∫ b2

a2
f(0, . . . , xn)dx2 · · · dxn. (2.10)

Stokes’ Theorem now follows from (2.9) and (2.10).

2.5 de Rham Cohomology

The basic idea of algebraic topology is that of constructing functors from the
category of smooth manifolds and smooth maps, or more generally the category
of topological spaces and continuous maps to some algebraic category, such as
the category of R-algebras and R-algebra homomorphisms. Often these functors
can be utilized to translate topological problems into algebraic problems which
may be easier to solve. We refer the reader to [7] for a systematic treatment of
algebraic topology emphasizing differential forms and the de Rham theory.

The de Rham cohomology is a candidate for the simplest algebraic topol-
ogy functor, and has the advantage of being well-adapted to applications in
differential geometry. We now give a brief introduction to de Rham theory.

We say that an element ω ∈ Ωk(M) is closed if dω = 0 and exact if ω = dθ
for some θ ∈ Ωk−1(M). We let

Zk(M) = (closed elements of Ωk(M)) = {ω ∈ Ωk(M) : dω = 0},

Bk(M) = (exact elements of Ωk(M)) = {ω ∈ Ωk(M) : ω ∈ d(Ωk−1(M)}.
Since d ◦ d = 0, Bk(M) ⊆ Zk(M) and we can form the quotient space.

Definition. The de Rham cohomology of M of dimension k is the quotient
space

Hk
dR(M ; R) =

Zk(M)
Bk(M)

.

If ω ∈ Zk(M), we let [ω] denote its cohomology class in Hk
dR(M ; R).

Note that by construction, de Rham cohomology is an invariant of the smooth
manifold M .

Example 1. If M is a smooth manifold with finitely many connected compo-
nents, then Z0(M) is just the space of functions which are constant on each
component, while B0(M) = 0, so

H0
dR(M ; R) ∼=

k︷ ︸︸ ︷
R⊕ · · · ⊕ R,
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where k is the number of components of M .

Example 2. The reader may recall the method of exact differentials for solving
differential equations. This method states that if

ω = Mdx+Ndy ∈ Ω1(R2) satisfies the integrability condition
∂N

∂x
− ∂M

∂y
= 0,

then ω = df for some smooth real-valued function f on R2. In that case,

f = c is a solution to the DE Mdx+Ndy = 0.

The integrability condition is simply the statement that ω is closed, and the fact
that this implies that ω is exact is simply the assertion that H1

dR(R2; R) = 0, a
special case of the Poincaré Lemma to be presented in the next section.

Suppose on the other hand, that M = R2 − {(0, 0)} and

ω =
xdy − ydx
x2 + y2

∈ Ω1(M).

Then a straightforward calculation shows that ω is closed, but if we let S1 be
the unit circle x2 + y2 = 1 with counterclockwise parametrization, we find that∫

S1
ω = 2π.

Thus it follows from Stokes’ Theorem that ω cannot be exact, and H1
dR(M ; R)

is nonzero. The one-dimensional de Rham cohomology detects the hole that is
missing at the origin.

Example 3. Let (M, 〈·, ·〉) be an n-dimensional oriented Riemannian manifold,
(x1, . . . , xn) a positively oriented coordinate system defined on an open subset
U of M . If

〈·, ·〉 =
n∑

i,j=1

gijdx
i ⊗ dxj and g = det(gij),

we define the volume form on U to be

ωU =
√
gdx1 ∧ · · · dxn.

A straightforward calculation shows that the volume forms for two different
positively oriented coordinate systems agree on overlaps, and hence the locally
defined volume forms fit together to yield a global volume form ω ∈ Ωn(M). If
M is compact and has empty boundary, one of its basic invariants is

Volume of M =
∫
M

ω

Since the volume form ω has degree n, it must be closed, but it cannot be exact
by Stokes’s Theorem. Hence Hn

dR(M ; R) 6= 0.
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We have seen that if M is a smooth manifold, the exterior derivative yields a
sequence of vector spaces and linear maps

d−−−−→ Ωk(M) d−−−−→ Ωk+1(M) d−−−−→ Ωk+2(M) d−−−−→ ,

the linear maps satisfying the identity d ◦ d = 0. This is called the de Rham
cochain complex , and is denoted by Ω∗(M). A smooth map F : M → N induces
a commutative ladder

d−−−−→ Ωk(N) d−−−−→ Ωk+1(N) d−−−−→ Ωk+2(N) d−−−−→

F∗
y F∗

y F∗
y

d−−−−→ Ωk(M) d−−−−→ Ωk+1(M) d−−−−→ Ωk+2(M) d−−−−→

(2.11)

which can be regarded as a homomorphism of cochain complexes, and denoted
by F ∗ : Ω∗(N)→ Ω∗(M). It follows from the commutativity of (2.26) that the
smooth map F induces a vector space homomorphism

F ∗ : Hk
dR(N ; R)→ Hk

dR(M ; R), for each k.

The direct sum

H∗dR(M ; R) =
∞∑
k=0

Hk
dR(M ; R)

can be made into a graded commutative algebra over R, the product being the
so-called cup product , which is defined by

[ω] ∪ [φ] = [ω ∧ φ].

If F : M → N is a smooth map, the linear map on cohomology

F ∗ : H∗dR(N ; R) −→ H∗dR(M ; R) respects the cup product:
F ∗([ω] ∪ [φ]) = F ∗[ω] ∪ F ∗[φ].

Moreover, the identity map on M induces the identity on de Rham cohomology
and if F : M → N and G : N → P are smooth maps, then (G ◦ F )∗ = F ∗ ◦G∗,
so we can say that

M 7→ H∗dR(M ; R), (F : M → N) 7→ (F ∗ : H∗dR(N ; R)→ H∗dR(M ; R))

is a contravariant functor from the category of smooth manifolds and smooth
maps to the category of R-algebras and R-homomorphisms.

2.6 Poincaré Lemma

In order for de Rham cohomology to be useful in solving topological problems,
we need to be able to compute it in important cases. As a first step in this
direction, we might try to prove the so-called Poincaré Lemma:
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Poincaré Lemma. If U is a convex open subset of Rn, then the de Rham
cohomology of U is trivial:

Hk
dR(U ; R) ∼=

{
R if k = 0,

0 if k 6= 0.

However, it turns out to be not much more difficult to prove a very powerful fact
about de Rham cohomology: de Rham cohomology is invariant under smooth
homotopy.

If F,G : M → N are smooth maps, we say that they are smoothly homotopic
if there is a smooth map H : [0, 1]×M → N such that

H(0, p) = F (p) and H(1, p) = G(p).

Homotopy Theorem. Smoothly homotopic maps F,G : M → N induce the
same map on cohomology,

F ∗ = G∗ : Hk
dR(N ; R) −→ Hk

dR(M ; R).

To see how the Homotopy Theorem implies the Poincaré Lemma, we first note
that if {p0} is a single point, regarded as a zero-dimensional manifold, then

Hk
dR({p0}; R) ∼=

{
R if k = 0,
0 if k 6= 0.

Next observe that if p lies in U , then we have an inclusion map ι : {p0} → U
and a map r : U → {p0} such that r ◦ ι = id{p0}. On the other hand, ι ◦ r is
homotopic to the identity on U : The map H : [0, 1]× U → U defined by

H(t, p) = tp0 + (1− t)p satisfies H(0, p) = p, H(1, p) = p0.

Thus functoriality implies that

i∗ : H∗dR(U ; R)→ H∗dR({p0}; R) and r∗ : H∗dR({p0}; R)→ H∗dR(U ; R)

are both isomorphisms.

Proof of Homotopy Theorem: We only sketch the key ideas; the reader can refer
to § 7 of Chapter VI of [5] for additional details.

The Homotopy Theorem follows from the special case for the inclusion maps

i0, i1 : M −→ [0, 1]×M, i0(p) = (0, p), i1(p) = (1, p).

Indeed, if H : [0, 1] ×M → N is a smooth homotopy from F to G, then by
definition of homotopy, F = H ◦ i0 and G = H ◦ i1, so

i∗0 = i∗1 ⇒ F ∗ = i∗0 ◦H∗ = i∗1 ◦H∗ = G∗.
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This special case, however, can be established by integrating over the fiber
of the projection on the second factor [0, 1] ×M → M . More precisely, let t
be the standard coordinate on [0, 1], T the vector field tangent to the fiber of
[0, 1]×M such that dt(T ) = 1. We then define integration over the fiber

π∗ : Ωk([0, 1]×M)→ Ωk−1(M) by π∗(ω)(p) =
∫ 1

0

(ιTω)(t, p)dt,

where we define the interior product (ιTω)(t, p) as an element of ΛkT ∗(t,p)([0, 1]×
M) by the formula

(ιTω)(t, p)(v1, . . . , vk−1) = ω(t, p)(T (t, p), v1, . . . vk−1),
for v1, . . . , vk−1 ∈ T(t,p)([0, 1]×M).

The integration is possible because the exterior power at (t, p) is canonically iso-
morphic to ΛkT ∗(0,p)([0, 1]×M). The key to proving that i∗0 = i∗1 in cohomology
is the “cochain homotopy” formula

i∗1ω − i∗0ω = d(π∗(ω)) + π∗(dω). (2.12)

It follows from this formula that if dω = 0,

i∗1ω − i∗0ω = d(π∗(ω))⇒ [i∗1ω] = [i∗0ω],

and hence on the cohomology level i∗0 = i∗1.
Thus to finish the proof of the Homotopy Lemma, it remains only to es-

tablish (2.12). Let {Uα, φα) : α ∈ A} be an open cover of M by coordi-
nate neighborhoods. It suffices to show that the coordinate representatives
(π∗)α : Ωk(Uα × [0, 1])→ Ωk(Uα) satisfy

i∗1ω − i∗0ω = d((π∗)α(ω)) + (π∗)α(dω).

Thus let (U, (x1, . . . , xn) be one of the smooth maps in the atlas, so that
(t, x1, . . . , xn) are smooth coordinates on U × [0, 1]. Letting x stand for the
n-tuple, we see that π∗ : Ωk(U × [0, 1])→ Ωk(U) satisfies

π∗
(
f(t, x)dxi1 ∧ · · · ∧ dxik

)
= 0, (2.13)

π∗
(
f(t, x)dt ∧ dxi1 ∧ · · · ∧ dxik−1

)
=
[∫ 1

0

f(t, u)du
]
dxi1 ∧ · · · ∧ dxik−1 . (2.14)

Since any k-from is a superposition of differential forms treated by (2.13) and
(2.14), we need only verify the identity (2.12) in each of these two cases.

In the first case (2.13), π∗(ω) = 0 so d(π∗(ω)) = 0. On the other hand,

dω =
∂f

∂t
dt ∧ dxi1 ∧ · · · ∧ dxik + (terms not involving dt),
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so

π∗(dω) =
[∫ 1

0

∂f

∂u
(u, x)du

]
dxi1 ∧ · · · ∧ dxik

= f(1, x)dxi1 ∧ · · · ∧ dxik − f(0, x)dxi1 ∧ · · · ∧ dxik = i∗1(ω)− i∗0(ω),

so the formula is established in this case.
In the other case (2.14),

i∗1(dt) = i∗0(dt) = 0 ⇒ i∗1(ω) = i∗0(ω) = 0. (2.15)

On the one hand,

dω =
n∑
j=1

∂f

∂xj
dxj ∧ dt ∧ dxi1 ∧ · · · ∧ dxik−1

= −
n∑
j=1

∂f

∂xj
dt ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik−1

and hence

π∗(dω) = −
n∑
j=1

[∫ 1

0

∂f

∂xj
(u, x)du

]
dxj ∧ dxi1 ∧ · · · ∧ dxik−1 . (2.16)

On the other hand,

π∗(ω) =
[∫ 1

0

f(u, x)du
]
dxi1 ∧ · · · ∧ dxik−1 ,

so

dπ∗(ω) =
n∑
j=1

∂

∂xj

[∫ 1

0

f(u, x)du
]
dxi1 ∧ · · · ∧ dxik−1

=
n∑
j=1

[∫ 1

0

∂f

∂xj
(u, x)du

]
dxi1 ∧ · · · ∧ dxik−1 . (2.17)

In view of (2.15), the desired identity now follows by adding (2.16) and (2.17).

Definition. We say that two smooth manifolds M and N are smoothly homo-
topic equivalent if there exist smooth maps F : M → N and G : N → M such
that G ◦ F and F ◦G are both homotopic to the identity.

For example, the cylinder is smoothly homotopic to a circle. It follows from the
Homotopy Theorem that if two manifolds are smoothly homotopic equivalent,
they have the same de Rham cohomology.
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To provide an application of the Homotopy Theorem, we consider

Dn = {(x1, . . . , xn) ∈ Rn : (x1)2 + · · ·+ (xn)2 ≤ 1},
Sn−1 = {(x1, . . . , xn) ∈ Rn : (x1)2 + · · ·+ (xn)2 = 1}.

Lemma. If n ≥ 2, there does not exist a smooth map F : Dn → Sn−1 which
leaves Sn=1 pointwise fixed.

Proof: Suppose that there were such a map F , and let p0 = F (0). Define

H : [0, 1]× Sn−1 → Sn−1 by H(t, p) = F (tp).

Then H is a smooth homotopy from c to id where c is the constant map which
takes Sn−1 to p0 and id is the identity map of Sn−1. By the Homotopy Theorem,

c∗ = id∗ : Hn−1
dR (Sn−1; R)→ Hn−1

dR (Sn−1; R).

If ω is a smooth n-form on Dn, c∗(ω) = 0, and hence c∗ is the zero map. On
the other hand, it follows from Stokes’s Theorem that Hn−1

dR (Sn−1; R) 6= 0, so
Id∗ = id is not the zero map, a contradiction.

Proposition. A smooth map G : Dn → Dn must have a fixed point.

Proof: If G : Dn → Dn is a smooth map with no fixed point, define FDn →
Sn−1 as follows: For p ∈ Dn, let L(p) denote the line trhough p and G(p) and
let F (p) be the point on Sn−1 ∩L(p) closer to p than G(p). Since G is smooth,
F is also smooth. Moreover, F leaves Sn−1 pointwise fixed, contradicting the
previous lemma.

Brouwer Fixed Point Theorem. A continuous map f : Dn → Dn must have
a fixed point.

Proof: Suppose that f : Dn → Dn is a continuous map and ε > 0 is given.
By the Weierstrass approximation theorem, there is a smooth map PDn → Rn
such that |P (p)− f(p)| < ε for p ∈ Dn. let

G =
1

1 + ε
P.

Then G : Dn → Dn is a smooth map which satisfies f −G| < 2ε.
Suppose now that f : Dn → Dn is a continuous map without fixed points

and let
µ = inf{|f(p)− p| : p ∈ Dn}.

By the argument in the preceding paragraph, we can choose a smooth map
G : Dn → Dn such that |f − G| < µ. Then G is a smooth map without fixed
points, contradicting the preceding proposition.

Exercise VII. a. Suppose that X is a smooth vector field on M . Define the
interior product ιX : Ωk(M)→ Ωk−1(M) by

ιX(ω)(Y1, . . . , Yk−1) = ω(X,Y1, . . . , Yk−1).
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Show that if ω ∈ Ωk(M) and θ ∈ Ωl(M), then

ιX(ω ∧ θ) = (ιXω) ∧ θ + (−1)kω ∧ (ιXθ).

b. Define a real linear operator LX : Ωk(M)→ Ωk(M) by

LX = d ◦ ιX + ιX ◦ d.

Show that if ω ∈ Ωk(M) and θ ∈ Ωl(M), then

LX(ω ∧ θ) = (LXω) ∧ θ + ω ∧ (LXθ).

We call LX the Lie derivative in the direction of X.

2.7 Mayer-Vietoris Sequence

In order to be able to calculate de Rham cohomology effectively, we need one
further property of de Rham cohomology, the exactness of the Mayer-Vietoris
sequence. This enables us to calculate the de Rham cohomology of a smooth
manifold by dividing it up into simpler pieces.

Suppose that U and V are open subsets of a smooth manifold M such that
M = U ∪ V . We then have a diagram of inclusion maps:

U ∩ V jU−−−−→ U

jV

y iU

y
V

iV−−−−→ M

We can therefore construct a sequence of vector spaces and linear maps

0→ Ωk(M) i∗−−−−→ Ωk(U)⊕ Ωk(V )
j∗−−−−→ Ωk(U ∩ V )→ 0, (2.18)

where

i∗(ω) = (i∗U (ω), i∗V (ω)), j∗(φU , φV ) = j∗U (φU )− j∗V (φV ).

Since i∗ and j∗ commute with d, (2.18) yields a sequence of cochain complexes

0→ Ω∗(M)→ Ω∗(U)⊕ Ω∗(V )→ Ω∗(U ∩ V )→ 0. (2.19)

Lemma. The sequence (2.19) is exact; in other words for each k, the sequence
(2.18) is exact.

One easily checks that i∗ is injective and j∗ ◦ i∗ = 0. If j∗(φU , φV ) = 0, then
j∗U (φU ) = j∗V (φV ) so j∗U (φU ) and j∗V (φV ) fit together to form a smooth form on
M such that i∗(ω) = (φU , φV ).
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The only difficult step in the proof is to show that j∗ is surjective. To do
this, we choose a partition of unity {ψU , ψV } subordinate to the open cover
{U, V } of M . If θ ∈ Ωk(U ∩ V ), we define φU ∈ Ωk(U) by

φU (p) =

{
ψV (p)θ(p), for p ∈ U ∩ V ,
0, for p ∈ U − (U ∩ V ),

and φV ∈ Ωk(V ) by

φV (p) =

{
−ψU (p)θ(p), for p ∈ U ∩ V ,
0, for p ∈ V − (U ∩ V ).

then
j∗(φU , φV ) = φU |(U ∩ V )− φV |(U ∩ V ) = ψV θ + ψUθ = θ,

so j∗ is surjective and the lemma is proven.

The lemma yields a large commutative diagram in which the rows are exact:

d

y d

y d

y
0→ Ωk(M) i∗−−−−→ Ωk(U)⊕ Ωk(V )

j∗−−−−→ Ωk(U ∩ V )→ 0

d

y d

y d

y
0→ Ωk+1(M) i∗−−−−→ Ωk+1(U)⊕ Ωk+1(V )

j∗−−−−→ Ωk+1(U ∩ V )→ 0

d

y d

y d

y

(2.20)

Note that i∗ and j∗ induce homomorphisms on cohomology

i∗ : Hk
dR(M ; R)→ Hk

dR(U ; R)⊕Hk
dR(V ; R),

j∗ : Hk
dR(U ; R)⊕Hk

dR(V ; R)→ Hk
dR(U ∩ V ; R). (2.21)

The commuting diagram (2.20) allows us to construct a “connecting homomor-
phism”

∆ : Hk
dR(U ∩ V ; R)→ Hk+1

dR (M ; R) (2.22)

as follows: If [θ] ∈ Hk
dR(U ∩ V ; R), choose a representative θ ∈ Ωk(U ∩ V ).

Since j∗ is surjectve, we can choose φ ∈ Ωk(U) ⊕ Ωk(V ) so that j∗(φ) = θ.
Then j∗(dφ) = dj∗(φ) = dθ = 0, so there is a unique ω ∈ Ωk+1(M) such that
i∗ω = dφ. Finally, i∗(dω) = d(i∗ω) = d(dφ) = 0, and since i∗ is injective,
dω = 0. Let [ω] be the de Rham cohomology class of ω in Hk+1

dR (M ; R) and set
∆([θ]) = [ω]. Roughly speaking

∆ = (i∗)−1 ◦ d ◦ (j∗)−1.

By the technique of “diagram chasing”, one checks that ∆([θ]) is independent
of the choice of φ, or of θ representing [θ].
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We can describe ∆ explicitly as follows: If θ is a representative of [θ] ∈
Hk
dR(U ∩ V ; R), then ∆([θ]) is represented by the form

d(ψV θ) = dψV ∧ θ or − d(ψUθ) = −dψU ∧ θ,

two expressions for the same (k + 1)-form on M (since ψU + ψV = 1) which
actually has its support in U ∩ V .

Mayer-Vietoris Theorem. The homomorphisms (2.21) and (2.22) fit to-
gether to form a long exact sequence

· · · → Hk
dR(M ; R)→ Hk

dR(U ; R)⊕Hk
dR(V ; R)→ Hk

dR(U ∩ V ; R)

→ Hk+1
dR (M ; R)→ Hk+1

dR (U ; R)⊕Hk+1
dR (V ; R)→ · · · . (2.23)

This exact sequence is called the Mayer-Vietoris sequence. Together with the
Homotopy Lemma, the Mayer-Vietoris sequence is very helpful in computing
the de Rham cohomology.

The proof of exactness of the Mayer-Vietoris sequence follows from the so-called
“snake lemma” from algebraic topology: A short exact sequence of cochain
complexes such as (2.19) gives rise to a long exact sequence in cohomology such
as (2.23).

To prove the snake lemma one must establish three assertions:

1. Ker(j∗) = Im(i∗),

2. Ker(∆) = Im(j∗), and

3. Ker(i∗) = Im(∆).

Each of these assertions is proven by a diagram chase using the diagram (2.20).
For example, suppose we want to check the second of these assertions,

Ker(∆) = Im(j∗). To see that Im(j∗) ⊆ Ker(∆), we suppose [θ] ∈ Im(j∗),
so [θ] = j∗[φ] for some [φ] ∈ Hk⊕Hk(V ). Then there are representatives θ and
φ such that j∗φ = θ. Note that dφ = 0. Hence

∆([θ]) = [(i∗)−1 ◦ d ◦ (j∗)−1(θ)] = 0.

Conversely, suppose that [θ] ∈ Ker(∆), so (i∗)−1 ◦d◦ (j∗)−1(θ) is exact, so if
φ ∈ (j∗)−1(θ), then (i∗)−1 ◦dφ = dω, for some ω ∈ Ωk(M). Then d(φ−i∗ω) = 0
and j∗(φ− i∗ω) = θ. Thus [θ] ∈ Im(j∗).

The other two assertions are proven by similar arguments.

Example 1. We first calculate the cohomology of S1 = {(x, y) ∈ R2 : x2 +y2 =
1}, noting that H0(S1) is isomorphic to the space R of constant functions on
S1. We decompose S1 into a union of two open sets

U = S1 ∩
{
y > −1

2

}
, V = S1 ∩

{
y <

1
2

}
,
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and note that U and V are both diffeomorphic to open intervals, while U ∩V is
diffeomorphic to the union of two open intervals, so the cohomologies of these
spaces can be calculated from the Poincaré Lemma. It follows from the Mayer-
Vietoris sequence that

0→ H0(S1)→ H0(U)⊕H0(V )→ H0(U ∩ V )

→ H1(S1)→ H1(U)⊕H1(V )→ H1(U ∩ V )→ · · · ,

which yields

0→ R→ R⊕ R→ R→ H1(S1)→ 0→ 0→ · · · .

It follows that

Hk
dR(S1; R) ∼=

{
R, if k = 0 or k = 1,
0, otherwise.

Example 2. We next consider S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. Once
again H0(S2) ∼= R. This time we decompose S2 into a union of

U = S2 ∩
{
z > −1

2

}
and V = S2 ∩

{
z <

1
2

}
.

In this case, U and V are both diffeomorphic to open disks, while U ∩ V is
homotopy equivalent to S1. It follows from the Mayer-Vietoris sequence that

0→ H0(S2)→ H0(U)⊕H0(V )→ H0(U ∩ V )

→ H1(S2)→ H1(U)⊕H1(V )→ H1(U ∩ V )

→ H2(S2)→ H2(U)⊕H2(V )→ H2(U ∩ V )→ · · · ,

which yields

0→ R→ R⊕ R→ R→ H1(S2)→ 0→ R→ H2(S2)→ 0→ · · · .

It follows that

Hk
dR(S2; R) ∼=

{
R, if k = 0 or k = 2,
0, otherwise.

Example 3. By induction, one can calculate the cohomology of Sn:

Hk
dR(Sn; R) ∼=

{
R, if k = 0 or k = n,
0, otherwise.

Exercise VIII. Use the Mayer-Vietoris sequence to determine the de Rham
cohomology of the two-sphere Σg with g handles, the compact oriented surface
of genus g. Hint: Use the fact that Σg is orientable and therefore has a volume
form which makes the top cohomology nonzero.
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2.8 Singular homology*

For manifolds, perhaps the easiest entry point for homology and cohomology is
the de Rham theory, which we have just discussed. However, it does not apply to
general topological spaces. Moreover, the construction of singular homology and
cohomology is in many ways even simpler, and gives more refined invariants.
For a compact manifold, the singular homology groups are finitely generated
abelian groups, which may contain torsion summands, such as Z2; this torsion
is invisible in de Rham theory. An excellent extended treatment of singular
homology is given in [14], and we will describe only the very basic ideas here.

2.8.1 Definition of singular homology*

Let T be the category whose objects are topological spaces and whose mor-
phisms are continuous maps, and letA be the category whose objects are abelian
groups and whose morphisms are group homomorphisms. Singular homology of
degree n is a covariant functor from T to G. This means that singular homol-
ogy assigns to each topological space X an abelian group Hn(X) and to each
continuous map F : X → Y a group homomorphism

F∗ : Hn(X)→ Hn(Y ),

such that the identity map idX on X induces the identity homomorphism on
Hk(X), and whenever F : X → Y and G : Y → Z are two continuous maps,
then

(G ◦ F )∗ = G∗ ◦ F∗ : Hn(X)→ Hn(Z).

We begin the construction of singular homology by defining the standard
n-simplex to be

∆n = {(t0, . . . tn) ∈ Rn+1 :
∑

ti = 1, ti ≥ 0}.

It possesses standard face maps

δi : ∆n−1 → ∆n, δi(t0, . . . tn−1) = (t0, . . . ti−1, 0, ti, . . . , tn−1) (2.24)

for 0 ≤ i ≤ n. If X is a topological space, a singular n-simplex in X is a
continuous map f : ∆n → X, and we let

Sn(X) = { singular n-simplices in X }.

We can then define face operators

∂i : Sn(X)→ Sn−1(X) by ∂i(f) = f ◦ δi.

It is straightforward to check that the face operators satisfy the identities

∂i ◦ ∂j = ∂j−1 ◦ ∂i if i < j. (2.25)
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We now let Cn(X) be the free abelian group generated by the space Sn(X)
of singular simplices. Thus elements of the abelian group Cn(X) are simply
finite sums

a1f1 + · · ·+ akfk,

where a1, . . . ak are elements of Z. We can define a boundary operator

∂ : Cn(X)→ Cn−1(X) by ∂(f) =
n∑
i=0

(−1)i∂i(f).

It then follows from (2.25) that ∂ ◦ ∂ = 0. We thus obtain a sequence of groups
and group homomorphisms

∂−−−−→ Cn(X) ∂−−−−→ Cn−1(X) ∂−−−−→ Cn−2(X) ∂−−−−→ (2.26)

which is called a chain complex over Z, and is denoted by C∗(X).
A continuous map F : X → Y between topological spaces induces a map

F∗ : Sn(X)→ Sn(Y ) by F∗(f) = F ◦ f : ∆n → Y,

a map which commutes with the face operators. This map defines a group
homomorphism F∗ : Cn(X) → Cn(Y ) which commutes with the boundary
operator, and hence induces a commutative ladder

∂−−−−→ Cn(X) ∂−−−−→ Cn−1(X) ∂−−−−→ Cn−2(X) ∂−−−−→

F∗

y F∗

y F∗

y
∂−−−−→ Cn(Y ) ∂−−−−→ Cn−1(Y ) ∂−−−−→ Cn−2(Y ) ∂−−−−→

(2.27)

which is called a chain map and regarded as a morphism in the category of
chain complexes. We write F∗ : C∗(X)→ C∗(Y ). The correspondence

X 7→ C∗(X), (F : X → Y ) 7→ (F∗ : C∗(X)→ C∗(Y ))

satisfies the two identities

(id)∗ = id, (G ◦ F )∗ = G∗ ◦ F∗,

so we say it defines a covariant functor from the the category of topological
spaces and continuous maps to the category of chain complexes and chain maps.

Given any chain complex C∗(X), we define the corresponding space of n-
cycles to be

Zn(X) = {c ∈ Cn(X) : ∂c = 0},

and the space of n-boundaries to be

Bn(X) = {c ∈ Cn(X) : c = ∂d, for some d ∈ Cn+1(X) }.
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Since ∂ ◦ ∂ = 0, Bn(X) ⊆ Zn(X) so we can form the quotient group

Hn(X; Z) =
Zn(X)
Bn(X)

,

which we call the n-th homology group of the chain complex. When this con-
struction is applied to the chain complex generated by singular simplices, the
resulting homology is called the n-th singular homology group of X with integer
coefficients. If F : X → Y is a continuous map, the commutative ladder (2.27)
shows that F induces a group homomorphism

F∗ : Hn(X; Z)→ Hn(Y ; Z).

For each n ∈ Z; we thus obtain a covariant functor from the category of topo-
logical spaces and continuous maps to the category of groups and group homo-
morphisms

X 7→ Hn(X; Z), (F : X → Y ) 7→ (F∗ : Hn(X; Z)→ Hn(Y ; Z)).

Simple examples. First note that if X is any topological space, H0(X; Z) is
the free abelian group generated by the path components of X. Indeed, the zero
simplices of X are just points, and if p, q ∈ X, then q− p is a boundary exactly
when p and q are joined by a continuous path. Moreover, we easily check that
if {p} is a topological space consisting of a single point, then

Hk({p}; Z) ∼=

{
Z if k = 0,
0, otherwise.

More generally, we have an analog of the Poincaré Lemma; the first step towards
proving it requires the notion of chain homotopy.

If F∗, G∗ : C∗(X) → C∗(Y ) are chain maps, we say that they are chain homo-
topic if for each n ∈ Z, there are group homomorphisms Dn : Cn(X)→ Cn+1(Y )
such that ∂Dn + Dn−1∂ = F∗ − G∗. If F∗ and G∗ are chain homotopic and
z ∈ Zn(X), then

F∗(z)−G∗(z) = (∂Dn +Dn−1∂)(z) = ∂D(z),

so F∗([z]) = G∗([z]) on the homology level. In other words, chain homotopic
maps induce the same map on homology. The usefulness of chain homotopies
is illustrated by the proof of the following proposition:

Proposition. If X is a convex subset of Rn with the induced topology, then

Hk(X; Z) ∼=

{
Z, if k = 0,

0, otherwise.
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To prove this, let s∗ : C∗(X)→ C∗({p}) be the chain map defined by

cn = 0 if n 6= 0, c0

(∑
nxx

)
=
∑

nxp, if n = 0.

Let p0 be a fixed point of X. If f : ∆n → X is a singular simplex in X, then set

Df(t0, . . . tn+1) =

{
t0p0 + (1− t0)f

(
t1

1−t0 , . . . ,
tn+1

1−t0

)
if t0 6= 1,

p0, if t0 = 1.

If f ∈ C0(X), then

∂D(f) = f − p0 = id∗(f)− s∗(f).

More generally, if f ∈ Cn(X), then

∂Df = f +
n+1∑
j=1

(−1)jD(f ◦ δj−1) = f −
n∑
j=0

(−1)jD(f ◦ δj),

D∂f = f +D

 n∑
j=0

(−1)j(f ◦ δj)

 =
n∑
j=0

(−1)jD(f ◦ δj).

Hence if n ≥ 1,
∂Df +D∂f = f = id∗(f)− s∗(f).

Thus D is a chain homotopy from the identity to the constant map to a point.
The statement of the proposition follows from this fact.

Singular homology can be computed for more complicated examples once one
has the Homotopy and Mayer-Vietoris Theorems for singular theory, which we
now describe.

If F : X → Y and G : X → Y are continuous maps, we say that F and G
are homotopic if there is a continuous map

H : [0, 1]×X → Y such that H(p, 0) = F, H(p, 1) = G(p).

Then just like in de Rham theory, we have:

Homotopy Theorem. If F,G : X → Y are homotopic continuous maps, then

F∗ = G∗ : Hk(X; Z)→ Hk(Y ; Z).

Mayer-Vietoris Theorem. If U and V are open subsets of a topological space
X with X = U ∪ V , then we have a long exact sequence

· · · → Hk(U ∩ V ; Z)→ Hk(U ; Z)⊕Hk(V ; Z)→ Hk(M ; Z)
→ Hk−1(U ∩ V ; Z)→ Hk−1(U ; Z)⊕Hk−1(V ; Z)→ · · · . (2.28)
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Proofs of these theorems, as well as the calculations for many examples, can
be found in [14], as well as other texts on algebraic topology. The important
thing for the reader to recognize at this point is the formal similarity between
de Rham cohomology and singular homology, except that one is a contravariant
functor, the other covariant.

2.8.2 Singular cohomology*

Suppose that G is an abelian group, or more generally, an R-module, where R
is a commutative ring with identity. Given a chain complex

−→ Cn+1
∂−−−−→ Cn

∂−−−−→ Cn−1 −→,

we can construct a corresponding cochain complex

−→ Hom(Cn−1, G) δ−−−−→ Hom(Cn, G) δ−−−−→ Hom(Cn+1, G) −→,

where Hom(Cn, G) denotes the space of group homomorphisms from Cn to G
and

δ(φ)(c) = φ(∂c), for φ ∈ Hom(Cn, G) and c ∈ Cn+1.

Note that when G is an R-module, so is Hom(Cn+1, G), and the maps δ are
G-module morphisms.

For example, if we apply this construction to the singular chain complex

C∗(X) : −→ Cn+1(X) ∂−−−−→ Cn(X) ∂−−−−→ Cn−1(X) −→

of a topological space X, we obtain the complex of singular cochains with coef-
ficients in G,

C∗(X;G) : −→ Cn−1(X;G) δ−−−−→ Cn(X;G) δ−−−−→ Cn+1(X;G) −→.

We call
Zn(X;G) = Ker(δ : Cn(X;G)→ Cn+1(X;G))

the space of cocycles and

Bn(X;G) = Im(δ : Cn−1(X;G)→ Cn(X;G))

the space of coboundaries, and define the singular cohomology of degree n with
coefficients in G:

Hn(X; R) =
Zn(X;G)
Bn(X;G)

.

A continuous map F : X → Y induces a chain homomorphism F ∗ : C∗(Y ;G)→
C∗(X;G), which in turn induces a homomorphism F ∗ : Hn(Y ;G)→ Hn(X;G)
for each n ∈ Z. This gives a contravariant functor

X 7→ Hn(X : G), (F : X → Y ) 7→ (F ∗ : Hn(Y ;G)→ Hn(X;G)).
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In particular, we can consider singular cohomology with coefficients iin the
integers Z, or with coefficients in the field R of real numbers. Moreover, the
inclusion Z ⊆ R induces cochain homomorphisms C∗(x; Z) → C∗(X; R) which
induces a “coefficient homomorphism”

Hn(X; Z)→ Hn(X; R), for each n ∈ Z.

Remark. If one develops the skill for calculating cohomology with integer
coefficients, one finds that it is slightly more refined, but also a little more
difficult to compute. For example, if M = RP 2, one finds that

Hk(RP 2; Z) ∼=


Z if k = 0,
Z2 if k = 2,
0, otherwise,

, while Hk
dR(RP 2; R) ∼=

{
R if k = 0,
0, otherwise.

With real coefficients, one loses torsion such as Z2, but that fact often makes it
easier to compute.

The Isomorphism Theorem of de Rham. If M is a smooth manifold,
its singular cohomology with coefficients in R is isomorphic to its de Rham
cohomology:

Hn(M ; R) ∼= Hn
dR(M ; R).

The proof of this theorem is somewhat lengthy. It is actually relatively easy
to construct a chain map from the de Rham complex Ω∗(M) to the complex
C∗(M ; R) of real singular cochains; the difficulty is to show that the map induces
an isomorphism on cohomology.

To construct that chain map from Ω∗(M) to C∗(M ; R), we start by suppos-
ing that ω ∈ Ωn(M). We can then define the integral of ω over f to be the real
number

〈f, ω〉 =
∫

∆n

f∗ω,

where the standard n-simplex ∆n is given the orientation determined by leav-
ing out the coordinate t0 and taking the remaining coordinates in the order
(t1, . . . , tn). More generally, if c = a1f1 + · · · + akfk is a singular n-chain, we
define the integral of ω over c by

〈c, ω〉 = a1〈f1, ω〉+ · · ·+ ak〈fk, ω〉.

This yields a homomorphism from Cn(M) to R, so any ω ∈ Ωn(M) defines a
corresponding singular cochain ω : Cn(M) → R. Thus we have an inclusion
in : Ωn(M) ⊆ Cn(M ; R) for each n ∈ Z and the question arises as to whether
these inclusions fit into a cochain map. This will in fact be the case if and only
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if the following diagram commutes:

Ωn+1(M) in+1

−−−−→ Cn+1(M ; R)

d

x δ

x
Ωn+1(M) in−−−−→ Cn(M ; R).

the commutativity of this diagram is exactly the content of the following:

Stokes’ Theorem for Chains. Suppose that M is a smooth manifold. If
c ∈ Sn(M) and θ ∈ Ωn−1(M), then

〈c, dθ〉 = 〈∂c, θ〉. (2.29)

Once we have Stokes’ Theorem for chains, the chain map i∗ : ω∗(M) ⊆ C∗(M ; R)
defines a homomorphism

i∗ : Hn
dR(M ; R) −→ Hn(M ; R).

One can prove the de Rham Theorem by showing that i∗ is an isomorphism on
the cohomology level.

As preparation for the proof of (2.29), we first note that if σ ∈ Sn+1, the
symmetric group of bijections from {0, 1, . . . , n} to itself, we can define a linear
map Tσ : Rn+1 → Rn+1 by

Tσ(x0, . . . , xn) = (xσ(0), . . . , xσ(n)).

Then one checks directly that

〈f ◦ Tσ, ω〉 = sgn(σ)〈f, ω〉. (2.30)

Proof of Stokes’ Theorem for chains: It suffices to show that

〈f, dθ〉 = 〈∂f, θ〉,

when f is an n-simplex; in other words, that∫
∆n

f∗(dθ) =
n∑
i=0

(−1)i
∫

∆n−1
(f ◦ δi)∗θ,

or equivalently, ∫
∆n

d(f∗θ) =
n∑
i=0

(−1)i
∫

∆n−1
δ∗i (f∗θ).

Thus we need only show that if φ is a smooth (n− 1)-form on ∆n, then∫
∆n

dφ =
n∑
i=0

(−1)i
∫

∆n−1
δ∗i φ.
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For positively oriented coordinates on ∆n we take (t1, . . . , tn) on Rn+1 and
note that on ∆n,

t0 = 1−
n∑
i=1

ti.

Then the (n− 1)-form φ will be a sum of monomials,

φ =
n∑
i=0

(−1)i−1f i(t1, . . . , tn)dt1 ∧ · · · ∧ dti−1 ∧ dti+1 ∧ · · · ∧ dtn,

and it would suffice to prove Stokes’ Theorem for each of the monomials in the
sum. But by applying (2.30), we can reduce any such monomial to the form

φ = f(t1, . . . , tn)dt2 ∧ · · · ∧ dtn,

so that
dφ =

∂f

∂t1
(t1, . . . , tn)dt1 ∧ · · · ∧ dtn.

Note that δ∗jφ = 0 unless j = 0 or j = 1.
Denote the restricted coordinates on ∆n−1 by (s1, . . . , sn−1) with

s0 = 1−
n−1∑
j=1

sj .

Then
t0 ◦ δ0 = 0, ti ◦ δ0 = si−1 for 1 ≤ i ≤ n,

so

δ∗0φ = f(s0, . . . sn−1)ds1 ∧ · · · ∧ dsn−1

= f

1−
n−1∑
j=1

sj , . . . sn−1

 ds1 ∧ · · · ∧ dsn−1.

On the other hand,

t0 ◦ δ1 = s0, t1 ◦ δ1 = 0, t2 ◦ δ1 = s1 . . . , . . . , tn ◦ δi = sn−1,

so
δ∗1φ = f(0, s2, . . . , sn−1)ds1 ∧ · · · ∧ dsn−1.
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Thus we can conclude that∫
∆n

dφ =
∫ 1

0

[∫ 1−tn

0

· · ·

[∫ 1−
P
i≥2 t

i

0

df

dt1
dt1

]
· · · dtp−1

]
dtp

=
∫ 1

0

[∫ 1−tn

0

· · ·

[
f

(
1−

p∑
i=2

ti, t2, . . . tp

)
− f(0, t2, . . . , tp)

]
· · · dtp−1

]
dtp

=
∫ 1

0

[∫ 1−sn−1

0

· · ·

[
f

(
1−

p−1∑
i=1

si, s1, . . . sp−1

)
−f(0, s1, . . . , sp−1)

]
· · · dsp−2

]
dsp−1

=
∫

∆p−1
δ∗0(φ)−

∫
∆p−1

δ∗1(φ) =
n∑
i=0

(−1)i
∫

∆p−1
δ∗i (φ),

finishing the proof of the theorem.

2.8.3 Proof of the de Rham Theorem*

As cohomology theory developed, many different definitions of cohomology
groups were proposed. In addition to the de Rham and singular cohomologies,
yet a third cohomology due Čech was based upon open covers of a topological
space. It turns out to be easiest to prove the de Rham isomorphism theorem by
showing that both de Rham and singular cohomologies are isomorphic to Čech.

For the simplest definition of Čech cohomology, we need a good cover ofX, an
open cover U = {Uα : α ∈ A} of a topological space X such that any nonempty
intersection Uα0 ∩ · · · ∩ Uαp 6= 0 of open sets in the cover is contractible. It
is actually rather difficult to construct good covers for an arbitrary topological
space, so the general defintion of Čech cohomology requires taking direct limits
over open covers. However, for smooth manifolds there are no such problems.
There are two ways of constructing good covers for smooth manifolds.

Method I. We let U = {Uα : α ∈ A} be a locally finite open cover of M by
sets which are geodesically convex with respect to some Riemannian metric on
M. Geodesically convex subsets of a Riemannian manifold are automatically
contractible. Since the intersection of geodesically convex sets is geodesically
convex, the intersection of any collection of elements from U is contractible.

Method II. For this method, we need to assume as known the fact that any
smooth manifold can be triangulated. Given a vertex v in the triangulation, the
open star Uv of the vertex is all of the open simplices in the triangulation which
contain v in their closure. We start by taking the first barycentric subdivision
of a given triangulation. The collection

U = {Uv : v is a vertex of the barycentric subdivision triangulation }

is then a good open cover of M . Then any nonempty intersection of (p + 1)
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elements of U is actually an open p-simplex in the triangulation, hence con-
tractible.

The second method motivates the following definition. By a p-simplex of U we
mean an ordered (p+ 1)-tuple (α0, . . . , αp) of indices such that

Uα0 ∩ Uα1 ∩ · · · ∩ Uαp 6= ∅,

and we let Šp(U) denote the collection of all p-simplices of U . If σ ∈ Šp(U), we
call

| σ| = Uα0 ∩ Uα1 ∩ · · · ∩ Uαp
the support of σ. If σ = (α0, . . . , αp) we let

∂iσ = (α0, α1, . . . , αi−1, αi+1, . . . , αp),

where αi has been left out.
Finally, if G is an abelian group or an R-module, where R is a commutative

ring with identity, we let Č
p
(U , G) be the set of functions c : Šp(U) → G such

that whenever σ ∈ Sp+1, the symmetric group on p+ 1 letters,

c(ασ(0), ασ(1), . . . , ασ(p)) = (sgn)σc(α0, α1, . . . , αp) ∈ G.

For simplicity we will often write

cα0,α1,...,αp for c(α0, α1, . . . , αp).

Of course, for the proof of the de Rham Theorem, the important case is that
where G = R. We will define the Čech coboundary

δ : Č
p
(U , G)→ Č

p+1
(U , G) by δ(f) =

p+1∑
i=1

(−1)i(f ◦ ∂i).

One readily verifies that δ ◦ δ = 0, so we obtain the Čech cochain complex

C∗(U , G) : −→ Cn−1(U , G) δ−−−−→ Cn(U , G) δ−−−−→ Cn+1(U , G) −→ (2.31)

The reader who is familiar with simplicial homology and cohomology will
recognize that when the open cover is obtained by method II, the Čech cochain
complex is isomorphic to the cochain complex of simplicial cohomology with
coefficients in G.

The cohomology of the Čech cochain complex (2.31),

Ȟ
p
(U ,R) =

Ker(δ : Č
p
(U ,R)→ Č

p+1
(U ,R))

Im(δ : Č
p−1

(U ,R)→ Č
p
(U ,R)

is called the Čech cohomology of the good covering U , with coefficients in R.
For a manifold M , we will see that the Čech cohomology does not depend
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upon the choice of good cover. When the cover is constructed by method II,
it is isomorphic to the simplicial cohomology of M which is isomorphic to the
singular cohomology of M by techniques described in algebraic topology texts,
such as [14].

We emphasize that for more general topological spaces, it may not be pos-
sible to find good covers, and it is more difficult to define Čech cohomology; it
must be defined by a taking a direct limit over finer and finer open covers.

Our goal in this section is to show that the de Rham cohomology of a smooth
manifold is isomorphic to its Čech cohomology of any good cover. In view of
the results from algebraic topology cited above, this gives a proof of de Rham’s
Isomorphism Theorem.

The idea is to use a generalized Mayer-Vietoris argument as in [7]. We thus
construct a double complex K∗,∗ in which the (p, q)-element is

Kp,q = Č
p
(U ,Ωq),

which is defined to be the space of functions ω which assign to p-simplex
(α0, . . . , αp) a smooth q-form

ωα0···αp ∈ Ωq(Uα0 ∩ · · · ∩ Uαp).

As before, we require that if the order of elements in a sequence is permuted,
ωα0,...,αp changes by the sign of the permutation; thus, for example,

ωα0α1 = −ωα1α0 , ωαα = 0, and so forth.

We have two differentials on the double complex, the exterior derivative

d : Č
p
(U ,Ωq)→ Č

p
(U ,Ωq+1) defined by (dω)α0···αp = dωα0···αp ,

and the Čech differential

δ : Č
p
(U ,Ωq)→ Č

p+1
(U ,Ωq)

defined by

(δω)α0···αp+1 =
p+1∑
i=0

(−1)iωα0···α̂i···αp+1 ,

the forms on the right being restricted to the intersection and the hat indicating
that an index is omitted. It is immediately verified that δ ◦ δ = 0.

Remark. The cohomology of the cochain complex

. . .→ Č
p−1

(U ,Ωq)→ Č
p
(U ,Ωq)→ Č

p+1
(U ,Ωq)→ · · ·

is often called sheaf cohomology with coefficients in the sheaf of smooth q-forms
on M .
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The first differential d in the double complex is exact except when q = 0 by the
Poincaré Lemma, while in the case q = 0 we find that

[Kernel of d : Č
p
(U ,Ω0)→ Č

p
(U ,Ω1)] = Č

p
(U ; R),

the space of Čech cochains for the covering U on M. The Čech cohomology of
the cover U with coefficients in R is by definition the cohomology of the cochain
complex

· · · → Č
p−1

(U ; R)→ Č
p
(U ; R)→ Č

p+1
(U ; R)→ · · · (2.32)

and is denoted by Ȟ
p
(M; R).

We claim that the second differential is exact except when p = 0. It is at
this point that we need a partition of unity {ψα : α ∈ A} subordinate to U .
Given a δ-cocycle ω ∈ Č

p
(U ,Ωq), we set

τα1···αp−1 =
∑
α

ψαωαα1···αp−1 ∈ Č
p−1

(U ,Ωq).

Then
(δτ)α0···αp =

∑
i,α

(−1)iψαωαα0···α̂i···αp

and since ω is a cocycle,

δωαα0···αp = ωα0···αp −
∑

(−1)iωαα0···α̂i···αp = 0.

Thus it follows from the fact that
∑
ψα = 1 that

(δτ)α0···αp =
∑

ψαωα0···αp = ωα0···αp .

establishing exactness. When p = 0, we find that

Kernel of δ : Č
0
(U ,Ωq)→ Č

1
(U ,Ωq) = Ωq(M),

the space of smooth q-forms on M.
We can summarize the previous discussion by stating that the rows and

columns in the following commutative diagram are exact:

· · ·
↑ ↑ ↑

0 → Ω2(M) → Č
0
(U ,Ω2) → Č

1
(U ,Ω2) → Č

2
(U ,Ω2) → · · ·

↑ ↑ ↑
0 → Ω1(M) → Č

0
(U ,Ω1) → Č

1
(U ,Ω1) → Č

2
(U ,Ω1) → · · ·

↑ ↑ ↑
0 → Ω0(M) → Č

0
(U ,Ω0) → Č

1
(U ,Ω0) → Č

2
(U ,Ω0) → · · ·

↑ ↑ ↑
Č

0
(U ,R) Č

1
(U ,R) Č

2
(U ,R)

↑ ↑ ↑
0 0 0
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The remainder of the proof uses this diagram. Given a de Rham cohomol-
ogy class [ω] ∈ Hp

dR(M; R) with p-form representative ω we construct a cor-
responding cohomology class s([ω]) in the Čech cohomology Ȟ

p
(M; R) as fol-

lows: The differential form defines an element ω0p ∈ Č
0
(U ,Ωp) by simply re-

stricting ω to the sets in the cover. It is readily checked that ω0p is closed
with respect to the total differential D = δ + (−1)pd on the double com-
plex K∗,∗ = Č

∗
(U ,Ω∗). Using the Poincaré Lemma, we construct an element

ω0,p−1 ∈ Č
0
(U ,Ωp−1) such that dω0,p−1 = ω0p. Let ω1,p−1 = δω0,p−1 and ob-

serve that dω1,p−1 = 0 and ω1,p−1 is cohomologous to ω0p with respect to D.
Using the Poincaré Lemma again, we construct an element ω1,p−2 ∈ Č

1
(U ,Ωp−2)

such that dω1,p−2 = ω1,p−1. Let ω2,p−2 = δω1,p−2 and note that ω2,p−2 is co-
homologous to ω0p with respect to D. Continue in this fashion until we reach
a D-cocycle ωp0 ∈ Č

p
(U ,Ω0) which is cohomologous to ω0p. Since dωp0 = 0,

each function ωp0α0···αp is constant, and thus ωp0 determines a Čech cocycle s(ω)
whose cohomology class is s([ω]).

By the usual diagram chasing, the cohomology class obtained is independent
of choices made. Moreover, reversing the zig-zag construction described in the
preceding paragraph yields an inverse to s. This finishes our sketch of the proof
of the following:

Theorem. If M is a smooth manifold with a Riemannian metric and U is a
good open cover of M , then the de Rham cohomology of M is isomorphic to
the Čech cohomology:

Hn
dR(M ; R) ∼= Ȟ

n
(M ; R).

Remark. Establishing exactness of the rows in the double complex is just a
generalization of the argument used to prove exactness of the Mayer-Vietoris
sequence. Thus Bott and Tu [7] call the above argument a generalized Mayer-
Vietoris argument. The argument is useful in many other contexts.

2.9 The Hodge star

In the last few sections, we have described the foundations for the beautiful
edifice of algebraic topology. Of course, topology can be justified as a beautiful
subject in its own right, but it also has numerous applications to the partial
differential equations which arise in geometry. Our next goal is to describe one
such application, Hodge’s theorem that any de Rham cohomology class contains
a unique solution to Laplace’s equation.

We begin with an oriented Riemannian or pseudo-Riemannian manifold
(M, 〈, ·, ·〉) of dimension n. For each p ∈ M , the nondegenerate symmetric
billinear form 〈·, ·〉 defines an isomorphism

[ : TpM → T ∗pM, [(v) = 〈v, ·〉, with inverse ] : T ∗pM → TpM.
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These isomorphism allow us to transport the nondegenerate symmetric bilinear
form

〈·, ·〉 : TpM × TpM → R to 〈·, ·〉 : T ∗pM × T ∗pM → R.

If (x1, . . . , xn) is a smooth coordinate system on U ⊆M , and

〈·, ·〉|U =
n∑

i,j=1

gijdx
i ⊗ dxj ,

then on the cotangent space we have

〈dxi|p, dxj |p〉 = gij(p),

where (gij(p)) is the matrix inverse to gij(p).
We can extend 〈·, ·〉 from T ∗pM to the entire exterior algebra Λ∗T ∗pM . First,

we define a multilinear map

µ :

k︷ ︸︸ ︷
(T ∗pM × · · · × T ∗pM)×

k︷ ︸︸ ︷
(T ∗pM × · · · × T ∗pM)→ R

by

µ((α1, . . . , αk), (β1, . . . , βk)) = det

〈α1, β1〉 · · · 〈α1, βk〉
· ·

〈αk, β1〉 · · · 〈αk, βk〉

 .

This map is skew-symmetric in each set of k variables, when the other is kept
fixed, so it defines a symmetric bilinear form

〈·, ·〉 : ΛkT ∗pM × ΛkT ∗pM → R (2.33)

such that

〈α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk〉 = det

〈α1, β1〉 · · · 〈α1, βk〉
· ·

〈αk, β1〉 · · · 〈αk, βk〉

 .

In the special case where (M, 〈, ·, ·〉) is a Riemannian manifold, the symmetric
bilinear form 〈, ·, ·〉 on ΛkT ∗pM is positive definite. One sees this most easily by
noting that if (θ1, . . . , θn) is an orthonormal basis for T ∗pM , then

{θi1 ∧ · · · ∧ θik : i1 < · · · < ik}

is an orthonormal basis for ΛkT ∗pM . hence〈∑
ai1···ikθ

i1 ∧ · · · ∧ θik ,
∑

ai1···ikθ
i1 ∧ · · · ∧ θik

〉
=
∑

(ai1···ik)2 ≥ 0,

with equality if and only if all the ai1···ik ’s are zero.
By a similar argument, which we leave to the reader, one can show that if

(M, 〈, ·, ·〉) is only a pseudo-Riemannian manifold, then the symmetric bilinear
form 〈, ·, ·〉 on ΛkT ∗pM is nondegenerate.
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If (x1, . . . , xn) is a positively oriented coordinate system on U ⊆M , we can
define the volume form on U by

Θ|U =
√
|det(gij)|dx1 ∧ · · · ∧ dxn.

As we have remarked before, the locally defined volume forms agree on coordi-
nate overlaps, so they fit together to yield a globally defined volume form Θ on
M . Thus if D ⊆ M is a region with a smooth boundary, the volume of D is
given by the formula

Volume of D =
∫
D

Θ.

In the Riemannian case, if (θ1, . . . , θn) is a basis of smooth one-forms on U
such that 〈θi, θj〉 = δij , then ΘU = θ1 ∧ · · · ∧ θn. In the more general pseudo-
Riemannian case, if

(〈θi, θj〉) =
(
−Ip×p 0

0 Iq×q

)
,

where p+ q = n, then ΘU = ±θ1 ∧ · · · ∧ θn.
Using the volume form, we will now define a linear map

? : ΛkT ∗pM −→ Λn−kT ∗pM

to be called the Hodge star . The Hodge star is crucial for a full understanding
of Riemannian geometry, but unlike the exterior derivative d it does not pull
back under smooth maps (unless they are orientation-preserving isometries).

Proposition. For each integer k, 0 ≤ k ≤ n, there is a unique linear map
? : ΛkT ∗pM → Λn−kT ∗pM such that whenever α and β are elements of ΛkT ∗pM ,
then

α ∧ ?β = 〈α, β〉 Θ(p), (2.34)

where Θ(p) is the evaluation of the volume form at p.

The proof is simpler in the Riemannian case, because we do not have to worry
so much about signs. The idea is to take a fixed positively oriented orthonormal
basis (θ1, . . . , θn) for T ∗pM and derive an explicit formula in terms of this basis.
(By positively oriented we mean that Θ = θ1 ∧ · · · ∧ θn.)

Given a fixed positively oriented orthonormal basis (θ1, . . . , θn), we claim
that (2.34) implies the explicit formula

?
(
θσ(1) ∧ · · · ∧ θσ(k)

)
= (sgn σ)θσ(k+1) ∧ · · · ∧ θσ(n), (2.35)

whenever σ is a permutation of {1, . . . , n}. Note that this formula is invariant
under a transformation which replaces σ by σ ◦ τ , where τ is a permutation of
(1, . . . , k) or (k + 1, . . . , n).

So we can assume without loss of generality that σ(1) < · · · < σ(k) and
σ(k + 1) < · · · < σ(n). Under these hypotheses, suppose that

?
(
θσ(1) ∧ · · · ∧ θσ(k)

)
=

∑
jk+1<···<jn

cjk+1···jnθ
jk+1 ∧ · · · ∧ θjn .
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For a fixed term in this sum, choose j1 < · · · < jk so that (j1, . . . , jk, jk+1, . . . , jn)
is a permutation of (1, . . . , n). Then

(
θj1 ∧ · · · ∧ θjk

)
∧ ?
(
θσ(1) ∧ · · · ∧ θσ(k)

)
= cjk+1···jnθ

j1 ∧ · · · ∧ θjk ∧ θjk+1 ∧ · · · ∧ θjn ,

all the other terms wedging to zero. On the other hand, it follows from (2.34)
that(

θj1 ∧ · · · ∧ θjk
)
∧ ?
(
θσ(1) ∧ · · · ∧ θσ(k)

)
=

{
±θ1 ∧ · · · ∧ θn, if (j1, . . . , jk) = (σ(1), . . . , σ(k)),
0, otherwise.

hence

cjk+1···jn =

{
±1, if (j1, . . . , jk) = (σ(1), . . . , σ(k)),
0, otherwise.

It is now easy to verify that

cσ(k+1)···σ(n) = sgn σ,

thereby establishing (2.35). This proves uniqueness, because the Hodge star is
uniquely determined by its effect on a basis.

To prove existence, one uses (2.35) to define the Hodge star on a fixed
orthonormal basis, and checks that it satisfies (2.34).

Note that it follows from the proof that if (θ1, . . . , θn) is any orthonormal
basis for T ∗pM , then (2.35) holds for that basis. This fact is extremely useful in
calculating the Hodge star.

The proof in the general pseudo-Riemannian case is similar, except that the
notion of orthonormal basis must be modified in the obvious manner.

Remark: One can give a very useful geometric interpretation of the Hodge
star in the Riemannian case. Suppose that W is a k-dimensional subspace of
T ∗pM with orthonormal basis (θ1, . . . , θk). Complete (θ1, . . . , θk) to a positively
oriented orthonormal basis (θ1, . . . , θn) for T ∗pM . Then (θk+1, . . . , θn) is a pos-
itively oriented orthonormal basis for the oriented orthogonal complement W⊥

to W in T ∗pM .

Of course, the Hodge star extends immediately to a linear map

? : Ωk(M)→ Ωn−k(M)

which is also called the Hodge star. In the Riemannian case, it is easy to verify
that

?(?α) = (−1)k(n−k)α, for α ∈ Ωk(M). (2.36)
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Example 1. We first consider E2 with its usual Euclidean coordinates (x, y).
In this case, Θ = ?1 = dx ∧ dy, and

?(dx) = dy, ?(dy) = −dx, so ? (Mdx+Ndy) = −Ndx+Mdy.

We can think of the Hodge star in this case as a counterclockwise rotation
through 90 degrees. More generally, if (M, 〈, ·, ·〉) is an oriented two-dimensional
Riemannian manifold, we can define a counterclockwise rotation throught 90
degrees

J : Ω1(M)→ Ω1(M) by J(ω) = ?(ω).

Example 2. We next consider E3 with its usual Euclidean coordinates (x, y, z).
In this case, Θ = ?1 = dx ∧ dy ∧ dz. Moreover,

?(dx) = dy ∧ dz, ?(dy) = dz ∧ dx, ?(dz) = dx ∧ dy,

?(dy ∧ dz) = dx, ?(dz ∧ dx) = dy, ?(dx ∧ dy) = dz.

Note that if α and β are elements of Ω1(E3), then so is ?(α ∧ β), and one can
check that its components are the same as those of the cross product α×β. More
generally, if (M, 〈, ·, ·〉) is an oriented three-dimensional Riemannian manifold
we can define a cross product

× : Ω1(M)× Ω1(M)→ Ω1(M) by α× β = ?(α ∧ β).

Example 3. Finally, we consider Minkowski space-tme L4 with its standard
coordinates (t, x, y, z), and we take the speed of light to be c = 1 so that the
Lorentz metric is

〈·, ·〉 = −dt⊗ dt+ dx⊗ dx+ y ⊗ dy + dz ⊗ dz. (2.37)

In this case, the volume form is

Θ = ?1 = dt ∧ dx ∧ dy ∧ dz.

Clearly, ?(dt ∧ dx) = ±dy ∧ dz. To determine the sign, we note that

〈dt ∧ dx, dt ∧ dx〉 = −1, so (dt ∧ dx)(?dt ∧ dx) = −Θ.

It follows that

?(dt ∧ dx) = −dy ∧ dz, ?(dt ∧ dy) = −dz ∧ dy, ?(dt ∧ dz) = −dx ∧ dy.

By similar arguments, one verifies that

?(dy ∧ dz) = dt ∧ dx, ?(dz ∧ dx) = dt ∧ dy, ?(dx ∧ dy) = dt ∧ dz.

This Hodge star is invariant under orientation-preserving Lorentz transforma-
tion, those orientation-preserving linear transformations of L4 which leave in-
variant the flat Lorentz metric (2.37).
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Maxwell’s equations. Using the Hodge star on Minkowski space-time with
the standard Lorentz metric, we can give a particularly elegant formulation
of Maxwell’s equations from electricity and magnetism, equations formulated
by James Clerk Maxwell in 1873. This formulation has the advantage that it
extends to the curved space-times of general relativity.

In Maxwell’s theory of electricity and magnetism, one imagines that one is
given the charge density ρ(t, x, y, z) and the current density

J(t, x, y, z) = Jx
∂

∂x
+ Jy

∂

∂y
+ Jz

∂

∂z
.

The charge and current density should determine the electric and magnetic fields

E(t, x, y, z) = Ex
∂

∂x
+ Ey

∂

∂y
+ Ez

∂

∂z
= (electric field)

and B(t, x, y, z) = Bx
∂

∂x
+By

∂

∂y
+Bz

∂

∂z
= (magnetic field)

by means of Maxwell’s equations, which are expressed in terms of the divergence
and curl operations studied in second year calculus as

∇ ·B = 0, ∇×E +
∂B
∂t

= 0, (2.38)

∇ ·E = 4πρ, ∇×B− ∂E
∂t

= 4πJ. (2.39)

To express these equations in space-time formalism, it is convenient to re-
place the electric and magnetic fields by a single covariant tensor field of rank
two, the so called Faraday tensor :

F = −Exdt ∧ dx− Eydt ∧ dy − Ezdt ∧ dz
+Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy.

Then the Hodge star interchanges the E and the B fields:

? F = Bxdt ∧ dx+Bydt ∧ dy +Bzdt ∧ dz
+ Exdy ∧ dz + Eydz ∧ dx+ Ezdx ∧ dy.

Exercise IX. a. Show that in Minkowski space-time L4,

?? = (−1)k+1 : Ωk(L4) −→ Ωk(L4).

b. Determine ?dt, ?dx, ?dy and ?dz.

c. Show that Maxwell’s equations can be expressed in terms of the Faraday
tensor as

dF = 0, d(?F) = ?(4πJ ), where J = −ρdt+ Jxdx+ Jydy + Jzdz.
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This formulation of Maxwell’s equations is described in more detail in Chapter 4
of [27]. From this viewpoint, it is apparent that Maxwell’s equations are invari-
ant under the action of the Lorentz group, the linear transformations from L4

to itself which preserve the Lorentz metric of Minkowski space-time, since the
Hodge star is completely defined by the Lorentz metric. This invariance was one
of the major reasons for the discovery of special relativity; Maxwell’s equations
were not invariant under the same group of transformations as Newtonian me-
chanics. The formulation of Maxwell’s equations in terms of the Faraday tensor
can be extended immediately to the curved space-times of general relativity.
Maxwell’s equations thus motivate the study of the operator ?d? on differential
forms.

One approach to solving Maxwell’s equations on L4 is to write F = dA,
where A is a one-form called the vector potential . Appropriately chosen, the
vector potential will solve an equation similar to the wave equation, for which
an elegant theory has been developed. This approach runs into a snag in a
general space-time because the de Rham cohomology class [F ] may not be zero.
Resolving this question leads to the theory of connections in vector bundles as
we will see later.

2.10 The Hodge Laplacian

In addition to the exterior derivative, an n-dimensional Riemannian manifolds
haa a codifferential δ which goes in the opposite direction,

δ = (−1)nk+1 ? d? : Ωk+1(M) −→ Ωk(M).

The only thing that is difficult to remember about the codifferential is the sign.
For now, note that if M is even-dimensional, δ = − ? d?. No matter what the
dimension of M , it follows from (2.36) that δ ◦ δ = 0.

To explain where the sign comes from, we suppose that (M, 〈, ·, ·〉) is a com-
pact oriented Riemannian manifold, possibly with boundary ∂M . We can define
a positive definite L2 inner product

(·, ·) : Ωk(M)× Ωk(M) −→ R

by setting

(φ, ψ) =
∫
M

φ ∧ ?ψ =
∫
M

〈φ, ψ〉Θ.

This inner product make Ωk(M) into a pre-Hibert space. The funny sign is
introducted to make the following proposition valid:

Proposition. If φ ∈ Ωk(M) and ψ ∈ Ωk+1(M), then

(dφ, ψ)− (φ, δψ) =
∫
∂M

φ ∧ ?ψ, (2.40)

where δ = (−1)nk+1 ? d?.
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The proposition is a consequence of Stokes’ Theorem:∫
∂M

φ ∧ ?ψ =
∫
M

d(φ ∧ ?ψ) =
∫
M

dφ ∧ ?ψ + (−1)k
∫
M

φ ∧ (d ? ψ)

=
∫
M

dφ ∧ ?ψ + (−1)k(−1)(n−k)k

∫
M

φ ∧ ?(?d ? ψ)

=
∫
M

dφ ∧ ?ψ −
∫
M

φ ∧ ?(δψ) = (dφ, ψ)− (φ, δψ).

Suppose p ∈ ∂M and that ν is a unit-length element of T ∗pM which points out
of ∂M . The volume forms ΘM and ΘM are then related by the formula

ΘM = ν ∧Θ∂M .

If φ ∈ Ωk(M) and ψ ∈ Ωk+1(M), then

ν ∧ φ ∧ ?ψ = 〈ν ∧ φ, ψ〉ΘM ⇒ φ ∧ ?ψ = 〈ν ∧ φ, ψ〉Θ∂M ,

so we can rewrite (2.40) as

(dφ, ψ)− (φ, δψ) =
∫
∂M

〈ν ∧ φ, ψ〉Θ∂M . (2.41)

If we also use the Riemannian metric to identify ν with a unit length tangent
vector, it follows from the identity 〈ν ∧φ, ψ〉 = 〈φ, ινψ〉, where ιν is the interior
product discussed in Exercise VIII, that we can write this formula as

(dφ, ψ)− (φ, δψ) =
∫
∂M

〈φ, ινψ〉Θ∂M . (2.42)

Note that if ∂M = ∅, equation (2.40) becomes

(dφ, ψ) = (φ, δψ). (2.43)

The sign in the definition of δ was chosen to make this identity hold. Because
of the identity, the codifferential δ is also called the formal adjoint to d.

Given an oriented Riemannian manifold, possibly with boundary, we now
have two first order differential operators d and δ which satisfy the identities
d2 = 0 and δ2 = 0. Thus

∆ = −(d+ δ)2 = −dδ − δd : Ωk(M) −→ Ωk(M).

Definition. The Hodge Laplacian is the second order differential operator

∆ : Ωk(M) −→ Ωk(M) defined by ∆ = −(dδ + δd).

We say that an element φ ∈ Ωk(M) is harmonic if ∆φ = 0.

Dangerous curve. Most geometry books use the opposite sign in the definition
of the Hodge Laplacian. We have chosen the sign so that the Hodge Laplacian
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agrees with the Laplace operator used by engineers and physicists when M is
Euclidean space.

Suppose that (M, 〈·, ·〉) is a compact Riemannian manifold without boundary.
It then follows from the identity (2.43) that

(−∆φ, ψ) = ((dδ + δd)φ, ψ) = (δφ, δψ) + (dφ, dψ) = · · · = (φ,−∆ψ), (2.44)

for all φ, ψ ∈ Ωk(M). Equation (2.44) states that the Laplace operator ∆ is
formally self-adjoint . Moreover, ∆φ = 0 if and only if φ satisfies the weak form
of Laplace’s equation on k-forms:

(δφ, δψ) + (dφ, dψ) = 0, for all ψ ∈ Ωk(M). (2.45)

We can take ψ = φ, so that

∆φ = 0 ⇒ (δφ, δφ) + (dφ, dφ) = 0.

Since the inner product (·, ·) is positive definite, it follows that dφ = 0 = δφ,
and we conclude:

Proposition. If (M, 〈·, ·〉) is a compact oriented Riemannian manifold without
boundary, harmonic k-forms on M are exactly those forms which are both closed
and coclosed:

∆φ = 0 ⇔ dφ = 0 = δφ. (2.46)

The Laplace operator on functions. To gain some intuition, we focus on
the simplest case, the Laplace operator on functions. In this case,

∆(f) = −δd(f), since δ(f) = 0

and δ = − ? d?.
We imagine that (x1, . . . , xn) is a smooth positively oriented coordinate sys-

tem on M , so that
Θ =

√
gdx1 ∧ · · · ∧ dxn.

Clearly,

?(dxi) =
n∑
j=1

(−1)j−1hijdx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn,

for certain functions hij . Hence

dxi ∧ ?dxj = · · · = hijdx1 ∧ · · · ∧ dxn.

On the other hand, it follows from (2.34) that

dxi ∧ ?dxj = 〈dxi, dxj〉√gdx1 ∧ · · · ∧ dxn = gij
√
gdx1 ∧ · · · ∧ dxn.
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It follows that hjk = gjk
√
g, and hence

?(dxi) =
n∑
j=1

(−1)k−1gij
√
gdx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn.

It follows that

? (df) = ?

(
n∑
i=1

∂f

∂xi
dxi

)

=
n∑

i,j=1

(−1)j−1gij
√
g
∂f

∂xi
dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn,

and

d ? d(f) =
n∑

i,j=1

∂

∂xj

(
gij
√
g
∂f

∂xi

)
dx1 ∧ . . . ∧ dxn.

Thus we finally conclude that

∆(f) = ?d ? df =
1
√
g

n∑
i,j=1

∂

∂xj

(
gij
√
g
∂f

∂xi

)
. (2.47)

This formula for the Laplace operator is incredibly useful. Consider, for exam-
ple, the flow of heat on a smooth surface M ⊆ E3. From the elementary theory
of PDE’s we expect the temperature on a smooth homogeneous surface to be
described by a function u : M × [0,∞) → R which satisfies an initial value
problem

∂u

∂t
= c2∆u, u(p, 0) = h(p),

where h : M → R is the initial temperature distribution. However, in order
to make sense of this equation, we need to define a Laplace operator acting on
scalar functions on a smooth surface. The Laplace operator to use is the one
given by (2.47).

Exercise X. Suppose that M = S2, the standard unit two-sphere in E3, with
Riemannian metric expressed in spherical coordinates as

〈·, ·〉 = (sin2 φ)dθ ⊗ dθ + dφ⊗ dφ.

Determine the Hodge Laplacian on functions in this case.

Remark. We could use this expression for the Laplacian to solve the initial-
value problem for the flow of heat over the unit sphere. The technique of separa-
tion of variables and Legendre polynomials gives a very explicit representation
of the solution.
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2.11 The Hodge Theorem

Suppose now that (M, 〈·, ·〉) is a compact oriented Riemannian manifold without
boundary, and let

Hk(M) = { harmonic k-forms on M } = {φ ∈ Ωk(M) : ∆φ = 0}.

Hodge Theorem. Every de Rham cohomology class has a unique harmonic
representative; thus

Hk
dR(M ; R) ∼= Hk(M).

This gives an important relationship between topology and solutions to linear
elliptic systems of partial differential equations on smooth manifolds.

This theorem has important topological consequences. Thus for example,
one easily checks that ?∆ = ∆?, so if φ is a harmonic k-form, so is ?φ. Thus
we obtain:

Poincaré Duality Theorem. If M is a compact oriented manifold of dimen-
sion n,

Hk
dR(M ; R) ∼= Hn−k

dR (M ; R).

We already know that if M is a compact oriented Riemannian manifold, the
volume form represents a nontrivial element of Hn

dR(M ; R). Poincaré duality
enables us to make a finer statement:

Corollary. If M is a compact connected oriented manifold of dimension n,

Hn
dR(M ; R) ∼= R.

Of course, Poincaré duality simplifies the calculation of de Rham cohomology of
compact oriented manifolds via the Homotopy and Mayer-Vietoris Theorems.

Example. Let us suppose that

M = Tn =

n︷ ︸︸ ︷
S1 × · · · × S1,

with the flat metric defined by requiring that the covering

π : En → Tn, π(x1, . . . , xn) = (e2πix1
, . . . , e2πixn)

be a local isometry. We define one-forms (θ1, . . . , θn) on Tn by π∗θi = dxi. Then
(θ1, . . . , θn) form a positively oriented orthonormal basis for the one-forms on
M and it follows from (2.35) that

d(θi1 ∧ · · · ∧ θik) = 0, δ(θi1 ∧ · · · ∧ θik) = 0.
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If ω ∈ Ωk(Tn), then

ω =
∑

i1<···<ik

fi1...ikθ
i1 ∧ · · · ∧ θik ,

for some smooth real-valued functions fi1...ik on Tn and if these functions are
constant, dω = 0 = δω and hence ω is harmonic. Conversely, a direct calculation
shows that

∆ω =
∑

i1<···<ik

(∆fi1...ik)θi1 ∧ · · · ∧ θik ,

and hence if ω is harmonic, so is each function fi1...ik . But it follows from (2.46)
that the only harmonic functions on a compact oriented manifolds are constant
on each connected component, so the only harmonic forms on Tn are

ω =
∑

i1<···<ik

ci1...ikθ
i1 ∧ · · · ∧ θik ,

where the ci1...ik ’s are constants. In other words,

{θi1 ∧ · · · ∧ θik : i1 < · · · < ik}

is a basis for Hk(Tn) and hence the dimension of Hk
dR(Tn; R) is

(
n
k

)
. Thus

Hodge theory yields a very explicit representation for the cohomology of the
torus in terms of harmonic forms.

There are two steps to the proof of the Hodge Theorem. Uniqueness of har-
monic representatives is easy. If ω1 and ω2 were two harmonic k-forms on M
representing the same cohomology class, say ω1 − ω2 = dφ, then

(ω1 − ω2, ω1 − ω2) = (ω1 − ω2, dφ) = (δω1 − δω2, φ) = 0,

and positive-definiteness of (·, ·) implies that ω1 − ω2 = 0, so ω1 = ω2.
Thus the difficult step is establishing existence of a harmonic representative

of a given cohomology class. A proof of this step is beyond the scope of the
course, but we will briefly sketch the idea behind the proof, which is similar to
the argument given in [16], Chapter 2. (Some readers may want to skip this
sketch on a first reading.) Let ω0 be a smooth k-form representing a given de
Rham cohomology class [ω0]. Then any k-form in the same cohomology class
must be of the form ω = ω0 + dα, where α is a smooth (k − 1)-form. The idea
is to find a minimum for the function

F : Ωk−1(M)→ R defined by F (α) = (ω0 + dα, ω0 + dα).

If we knew that the function F possessed a smooth minimum α0, we could apply
first variation to obtain

0 =
d

dt
(ω0 + dα0 + tdβ, ω0 + dα0 + tdβ)

∣∣∣∣
t=0

= 2(ω0 + dα0, dβ), for all β ∈ Ωk−1(M), (2.48)
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which would imply δ(ω0 + dα) = 0. Then ω0 + dα0 would be both closed and
coclosed, and hence the desired harmonic representative for the given de Rham
cohomology class.

To construct the minimum, we might take a minimizing sequence for F , a
sequence {αi} of (k − 1)-forms such that

F (αi)→ µ = inf{F (α) : α ∈ Ωk−1(M)}.

The difficulty is that such a sequence might not converge, because we could
replace αi by αi + dφi for some (k − 2)-form φi without changing the value
of F , and it might be that φi → ∞. Thus we focus instead on the sequence
{ωi = ω0 + dαi} in Ωk(M).

To show that a subsequence of {ωi} converges, we first complete the space
Ωk(M) of smooth k-forms on M with respect to the inner product (·, ·), thereby
obtaining a Hilbert space L2(Ωk(M)). The closure of ω0 + d(Ωk−1(M)) is a
translate ω0 + H of a closed Hilbert subspace H ⊆ L2(Ωk(M)). Instead of
minimizing F directly we construct an element ω∞ of ω0 + H which is closest
to the origin. The sequence {ωi} must then converge to ω∞ in ω0 +H.

We can conclude that

(ω∞, δφ) = 0 and (ω∞, δφ) = 0, for all φ ∈ Ωk(M), (2.49)

the first since ω∞ is a limit of closed forms, the second by the first variation
argument (2.48), since ω∞ is a minimum for the map

F : (closure of dΩk−1(M))→ R defined by F (γ) = (ω0 + γ, ω0 + γ).

In the terminology of PDE theory (2.49) states that ω∞ is weakly closed and
coclosed.

We have explained the part of the proof that can be done without “elliptic
regularity theory,” which implies that a k-form which is weakly closed and co-
closed is actually smooth, and hence a bona fide harmonic form. To apply the
regularity theory, one uses the fact that

d+ δ : Ωk(M)→ Ωk+1(M)⊕ Ωk−1(M)

is an elliptic operator. Unfortunately, the regularity theory requires the devel-
opment of considerable analysis: construction of Sobolev spaces, the Sobolev
Lemma and the Rellich Lemma. We refer to [33] and [10] for presentation of
this theory.

Once we know that ω∞ is a smooth harmonic form, it is not difficult to
show that it lies in the same de Rham cohomology class as ω0 and all of the
ωi’s. One way of establishing this would be to use the de Rham Isomorphism
Theorem, since the fact that ωi → ω∞ in L2 implies that the integral of ωi over
any singular cycle approaches the integral of ω∞ over that cycle.
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2.12 d and δ in terms of moving frames

The Hodge Laplacian is only one of many Laplace operators that arise in differ-
ential geometry. In the next few sections, we will describe another, the so-called
“rough Laplacian.” The relationship between the Hodge and rough Laplacians
gives an important relationships between curvature and topology of Riemannian
manifolds.

Definition. A linear operator D : Ω∗(M) → Ω∗(M) is said to be a derivation
if

D(φ ∧ ψ) = D(φ) ∧ ψ + φ ∧D(ψ), for all φ, ψ ∈ Ω∗(M).

It is said to be skew-derivation if instead

D(φ ∧ ψ) = D(φ) ∧ ψ + (−1)kφ ∧D(ψ), for all φ ∈ Ωk(M) and ψ ∈ Ω∗(M).

Thus the Lie derivative LX in the direction of a vector field X is a derivation,
while the exterior derivative d is a skew-derivation. Another skew-derivation is
the interior product ιX in the direction of a vector field X on ω∗(M).

If (M, 〈·, ·〉) is a Riemannian manifold and X is a vector field on M , then
the Levi-Civita connection defines a derivation ∇X of Ω∗(M). Indeed, if Y
is a smooth vector field on M , the Levi-Civita connection defines a covariant
derivative ∇XY of Y in the direction of X. If ω ∈ Ωk(M), we define the
covariant derivative of ω in the direction of X in such a way that the Leibniz
rule will hold. This forces

X(ω(Y1, . . . , Yk))
= (∇Xω)(Y1, . . . , Yk) + ω(∇XY1, . . . , Yk) + · · ·+ ω(Y1, . . . ,∇XYk),

or

(∇Xω)(Y1, . . . , Yk)
= X(ω(Y1, . . . , Yk))− ω(∇XY1, . . . , Yk)− · · · − ω(Y1, . . . ,∇XYk). (2.50)

It is readily verified that

∇X(fω + φ) = X(f)ω + f∇Xω +∇Xφ, ∇fX+Y ω = f∇Xω +∇Y ω.

Moreover, ∇X satisfies the derivation property,

∇X(φ ∧ ψ) = ∇X(φ) ∧ ψ + φ ∧∇X(ψ).

Suppose now that (M, 〈·, ·〉) is an n-dimensional oriented Riemannian man-
ifold and U is an open subset of M .

Definition. A moving orthonormal frame on U is an ordered collection (e1, . . . en)
of vector fields on U such that

〈ei, ej〉 = δij =

{
1, if i = j,
0, if i 6= j.
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The dual orthonormal coframe is the ordered collection (θ1, . . . , θn) defined so
that

θi(ej) = δij =

{
1, if i = j,
0, if i 6= j.

Of course, in terms of the induced inner product on T ∗M ,

〈θi, θj〉 = δij =

{
1, if i = j,
0, if i 6= j.

We define a linear operator εθi : Ω∗(M) → Ω∗(M) by εθi(φ) = θi ∧ φ. The
exterior derivative can then be expressed in terms of the covariant derivative
and εθi :

Proposition 1. d =
∑n
i=1 εθi ◦ ∇ei on U .

To prove this proposition, we first check it on functions. If f is a smooth real-
valued function on U and p ∈ U , we can choose coordinates (x1, . . . , xn) on a
neighborhood of p such that

x1(p) = · · ·xn(p) = 0, ei(p) =
∂

∂xi

∣∣∣∣
p

, θi(p) = dxi|p.

Then
n∑
i=1

εθi ◦ ∇ei(f)(p) =
n∑
i=1

dxi|p
∂

∂xi

∣∣∣∣
p

(f) = df(p).

Next we check the formula on one-forms. If ω is a smooth one-form on U , then(
n∑
i=1

εθi ◦ ∇eiω

)
(X,Y ) =

n∑
i=1

(
θi ∧∇eiω

)
(X,Y )

=
n∑
i=1

θi(X)∇eiω(Y )−
n∑
i=1

θi(Y )∇eiω(X) = (∇Xω)(Y )− (∇Y ω)(X)

= X(ω(Y ))− Y (ω(X))− ω(∇XY ) + ω(∇YX)
= X(ω(Y ))− Y (ω(X))− ω([X,Y ]) = dω(X,Y ),

which gives the formula for one-forms. In the calculation we used the fact that
n∑
i=1

θi(X)∇ei = ∇X .

Thus to finish the proof of the proposition, we need only cite the following
lemma:

Lemma. If D and D′ are both derivations, or both skew-derivations, of Ω∗(M)
such that

D(f) = D′(f), for f ∈ Ω0(M) and D(ω) = D′(ω), for ω ∈ Ω1(M),

120



then D = D′.

We sketch the proof of the lemma for derivations, the case of skew-derivations
being the same except for a few signs. Any element ω ∈ Ωk(M) can be divided
into a sum of k-forms with supports in local coordinate systems, so it suffices
to prove a local coordinate version of the lemma. If (U, (x1, . . . , xn) is a smooth
coordinate system and the support of ω is contained in U , it can be written as

ω =
∑

i1<···<ik

fi1...ikdx
i1 ∧ · · · ∧ dxik ,

for some choice of smooth functions fi1...ik . Thus if D and D′ are both deriva-
tions, we have

D(ω) =
∑

i1<···<ik

D(fi1...ik)dxi1 ∧ · · · ∧ dxik

+
∑

i1<···<ik

fi1...ikD(dxi1)∧· · ·∧dxik + · · ·+
∑

i1<···<ik

fi1...ikdx
i1 ∧· · ·∧D(dxik),

D′(ω) =
∑

i1<···<ik

D′(fi1...ik)dxi1 ∧ · · · ∧ dxik

+
∑

i1<···<ik

fi1...ikD
′(dxi1)∧· · ·∧dxik + · · ·+

∑
i1<···<ik

fi1...ikdx
i1∧· · ·∧D′(dxik).

By hypothesis, the right-hand sides of the two expressions are the same, so
D = D′ as required.

Of course, we can ask whether the codifferential

δ = (−1)(n(k+1)+1 ? d? : Ωk(M) −→ Ωk−1(M)

has a similar expression

Proposition 2. δ = −
∑n
i=1 ιei ◦ ∇ei on U .

But this actually follows from Proposition 1, together with the straightforward
calculation that

ιei = (−1)nk+n ? εθi? : Ωk(M) −→ Ωk−1(M).

Indeed, from this formula, and the fact that ? commutes with ∇X , it follows
that

δ = (−1)nk+n+1 ? ◦
n∑
i=1

εθi ◦ ∇ei ◦ ?

= (−1)nk+n+1
n∑
i=1

? ◦ εθi ◦ ? ◦ ∇ei = −
n∑
i=1

ιei ◦ ∇ei .
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2.13 The rough Laplacian

There is a second Laplace operator that is defined on Ω∗(M). As preparation
for defining it, we define an operator

∇X,Y : Ω∗(M)→ Ω∗(M) by ∇X,Y (ω) = ∇X∇Y ω −∇∇XY ω,

for vector fields X and Y on M .

Lemma. ∇fX,Y ω = f∇X,Y ω = ∇X,fY ω.

The proof is a straightforward calculation; for example, consider the first equal-
ity:

∇fX,Y ω = ∇fX∇Y ω −∇Y∇fXω −∇[fX, Y ]ω
= f∇X∇Y ω − Y (f)∇Xω − f∇Y∇Xω −∇fXY−Y (f)X−fY X

= f∇X∇Y ω − f∇Y∇Xω − f∇[X,Y ] = f∇X,Y ω.

This lemma implies that we have a well-defined linear map

∇x,y : Λ∗T ∗pM → Λ∗T ∗pM, for each choice of x, y ∈ TpM .

Definition. The rough Laplacian on Ω∗(M) is the linear operator ∆R : Ω∗(M)→
Ω∗(M) defined by

∆R(ω) =
n∑
i=1

∇ei,ei(ω) on U,

whenever (e1, . . . en) is a moving orthonormal frame on U . (It is immediately
verified that the expression on the right is independent of the choice of moving
orthonormal frame.)

If ω ∈ Ωk(M) we define ‖∇ω‖ by

‖∇ω‖2 =
n∑
i=1

‖∇eiω‖2,

whenever (e1, . . . en) is a moving orthonormal frame.

Proposition. If (M, 〈·, ·〉) is a compact oriented Riemannian manifold with
empty boundary and volume form ΘM , then for any ω ∈ Ωk(M),∫

M

〈−∆R(ω), ω〉ΘM =
∫
M

‖∇ω‖2ΘM .

To prove the proposition, we define a vector field X on M by

X =
n∑
i=1

〈∇eiω, ω〉ei,
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whenever (e1, . . . en) is a positively oriented moving orthonormal frame on U ⊆
M . Clearly, X is independent of choice of moving frame, hence globally defined
on M , and in fact,

X =
1
2

grad〈ω, ω〉.

By positively oriented, we mean that if (θ1, . . . , θn) is the orthonormal coframe
on U dual to (e1, . . . en), then

ΘM = θ1 ∧ · · · ∧ θn.

Now set

ψ = ιXΘM =
n∑
i=1

(−1)i−1〈∇eiω, ω〉θ1 ∧ · · · ∧ θi−1 ∧ θi+1 ∧ · · · ∧ θn.

To finish the proof of the proposition, it will suffice to show that

dψ = 〈∆R(ω), ω〉ΘM + ‖∇ω‖2ΘM . (2.51)

We need only prove (2.51) at a given point p ∈M , and we can that the point
lies within an open neighborhood on which we have a moving orthonormal frame
(e1, . . . , en) with corresponding orthonormal coframe (θ1, . . . , θn). Moreover, we
can assume without loss of generality that

∇eiej(p) = 0, and hence ∇eiθj(p) = 0.

Since ∇X : Ω∗(M)→ Ω∗(M) is a derivation,

∇ei(θj1 ∧ · · · ∧ θjk)(p) = 0.

Hence it follows from Proposition 1 of the previous section that

dψ(p)

=
n∑
i=1

(−1)i−1εθi ◦ ∇ei (〈∇eiω, ω〉) θ1 ∧ · · · ∧ θi−1 ∧ θi+1 ∧ · · · ∧ θn(p)

=
n∑
i=1

[〈∇ei∇eiω, ω〉+ 〈∇eiω,∇eiω〉] θ1 ∧ · · · ∧ θn(p)

= [〈∆R(ω)ω〉+ ‖∇ω‖2]ΘM (p),

which establishes (2.51) and finishes the proof of the proposition.

2.14 The Weitzenböck formula

We now have two operators, the Hodge Laplacian ∆ and the rough Laplacian
∆R on Ω∗(M). It turns out that the relationship between the two is given by
the Riemann-Christoffel curvature of the Riemannian manifold (M, 〈·, ·〉).
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Here the curvature of the Levi-Civita connection on Ω∗(M) is defined by the
expected formula,

R(X,Y )ω = ∇X∇Y ω −∇Y∇Xω −∇[X,Y ]ω,

whenever X and Y are smooth vector fields on M . Since the connection is
symmetric, R(X,Y )f = 0, for f ∈ Ω∗(M) and, since the Riemannian metric
provides an isomorphism between TM and T ∗M preserving inner products,
R(X,Y ) on T ∗M is essentially the same as R(X,Y ) on TM . Moreover, one can
check that R(X,Y ) is a derivation, so it is completely determined by its effect
on Ω0(M) and Ω1(M) by the lemma of § 2.12.

To derive the relationship between the two Laplace operators, we use the
identities,

d =
n∑
i=1

εθi ◦ ∇ei , δ = −
n∑
i=1

ιei ◦ ∇ei .

We will need the following easily verified identities for the interior and exterior
products:

εθi ◦ ιej = −ιej ◦ εθi , if i 6= j,

εθi ◦ ιei + ιei ◦ εθi = id.

We now calculate the Hodge Laplacian at a point p ∈ M , and we assume
without loss of generality that

∇eiej(p) = 0, and ∇eiθj(p) = 0,

as before. This implies that [ei, ej ](p) = ∇eiej(p)−∇ejei(p) = 0 as well. Thus

∆(ω) = −dδ(ω)− δd(ω)

=
n∑

i,j=1

εθi ◦ ∇ei ◦ ιej ◦ ∇ej (ω) +
n∑

i,j=1

ιej ◦ ∇ej ◦ εθi ◦ ∇ei(ω)

=
n∑

i,j=1

εθi ◦ ιej ◦ ∇ei ◦ ∇ej (ω) +
n∑

i,j=1

ιej ◦ εθi ◦ ∇ej ◦ ∇ei(ω)

=
n∑
i=1

∇ei∇ei(ω) +
∑
i<j

εθi ◦ ιej (∇ei∇ej −∇ej∇ei)(ω).

We conclude that

∆(ω) = ∆R(ω) +
1
2

∑
i 6=j

(εθi ◦ ιej + ιei ◦ εθj )R(ei, ej)(ω). (2.52)

This formula, relating the two Laplacians is called the Weitzenböck formula.
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2.15 Ricci curvature and Hodge theory

One of the most studied problems in differential geometry concerns relation-
ships between curvature and topology of Riemannian manifolds. In addition
to the Riemann-Christoffel curvature tensor studied in §1.8, we have various
“contractions” of the curvature which are also important.

Definition. The Ricci curvature of a pseudo-Riemannian manifold (M, 〈·, ·〉)
is the bilinear form

Ric : TpM × TpM → R defined by Ric(x, y) = (Trace of v 7→ R(v, x)y).

It follows from the curvature symmetries that Ric is symmetric, that is,

Ric(x, y) = Ric(y, x).

Indeed, if (e1, . . . , en) is a basis for TpM such that 〈ei, ej〉 = 0 if i 6= j and

〈ei, ei〉 = 1, for 1 ≤ i ≤ p, 〈ei, ei〉 = −1, for p+ 1 ≤ i ≤ n, (2.53)

then

Ric(x, y) =
p∑
i=1

〈R(ei, x)y, ei〉 −
n∑

i=p+1

〈R(ei, x)y, ei〉 = Ric(y, x),

the last equality following from the curvature symmetries presented in §1.9. We
say that a Riemannian manifold has positive Ricci curvature if for each p ∈M ,
the symmetric bilinear form Ric : TpM × TpM → R is positive definite. Exam-
ples of manifolds of positive Ricci curvature include the spheres, the compact Lie
groups O(n) and U(n) with biinvariant Riemannian metrics, and the complex
projective space.

In this section, we will describe how Hodge’s theory of harmonic forms allows
us to draw conclusions about the topology of manifolds with positive Ricci
curvature. Our approach is to use the Weitzenböck formula (2.52):

−∆ω = −∆R(ω)+K(ω), where K(ω) = −1
2

∑
i 6=j

(εθi◦ιej+ιei◦εθj )R(ei, ej)(ω).

It follows from this formula and the proposition from §2.13 that∫
M

〈−∆ω, ω〉ΘM =
∫
M

〈−∆R(ω) +K(ω), ω〉ΘM

=
∫
M

‖∇ω‖2ΘM +
∫
M

〈K(ω), ω〉ΘM . (2.54)

If we can show that whenever ω ∈ Ωk(M), the curvature term 〈K(ω), ω〉 > 0, it
will follow that ∫

M

〈−∆ω, ω〉ΘM > 0, for all ω ∈ Ωk(M).
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From this we can conclude that there cannot be any nonzero harmonic k-forms,
and hence it follows from Hodge’s Theorem that Hk

dR(M ; R) = 0.
This approach to determining relationships between curvature and topology

is called Bochner’s technique, and has many applications to finding relationships
between curvature and topology. We will apply this technique to the case where
ω ∈ Ω1(M) to obtain:

Theorem. Let (M,ω) be a compact connected oriented Riemannian manifold
with positive Ricci curvature. Then H1

dR(M ; R) = 0.

To carry out the calculation of 〈K(ω), ω〉 when ω ∈ Ω1(M), we use the Rieman-
nian metric 〈·, ·〉 on M to identify TpM with T ∗pM via the isomorphism

v ∈ TpM 7→ 〈v, ·〉 ∈ T ∗pM.

Using this isomorphism, we could identify the elements ei of a moving orthonor-
mal frame with the corresponding elements θi of the dual orthonormal coframe.
It then suffices to show that

〈K(θi), θi〉 = 〈K(ei), ei〉 > 0, for 1 ≤ i ≤ n.

But

〈K(ek), ek〉 = −1
2

∑
i 6=j

〈
(εθi ◦ ιej + ιei ◦ εθj )R(ei, ej)ek, ek

〉
= −1

2

∑
i6=j

〈
R(ei, ej)ek, (εθj ◦ ιei + ιej ◦ εθi)ek

〉
= −1

2

∑
i6=j

〈
R(ei, ej)ek, (εθj ◦ ιei − εθi ◦ ιej )ek

〉
= −1

2

n∑
j=1

〈R(ek, ej)ek, ej〉+
1
2

n∑
j=1

〈R(ei, ek)ek, ei〉

= Ric(ek, ek).

Thus if M has positive Ricci curvature, it does indeed follow from (2.54) that
there are no nonzero harmonic one-forms on M and H1

dR(M ; R) = 0.

2.16 The curvature operator and Hodge theory

Suppose that (M, 〈·, ·〉) is a Riemannian manifold. Just as we have defined
Λ2T ∗pM , we could define Λ2TpM and use the Riemannian metric to define a
positive definite inner product

〈·, ·〉 : Λ2T ∗pM × Λ2T ∗pM −→ R.

We can then organize the information contained in the Riemann-Christoffel
curvature tensor into a symmetric linear map on Λ2TpM .
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Definition. The curvature operator of a Riemmannian manifold (M, 〈·, ·〉) at
a point p ∈M is the linear map

R : Λ2TpM → Λ2TpM defined by 〈R(x ∧ y), z ∧ w〉 = 〈R(x, y)w, z〉.

The curvature symmetries imply that R is well defined and symmetric:

〈R(x ∧ y), z ∧ w〉 = 〈x ∧ y,R(z ∧ w)〉 .

We say that (M, 〈·, ·〉) has positive curvature operators if for every p ∈M ,

〈R(ξ), ξ〉 > 0, for all nonzero ξ ∈ Λ2T ∗pM .

We can ask the question of whether having positive curvature operators puts
constraints on the topology of a Riemannian manifold. A first answer to this
question was given by the following theorem:

Theorem of Gallot and Meyer (1975). Let (M, 〈·, ·〉) be a compact con-
nected oriented n-dimensional Riemannian manifold with positive curvature op-
erators. Then

Hk
dR(M ; R) ∼=

{
R, if k = 0 or k = n,

0, otherwise.

In other words, M has the same de Rham cohomology as Sn.

A complete proof of this theorem is beyond the scope of the course, but we will
give a sketch. The idea is relatively simple.

Since M is connected H0
dR(M ; R) ∼= R while Poincaré duality shows that

Hn
dR(M ; R) ∼= R. Thus we need only verify that

0 < k < n ⇒ H0
dR(M ; R) ∼= Hk(M) = 0.

In other words, we need only verify that M has no harmonic k-forms when
0 < k < n. Applying (2.54) to the case where ∆ω = 0, we see that it would
suffice to show that if ω is a nonzero k-form, where 0 < k < n, then

〈R(ξ), ξ〉 > 0, for all nonzero ξ ∈ Λ2TpM

⇒ 〈K(ω), ω〉 > 0, for all nonzero ω ∈ Λ2T ∗pM .

This is a purely algebraic problem that was solved by Gallot and Meyer. We
will sketch further details in the next section.

The Hodge Laplacian is a linear elliptic operator. It might be hoped that
stronger results could be obtained using nonlinear PDE’s. This was realized by
Böhm and Wilking [6] who showed in 2006 that compact simply connected Rie-
mannian manifolds with positive curvature operators are in fact diffeomorphic
to spheres by using the nonlinear Ricci curvature evolutions equations intro-
duced by Hamilton. (We say that a connected manifold M is simply connected
if any path γ : [0, 1]→M such that γ(0) = γ(1) can be continuously deformed
to a point; see Chapter 1 of [14].)
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2.17 Proof of Gallot-Meyer Theorem*

For those who are curious about how the proof goes, we provide a sketch of
the argument, using the notion of Clifford algebra, which is important for other
applications as well, and will be discussed later in the course (see §5.6). Our
argument follows [19].

Using the Riemannian metric we can identify T ∗pM with TpM and Λ∗T ∗pM
with Λ∗TpM . Thus if we have an orthonormal basis (e1, . . . , en) at a given point
p ∈M , we identify θi with ei.

The idea behind Clifford algebras is to define a new product (denoted by a
dot) on Λ∗TpM by requiring that it be associative and

ei · ej + ej · ei = −2δij .

With this new product, we call Λ∗TpM the Clifford algebra of TpM and denote
it by Cl(TpM). Thus the Clifford algebra of TpM is the associative algebra with
identity generated by the elements of v ∈ TpM subject to the relations

v · w + w · v = −2〈v, w〉, for all v, w ∈ TpM .

The Clifford algebras Cl(TpM) at the various points p ∈M fit together to form
a vector bundle Cl(TM) of rank 2n over M . We identify

Ω∗(M) = { sections of Λ∗(TM) } with { sections of Cl(TM) }.

With this new Clifford multiplication, we can write

d+ δ =
n∑
i=1

ei · ∇ei .

Note that (d + δ)2 = −∆, and we call d + δ a Dirac operator. The Clifford
product simplifies the form of the operator K:

〈K(ω), ω〉 =
1
2

∑
i6=j

〈ei · ej ·R(ei, ej)(ω), ω〉 .

If U is an open subset of M on which we have defined a moving orthonormal
frame (e1, . . . , en), it is readily checked that

〈ei · ω, φ〉 = −〈ω, ei · φ〉, for ω, φ ∈ Ω∗(U). (2.55)

We can define a map

ad(ei · ej) : Ω∗(U)→ Ω∗(U) by ad(ei · ej)(ω) = ei · ej · ω − ω · ei · ej .

It is easy to check that ad(ei · ej) is a derivation with respect to Clifford multi-
plication.
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If I = (i1, . . . , ik), we let

eI = ei1 · ei2 · · · eik .

It is easy to check that ad(ei · ej) preserves degree that is, that

ad(ei · ej) : Ωk(U)→ Ωk(U).

Moreover,

ad(ei · ej)(eI) =


0, if i, j ∈ I,
0, if i /∈ I and j /∈ I,
2ei · ej · eI , otherwise,

while if i ∈ I and j /∈ I,

ad(ei · ej)(eI) = ±eI∪{j}−{i}.

Finally, we check that

ad(ei · ej)(ω) = 0 for all i, j ⇒ ω ∈ Ω0(U)⊕ Ωn(U).

Note also the important fact that

ei · ej · eI −
1
2

ad(ei · ej)(eI) ∈ Ωk−2(U)⊕ Ωk+2(U). (2.56)

It follows from (2.56) and (2.55) that if ω ∈ Ωk(U), where 0 < k < n,

〈K(ω), ω〉 =
1
2

∑
i 6=j

〈ei · ej ·R(ei, ej)(ω), ω〉

= −1
4

∑
i6=j

〈R(ei, ej)(ω), ad(ei · ej)(ω)〉 . (2.57)

Recall that is terms of components,

R(ei, ej)ek =
∑

Rijlkel = −
∑

Rijlkel.

Lemma. If ω ∈ Ωk(U), then

R(ei, ej)ω = −1
4

n∑
k,l=1

Rijklad(ek · el)(ω).

The proof of this lemma is left as an exercise. The idea is to show that both
sides are derivations that agree on Ω0(U) and Ω1(U). Each of these steps is a
straightforward computation.
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This lemma together with (2.57) yields

〈K(ω), ω〉 =
1
16

∑
i,j,k,l

Rijkl 〈ad(ei · ej)(ω), ad(ek · el)(ω)〉

=
1
16

∑
i,j,k,l

〈R(ei ∧ ej)ek ∧ el〉 〈ad(ei · ej)(ω), ad(ek · el)(ω)〉 .

Thus we find that evaluated at any given point p ∈M ,

〈K(ω), ω〉 =
1
4

∑
i<j,k<l

〈R(ei ∧ ej), ek ∧ el〉 〈ad(ei · ej)(ω), ad(ek · el)(ω)〉

=
1
4

∑
α,β

〈R(ξα), ξβ〉 〈ad(ξα)(ω), ad(ξβ)(ω)〉 ,

where the ξα’s form an orthonormal basis for Λ2TpM . By a well-known theorem
from linear algebra, we can choose such an orthonormal basis so that

〈R(ξα), ξβ〉 = λαδαβ ,

and the hypothesis “positive curvature opertors” implies that all of the λα’s are
positive. Then

〈K(ω), ω〉 =
1
4

∑
α

λα 〈ad(ξα)(ω), ad(ξα)(ω)〉 ≥ 0,

and equals zero only if ω = 0. Thus under the assumption that M has positive
curvature operators, there are no harmonic k-forms for 0 < k < n and the
Gallot-Meyer Theorem is proven.
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Chapter 3

Curvature and topology

3.1 The Hadamard-Cartan Theorem

Recall that the curvature is the most important local invariant of a Rieman-
nian or pseudo-Riemannian manifold (M, 〈·, ·〉). We could imagine defining the
curvature at a given point p ∈ M as follows. First we construct “Riemannian
normal coordinates” (U, x1, . . . xn) centered at p as in §1.14. In terms of these
coordinates, the Riemannian metric assumes the form

〈·, ·〉 =
n∑

i,j=1

gijdx
i ⊗ dxj ,

where each component gij has a Taylor series expansion

gij = δij −
1
3

n∑
k,l=1

Rikjl(p)xkxl + (higher order terms),

for certain constants Rikjl(p) which satisfy the curvature symmetries:

Rikjl(p) = −Rkijl(p) = −Riklj(p) = Rjlik(p),
Rikjl(p) +Rkjil(p) +Rjikl(p) = 0.

We can then define a quadrilinear map

R : TpM × TpM × TpM × TpM → R

by R

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xk

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

,
∂

∂xl

∣∣∣∣
p

)
= Rikjl(p),

thereby obtaining an element R ∈ ⊗4T ∗pM . As we allow p to vary over M , we
thereby obtain a covariant tensor field of rank four,

R : X (M)×X (M)×X (M)×X (M)→ F(M),
R(X,Y, Z,W )(p) = R(X(p), Y (p), Z(p),W (p)),
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which we call the Riemann-Christoffel curvature tensor.
Thus curvature measures the deviation from flatness in the coordinates which

are as flat as possible near a given point p.
As we saw in §2.16, we can organize the curvature into a curvature operator

R : Λ2TpM → Λ2TpM defined by 〈R(x ∧ y), z ∧ w〉 = 〈R(x, y)w, z〉.

The curvature symmetries imply that R is well defined and symmetric:

〈R(x ∧ y), z ∧ w〉 = 〈x ∧ y,R(z ∧ w)〉 .

Hence by theorems from linear algebra, Λ2TpM has a basis consisting of eigen-
vectors for R and all of the eigenvalues of R are real. We say that (M, 〈·, ·〉)
has positive curvature operators if for every p ∈ M , the eigenvalues of R are
positive and that it has nonpositive curvature operators if for every p ∈M , the
eigenvalues of R are nonpositive.

The Hadamard-Cartan Theorem implies that if (M, 〈·, ·〉) is a complete Rie-
mannian manifold with nonpositive curvature operators, then for each p ∈ M
the exponential map expp : TpM → M is a smooth covering in the following
sense. We say that a smooth map π : M̃ → M is a smooth covering if π is
onto, and each q ∈M possesses an open neighborhood U such that π−1(U) is a
disjoint union of open sets each of which is mapped diffeomorphically by π onto
U . Such an open set U ⊂M is said to be evenly covered .

We say that a connected manifold M is simply connected if any path γ :
[0, 1] → M such that γ(0) = γ(1) can be continuously deformed to a point.
It is a theorem from basic topology as we will see later in §3.5 (or see Chap-
ter 1 of [14]) that a smooth covering of a simply connected space must be a
diffeomorphism. Thus the Hadamard-Cartan Theorem implies that a simply
connected complete Riemannian manifold with nonpositive curvature operators
must be diffeomorphic to Euclidean space. This contrasts with a recent theorem
of Böhm and Wilking [6] that compact simply connected Riemannian manifolds
with positive curvature operators are diffeomorphic to spheres.

Actually, however, the Hadamard-Cartan Theorem is somewhat stronger.
Nonpositive curvature operators can be replaced by the weaker hypothesis that
for every p ∈M ,

〈R(x ∧ y), x ∧ y〉 ≤ 0, for all decomposable x ∧ y ∈ Λ2T ∗pM .

This is just the assumption that (M, 〈·, ·〉) has nonpositive sectional curvatures,
where sectional curvatures are defined as follows: If σ is a two-dimensional
subspace of TpM such that the restriction of 〈·, ·〉 to σ is nondegenerate, the
sectional curvature of σ is

K(σ) =
〈R(x, y)y, x〉

〈x, x〉〈y, y〉 − 〈x, y〉2
,

whenever (x, y) is a basis for σ.

132



Hadamard-Cartan Theorem. Let (M, 〈·, ·〉) be a complete connected n-
dimensional Riemannian manifold with nonpositive sectional curvatures. Then
the exponential map

expp : TpM −→M

is a smooth covering.

The reason we can get by with sectional curvatures in the hypothesis is that it is
sectional curvatures which governs the behavior of geodesics. In fact, we claim
that positive sectional curvatures cause geodesics emanating from a point p ∈M
to converge, while nonpositive sectional curvatures cause them to diverge. It is
this fact which underlies the proof of the Hadamard-Cartan Theorem that we
present in the next several sections.

3.2 Parallel transport along curves

Let (M, 〈·, ·〉) be a pseudo-Riemannian manifold with Levi-Civita connection
∇. Suppose that γ : [a, b]→ M is a smooth curve. A smooth vector field in M
along γ is a smooth function

X : [a, b]→ TM such that X(t) ∈ Tγ(t)M for all t ∈ [a, b].

Note that we can define the covariant derivative of such a vector field along γ:

∇γ′X : [a, b]→ TM, (∇γ′X)(t) ∈ Tγ(t)M.

If (x1, . . . , xn) are local coordinates in terms of which

X(t) =
n∑
i=1

f i(t)
∂

∂xi

∣∣∣∣∣
γ(t)

, γ′(t) =
n∑
i=1

d(xi ◦ γ)
dt

(t)
∂

∂xi

∣∣∣∣∣
γ(t)

,

then a short calculation shows that

∇γ′X(t) =
n∑
i=1

df i
dt

(t) +
n∑

j,k=1

Γijk(γ(t))
d(xj ◦ γ)

dt
(t)fk(t)

 ∂

∂xi

∣∣∣∣
γ(t)

.

Definition. We say that a vector field X along γ is parallel if ∇γ′X ≡ 0.

Proposition. If γ : [a, b] → M is a smooth curve, t0 ∈ [a, b] and v ∈ Tγ(t0)M ,
then there is a unique vector field X along γ which is parallel along γ and takes
the value v at t0:

∇γ′X ≡ 0 and X(t0) = v. (3.1)

Proof: Suppose that in terms of local coordinates,

v =
n∑
i=1

ai
∂

∂xi

∣∣∣∣
γ(t0)

.
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Then (3.1) is equivalent to the linear initial value problem

df i

dt
+

n∑
j,k=1

Γijk
d(xj ◦ γ)

dt
fk = 0, f i(t0) = ai.

It follows from the theory of ordinary differential equations that this initial value
problem has a unique solution defined on the interval [a, b].

If γ : [a, b]→M is a smooth path we can define a vector space isomorphism

τγ : Tγ(a)M → Tγ(b)M by τγ(v) = X(b),

where X is the unique vector field along γ which is parallel and satisfies the
initial condition X(a) = v. Similarly, we can define such an isomorphism τγ if
γ is only piecewise smooth. We call τγ the parallel transport along γ.

Note that if X and Y are parallel along γ, then since the Levi-Civita con-
nection ∇ is metric, 〈X,Y 〉 is constant along γ; indeed,

γ′〈X,Y 〉 = 〈∇γ′X,Y 〉+ 〈X,∇γ′Y 〉 = 0.

It follows that τγ is an isometry from Tγ(a)M to Tγ(b)M .
Parallel transport depends very much on the path γ. For example, we could

imagine parallel transport on the unit two-sphere S2 ⊆ E3 along the following
piecewise smooth geodesic triangle γ: We start at the north pole n ∈ S2 and
follow the prime meridian to the equator, then follow the equator through θ
radians of longitude, and finally follow a meridian of constant longitude back
up to the north pole. The resulting isometry from TnS2 to itself is then just a
rotation through the angle θ.

3.3 Geodesics and curvature

We now consider the differential equation that is generated when we have a
“deformation through geodesics.”

Suppose that γ : [a, b]→M is a smooth curve and that α : (−ε, ε)× [a, b]→
M is a smooth map such that α(0, t) = γ(t). We can consider the map α as
defining a family of smooth curves

ᾱ(s) : [a, b]→M, for s ∈ (−ε, ε), such that ᾱ(0) = γ,

if we set ᾱ(s)(t) = α(s, t). A smooth vector field in M along α is a smooth
function

X : (−ε, ε)× [a, b]→ TM

such that X(s, t) ∈ Tα(s,t)M for all (s, t) ∈ (−ε, ε)× [a, b].

We can take the covariant derivatives ∇∂/∂sX and ∇∂/∂tX of such a vector
field along α just as we did for vector fields along curves. (In fact, we already
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carried out this construction in a special case in §1.6.) If (x1, . . . , xn) are local
coordinates in terms of which

X(s, t) =
n∑
i=1

f i(s, t)
∂

∂xi

∣∣∣∣∣
α(s,t)

and we write
∂

∂s
(s, t) =

∂α

∂s
(s, t) =

n∑
i=1

∂(xi ◦ α)
∂s

(s, t)
∂

∂xi

∣∣∣∣∣
α(s,t)

,

then a short calculation yields

(∇∂/∂sX)(s, t) =
n∑
i=1

∂f i
∂s

+
n∑

j,k=1

(Γijk ◦ α)
∂(xj ◦ α)

∂s
fk

 (s, t)
∂

∂xi

∣∣∣∣
α(s,t)

.

A similar local coordinate formula can be given for ∇∂/∂tX.
Of course, important examples of vector fields along α include

∂α

∂s
and

∂α

∂t
,

and it follows quickly from the local coordinate formulae that

∇∂/∂s
(
∂α

∂t

)
= ∇∂/∂t

(
∂α

∂s

)
.

Just as in §1.8, the covariant derivatives do not commute, and this failure is
described by the curvature: Thus if X is a smooth vector field along α,

∇∂/∂s ◦ ∇∂/∂tX −∇∂/∂t ◦ ∇∂/∂sX = R

(
∂α

∂s
,
∂α

∂t

)
X.

We say that α a deformation of γ and call

X(t) =
∂α

∂s
(0, t) ∈ Tγ(t)M

the corresponding deformation field .

Proposition 1. If α is a deformation such that each ᾱ(s) is a geodesic, then
the deformation field X must satisfy Jacobi’s equation:

∇γ′∇γ′X +R(X, γ′)γ′ = 0. (3.2)

Proof: Since ᾱ(s) is a geodesic for every s,

∇∂/∂t
(
∂α

∂t

)
≡ 0 and hence ∇∂/∂s∇∂/∂t

(
∂α

∂t

)
= 0.
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By the definition of curvature (see §1.8)

∇∂/∂t∇∂/∂s
(
∂α

∂t

)
+R

(
∂α

∂s
,
∂α

∂t

)
∂α

∂t
= 0

or ∇∂/∂t∇∂/∂t
(
∂α

∂s

)
+R

(
∂α

∂s
,
∂α

∂t

)
∂α

∂t
= 0.

Evaluation at s = 0 now yields (3.2), finishing the proof.

Remark. The Jacobi equation can be regarded as the linearization of the
geodesic equation near a given geodesic γ.

Definition. A vector field X along a geodesic γ which satisfies the Jacobi
equation (3.2) is called a Jacobi field .

Suppose that γ is a unit speed geodesic and that (E1, . . . En) are parallel or-
thonormal vector fields along γ such that E1 = γ′. We can then define the
component functions of the curvature with respect to (E1, . . . En) by

R(Ek, El)Ej =
n∑
i=1

RikljEi,

where our convention is that the upper index i gets lowered to the third position.
If X =

∑
f iEi, then the Jacobi equation becomes

d2f i

dt2
+

n∑
j=1

Rij11f
j = 0. (3.3)

This second order linear system of ordinary differential equations will possess a
2n-dimensional vector space of solutions along γ. The Jacobi fields which vanish
at a given point will form a linear subspace of dimension n.

Example. Suppose that (M, 〈·, ·〉) is a complete Riemannian manifold of con-
stant sectional curvature k. Thus

R(X,Y )W = k[〈Y,W 〉X − 〈X,W 〉Y ].

In this case, X will be a Jacobi field if and only if

∇γ′∇γ′X = −R(X, γ′)γ′ = k[〈Xγ′〉γ′ − 〈γ′, γ′〉X].

Equivalently, if we assume that γ is unit speed and write X =
∑
f iEi, where

(E1, . . . , En) is a parallel orthonormal frame along γ such that E1 = γ′, then{
d2f1

dt2 = 0,
d2fi

dt2 = −kf i, for 2 ≤ i ≤ n.

The solutions are
f1(t) = a1 + b1t,
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and for 2 ≤ i ≤ n,

f i(t) =


ai cos(

√
kt) + bi sin(

√
kt), for k > 0,

ai + bit, for k = 0,
ai cosh(

√
−kt) + bi sinh(

√
−kt), for k < 0,

(3.4)

Here a1, b1, . . . , an, bn are constants of integration to be that are determined by
the initial conditions.

Definition. Suppose that γ : [a, b]→M is a geodesic in a pseudo-Riemannian
manifold (M, 〈·, ·〉) with γ(a) = p and γ(b) = q. We say that p and q are
conjugate along γ if p 6= q and there is a nonzero Jacobi field X along γ such
that X(a) = 0 = X(b).

For example, antipodal points on Sn are conjugate along the great circle geodesics
which join them, while En and Hn do not have any conjugate points.

Suppose that p is a point in a geodesically complete pseudo-Riemannian
manifold (M, 〈·, ·〉) and v ∈ TpM . We can then define a geodesic γv : [0, 1]→M
by γv(t) = expp(tv). We say that v belongs to the conjugate locus in TpM if
γv(0) and γv(1) are conjugate along γv.

Proposition 2. A vector v ∈ TpM belongs to the conjugate locus if and only
if (expp)∗ is singular at v, that is, there is a nonzero vector w ∈ Tv(TpM) such
that (expp)∗v(w) = 0.

Proof: We use the following construction: If w ∈ Tv(TpM), we define

αw : (ε, ε)× [0, 1]→M by αw(s, t) = expp(t(v + sw)).

We set
Xw(t) =

∂αw
∂s

(0, t),

A Jacobi field along γv which vanishes at γv(0). As w ranges throughout TpM ,
Xw rnges throughout the n-dimensional space of Jacobi fields along γv which
vanish at γv(0).

⇐: If (expp)∗v(w) = 0, then Xw is a Jacobi field along γv which vanishes at
γv(0) and γv(1), so v belongs to the conjugate locus.

⇒: If v belongs to the conjugate locus, there is a Jacobi field along γv which
vanishes at γv(0) and γv(1), and this vector field must be of the form Xw for
some w ∈ Tv(TpM). But then (expp)∗v(w) = Xw(1) = 0, and hence (expp)∗ is
singular at v.

Example. Let us consider the n-sphere Sn of constant curvature one. If p is
the north pole in Sn, it follows from (3.4) that the conjugate locus in TpSn is a
family of concentric spheres of radius kπ, where k ∈ N.
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3.4 Proof of the Hadamard-Cartan Theorem

Suppose that (M, 〈·, ·〉) is a Riemannian manifold. A point p ∈M is said to be
a pole if the conjugate locus in TpM is empty. For example, it follows from the
explicit formulae we derived for Jacobi fields that any point in Euclidean space
En or hyperbolic space Hn is a pole.

Pole Theorem. If (M, 〈·, ·〉) is a complete connected Riemannian manifold
and p ∈M is a pole, then expp : TpM →M is a smooth covering.

To prove this, we need to show that π is onto and each p ∈ M has an open
neighborhood U such that π−1(U) is the disjoint union of open sets, each of
which is mapped diffeomorphically by π onto U .

Since expp is nonsingular at every v ∈ TpM , we can define a Riemannian
metric 〈〈·, ·〉〉 on TpM by

〈〈x, y〉〉 = 〈(expp)∗(x), (expp)∗(y)〉, for all x, y ∈ Tv(TpM).

Locally, expp is an isometry from (TpM, 〈〈·, ·〉〉) to (M, 〈·, ·〉) and it takes lines
through the origin in TpM to geodesics through p ∈ M . Hence lines through
the origin must be geodesics in the Riemannian manifold (TpM, 〈〈·, ·〉〉). It
therefore follows from the Hopf-Rinow Theorem from §1.18 that (TpM, 〈〈·, ·〉〉)
is complete. Thus the theorem will follow from the following lemma:

Lemma. If π : M̃ →M is a local isometry of connected Riemannian manifolds
with M̃ complete, then π is a smooth covering.

Proof of lemma: Let q ∈M . We need to show that q lies in an open set U ⊆M
which is evenly covered, i.e. that π−1(U) is a disjoint union of open sets each
of which is mapped diffeomorphically onto U .

There exists ε > 0 such that expq maps the open ball of radius 2ε in TqM
diffeomorphically onto {r ∈ M : d(q, r) < 2ε}. Let {q̃α : α ∈ A} be the set of
points in M̃ which are mapped by π to q, and let

U = {r ∈M : d(r, q) < ε}, Ũα = {r̃ ∈ M̃ : d(r̃, q̃α) < ε}.

Choose a point q̃α ∈ π−1(q), and let

Bε = {v ∈ TqM : ‖v‖ < ε}, B̃ε = {ṽ ∈ Tq̃αM̃ : ‖ṽ‖ < ε}.

We then have a commutative diagram

B̃ε
π∗−−−−→ Bε

expq̃α
y expq

y
Ũα

π−−−−→ U

Note that expq̃α is globally defined and maps onto Ũα because M̃ is complete,
and π∗ and expq are diffeomorphisms. Hence π maps Ũα diffeomorphically onto
U .
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If r̃ ∈ Ũα ∩ Ũβ , we would have geodesics γ̃α and γ̃β of length < ε from q̃α
and q̃β to r̃. These would project to geodesics γα and γβ of length < ε from q
to r = π(r̃). By uniqueness of geodesics in normal coordinate charts, we would
have γα = γβ . Since π is a local isometry, γ̃α and γ̃β would satisfy the same
initial conditions at r̃. Thus γ̃α = γ̃β , so q̃α = q̃β and α = β. We have shown
that Ũα ∩ Ũβ 6= ∅ only if α = β.

Suppose now that r̃ ∈ π−1(U), with r = π(r̃) ∈ U . Then there is a unit-
speed geodesic γ from r to q of length < ε. There is a unit-speed geodesic γ̃ in
M̃ starting from r̃ whose initial conditions project to those of γ. Then π ◦ γ̃ = γ
and hence γ̃ proceeds from r̃ to q̃α in time < ε for some α ∈ A. Thus r̃ ∈ Ũα
for some α ∈ A, and

π−1(U) =
⋃
{Ũα : α ∈ A}.

Thus every point in M lies in an open set which is evenly covered. One
easily checks that π(M̃) is both open and closed in M . Since M is connected,
π is surjective and the lemma is proven.

The Hadamard-Cartan Theorem now follows from the following:

Theorem. If (M, 〈·, ·〉) is a complete connected Riemannian manifold which
has the property that its curvature R satisfies the condition

〈R(x, y)y, x〉 ≤ 0, for all x, y ∈ TqM and all q ∈M .

Then any point p ∈M is a pole.

Proof: Suppose that p ∈ M , v ∈ TpM and γ(t) = expp(tv). We need to show
that p = γ(0) and q = γ(1) are not conjugate along γ.

Suppose, on the contrary, that X is a nonzero Jacobi field along γ which
vanishes at γ(0) and γ(1). Thus

∇γ′∇γ′X +R(X, γ′)γ′ = 0, 〈∇γ′∇γ′X,X〉 = −〈R(X, γ′)γ′, X〉 ≥ 0.

Hence ∫ 1

0

〈∇γ′∇γ′X,X〉dt ≥ 0,

and integrating by parts yields∫ 1

0

[
d

dt
〈∇γ′X,X〉 − 〈∇γ′X,∇γ′X〉

]
dt ≥ 0,

and since the first term integrates to zero, we obtain∫ 1

0

−〈∇γ′X,∇γ′X〉dt ≥ 0.

It follows that ∇γ′X ≡ 0 and hence X is identically zero, a contradiction.
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3.5 The fundamental group

This section gives a brief treatment of the notion of fundamental group, a topic
familiar to many readers; our treatment is brief since this topic is treated in
detail in Math 221B. If you have not seen the fundamental group before, focus
first on the definitions of fundamental group, simply connected and universal
covers, and return to the proofs after you see how these concepts are used. A
detailed treatement of the fundamental group can be found in Chapter 1 of [14],
which is available on the internet.

3.5.1 Definition of the fundamental group

Suppose that X is a metrizable topological space and that x0 and x1 are points
of X. We let

P (X;x0, x1) = { continuous paths γ : [0, 1]→ X : γ(0) = x0, γ(1) = x1}.

If γ, λ ∈ P (X,x0, x1) we say that γ and λ are homotopic relative to the endpoints
{0, 1} and write γ ' λ if there is a continuous map α : [0, 1] × [0, 1] → X such
that

α(x, 0) = x0, α(s, 1) = x1, α(0, t) = γ(t), α(1, t) = λ(t).

We let π1(X,x0, x1) denote the quotient space of P (X,x0, x1) by the equivalence
relation defined by ', and if γ ∈ P (X,x0, x1), we let [γ] ∈ π1(X;x0, x1) denote
the corresponding equivalence class. If d is a metric defining the topology on
X, we define a metric on P (X;x0, x1) by

d(γ, λ) = sup{d(γ(t), λ(t)) : t ∈ [0, 1]},

then P (X;x0, x1) becomes a metric space itself and it has a resulting topology.
In this case, π1(X,x0, x1) can be regarded as the collection of path components
of P (X;x0, x1).

Suppose that γ ∈ P (X;x0, x1) and λ ∈ P (X;x1, x2), and define γ · λ ∈
P (X;x0, x2) by

(γ · λ)(t) =

{
γ(2t), for t ∈ [0, 1/2],
λ(2t− 1), for t ∈ [1/2, 1].

Finally, if [γ] ∈ π1(X;x0, x1) and [λ] ∈ π1(X;x1, x2), we claim that we can
define a product [γ][λ] = [γ · λ] ∈ π1(X;x0, x2). We need to show that this
product

π1(X;x0, x1)× π1(X;x1, x2) −→ π1(X;x0, x2)

is well-defined; in other words, if γ ' γ̃ and λ ' λ̃, then

γ · λ ' γ̃ · λ̃.
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We show that γ ' γ̃ implies that γ · λ ' γ̃ · λ. If α is the homotopy from γ
to γ̃, we define

β : [0, 1]× [0, 1]→ X by β(s.t) =

{
α(s, 2t), for t ∈ [0, 1/2],
λ(2t− 1), for t ∈ [1/2, 1].

This gives the required homotopy from γ ·λ to γ̃ ·λ. The fact that λ ' λ̃ implies
that γ · λ ' γ · λ̃ is quite similar.

The case where x0 = x1 is particularly important. We denote π1(X,x0, x0)
by π1(X,x0), and call it the fundamental group of X at x0.

Theorem. The multiplication operation defined above makes π1(X,x0) into a
group.

To prove this we must first show that π1(X,x0) has an identity. We let ε be the
constant path, ε(t) = x0 for all t ∈ [0, 1], and claim that

[γ · ε] = [γ] = [ε · γ], for all [γ] ∈ π1(X,x0).

We prove the first equality, the other being similar; to do this, we need to
construct a homotopy from γ · ε to γ. We simply define α : [0, 1] × [0, 1] → X
by

α(s, t) =

{
γ
(

2t
s+1

)
, for t ≤ (1/2)(s+ 1),

x0, for t ≥ (1/2)(s+ 1).

Then α(0, t) = (γ · ε)(t) and α(1, t) = γ(t).
To prove associativity of multiplication, we need to show that if γ, λ and µ

are elements of P (X,x0), the

(γ · λ) · µ ' γ · (λ · µ).

To do this, we define α : [0, 1]× [0, 1]→ X by

α(s, t) =


γ
(

4t
s+1

)
, for t ≤ (1/4)(s+ 1),

λ(4t− s− 1), for (1/4)(s+ 1) ≤ t ≤ (1/4)(s+ 2),

µ
(

4t−s−2
2−t

)
, for t ≥ (1/4)(s+ 2).

Then α(0, t) = (γ · λ) · µ while α(1, t) = γ · (λ · µ), so multiplication is indeed
associative.

Finally, given γ ∈ P (X,x0), we define γ−1(t) = γ(1− t). To prove that [γ−1]
is the inverse to [γ], we must show that

γ · γ−1 ' ε and γ−1 · γ ' ε.

For the first of these, we define a homotopy α : [0, 1]× [0, 1]→ X by

α(s, t) =


γ(2t), for t ≤ (1/2)(1− s),
γ(1− s), for (1/2)(1− s) ≤ t ≤ (1/2)(1 + s),
γ(2− 2t), for t ≥ (1/2)(1 + s).
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Then α(0, t) = (γ · γ−1)(t) while α(s, 1) = x0. The homotopy for γ−1 · γ ' ε is
constructed in a similar fashion.

A continuous map F : X → Y with F (x0) = y0 induces a map

F] : P (X,x0)→ P (Y, y0) by F](γ) = F ◦ γ,

and it is easily checked that

γ ' λ ⇒ F ◦ γ ' F ◦ λ,

so that F] induces a set-theoretic map

F] : π1(X,x0)→ π1(Y, y0).

Moreover, it is immediate that F] is in fact a group homomorphism. We thus
obtain a covariant function from the catergory of pointed metrizable topological
spaces (X,x0) and continuous maps F : (X,x0)→ (Y, y0) preserving base points
to the category of groups and group homomorphisms.

Remark. If X is pathwise connected, the fundamental groups based at different
points are isomorphic. This is proven by techniques similar to those utilized in
the proof of the preceding theorem. Indeed, if γ ∈ P (X,x0, x1), we can define
a map hγ : P (X,x0)→ P (X,x1) by

hγ(λ) =


γ(1− 3t), for t ∈ [0, 1/3],
λ(3t− 1), for t ∈ [1/3, 2/3],
γ(3t− 2), for t ∈ [2/3, 1].

By arguments similar to those used in the proof of the preceding theorem, one
checks that this yields a well-defined group homomorphism

h[γ] : π1(X,x0)→ π1(X,x1) by h[γ]([λ]) = [hγλ].

Finally, if γ−1 ∈ P (X,x1, x0) is defined by γ−1(t) = γ(1 − t), one checks that
h[γ−1] is an inverse to h[γ].

Definition. We say that a metrizable topological space X is simply connected
if it is pathwise connected and π1(X,x0) = 0. (The above remark shows that
this condition does not depend on the choice of base point x0.

3.5.2 Homotopy lifting

To calculate the fundamental groups of spaces, one often uses the notion of
covering space. A continuous map πX̃ → X is a covering if it is onto and every
x ∈ X lies in an open neighborhood U such that π−1(U) is a disjoint union
of open sets each of which is mapped homeomorphically by π onto U . Such
an open set is said to be evenly covered . Coverings have two important useful
properties:
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Homotopy Lifting Theorem. Suppose that π : X̃ → X is a covering. If

γ̃ : [0, 1]→ X̃, α : [0, 1]× [0, 1]→ X

are continuous maps such that π(γ̃)((t) = α(0, t), thene there exists a continuous
map

α̃ : [0, 1]× [0, 1]→ X̃

such that α̃(0, t) = γ̃(t) and π ◦ α̃ = α.

In words, the homotopy α can be lifted to α̃ taking values in X̃.

To prove this, we let U be an open cover of [01, ]× [0, 1] ⊆ R2 consisting of open
sets of the form (a, b)× (c, d) where a, b, c, d are rational and

α((a, b)× (c, d) ∩ [0, 1]× [0, 1])

lies in an evenly covered open subset of M . Since [0, 1] × [0, 1] is compact, a
finite subcollection

{(a1, b1 × (c1, d1), . . . , (ak, bk)× (ck, dk)}

of U covers [0, 1]× [0, 1]. Choose a positive integer m so that ma1, . . . , mdk are
all integers and let n = 2m. For 1 ≤ i, j ≤ n, let

Dij =
[
i− 1
n

,
i

n

]
×
[
j − 1
n

,
j

n

]
.

Then α(Dij) is contained in an evenly covered open subset Uij of X.
The idea now is to define α̃ inductively on D11, D12, . . . ,D1n, D21, . . . , D2n,

. . . , Dn1, . . . , Dnn.
When we get to the (i, j)-stage, α̃ is already defined on a connected part of

the bounary of Dij and the image lies in some Ũij which is mapped homeomor-
phically onto an evenly covered open subset Uij of X. We are forced to define
α̃|Dij by

α̃|Dij = (π|Ũij)−1 ◦H|αij .

This gives the unique extension of α̃ to Dij and an induction on i and j then
finishes the proof of the Unique Path Lifting Theorem.

Remark. In the Homotopy Lifting Theorem, we could consider the case of
a degenerate path γ̃(t) ≡ p̃ and a degenerate homotopy α(s, t) = λ(s). In
this case, the Homotopy Lifting Theorem gives rise to a existence of a path λ̃
covering a given path λ in X. The following theorem shows that this lifted path
is unique:

Unique Path Lifting Theorem. Suppose that π : X̃ → X is a covering. If
γ, λ : [0, 1]→ X̃ are two continuous maps such that γ(0) = λ(0) and π◦γ = π◦λ,
then γ = λ.
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To prove this, we let J = {t ∈ [0, 1] : γ(t) = λ(t)}. We claim that J is both
open and closed. Indeed, if t ∈ J , γ(t) = λ(t) and γ(t) = λ(t) lies in some open
set Ũ which is mapped homeomorphically onto an open set U in X. Clearly
t ⊆ γ−1(Ũ) ∩ λ−1(Ũ) ⊆ J . Hence J is open.

On the other hand, if t ∈ J , there exist open sets Ũ1 and Ũ2 such that
γ(t) ∈ Ũ1 and λ(t) ∈ Ũ2, where the two sets Ũ1 and Ũ2 are disjoint open sets
mapped homemorphically by π onto an open subset U of X. Thus

t ∈ γ−1(Ũ1) ∩ λ−1(Ũ2) ⊆ [0, 1]− J,

and J is closed.

Example. Suppose that

π : R→ S1 = {z ∈ C : |z| = 1} by π(t) = e2πit. (3.5)

One checks that π is a smooth covering. We can use the previous theorems to
calculate the fundamental group π1(S2, 1).

Indeed, suppose that γ ∈ P (S1, 1). Then the Unique Path Lifting Theorem
implies that there is a unique γ̃ : [0, 1] → R such that γ̃(0) = 0 and π ◦ γ̃ =
γ. Since γ(1) = 1, there exists an element k ∈ Z such that γ̃(1) = k. If
γ ' λ ∈ P (S2, 1) by means of a homotopy α : [0, 1] × [0, 1] → S1, we can use
the Homotopy Lifting Theorem to construct α̃ : [0, 1] × [0, 1] → R such that
α(0, t) = γ̃(t) and π ◦ α̃ = α. Unique path lifting implies that α̃(s, 0) = 0,
α̃(s, 1) = k. and α̃(1, t) = λ̃(t). Thus γ̃(1) = λ̃(1), and we obtain a well-defined
map

h : π1(S1, 1)→ Z such that h([γ]) = γ̃(1).

It is easily checked that h is a homomorphism and since h([e2πkit]) = k for k ∈ Z,
we see that h is surjection. Finally, if h([γ]) = 0, then γ̃(1) = 0 and hence γ̃ is
homotopic to a constant, and γ itself must be homotopic to a constant. Thus
we conclude that π1(S2, 1) ∼= Z.

Degree of maps from S1 to S1: Suppose that F : S1 → S1 is a continuous
map. Then γ : S1 → S1 determines a homomorphism of fundamental groups

γ] : π1(S1)→ π1(S1),

and since π1(S1) ∼= Z, this group homomorphism must be multiplication by
some integer n ∈ Z. We set deg(γ) = n and call it the degree of γ.

Regarding S1 as

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

we note that the differential form xdy − ydx is closed but not exact. However,
if π is the covering (3.5), then π∗(ydx − xdy) = dθ for some globallly defined
real-valued function θ on R. If γ : S1 → S1 is smooth, then γ lifts to a smooth
map γ̃ : S1 → R and

deg(γ) =
1

2π

∫
γ̃

dθ =
1

2π

∫
γ

(xdy − ydx).
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By very similar arguments, one could calculate the fundamental groups of many
other spaces. For example, if Tn = En/Zn, the usual n-torus, then

π1(Tn, x0) =

n︷ ︸︸ ︷
Z⊕ · · · ⊕ Z,

while if RPn is the real projective space obtained by identifying antipodal points
on Sn(1), then π1(RPn, x0) = Z2.

Finally, the Homotopy Lifting Theorem allows us to finish the argument that
a complete simply connected Riemannian manifold which has nonpositive sec-
tional curvatures must be diffeomorphic to Rn:

Covering Theorem. Suppose that π : M̃ → M is a smooth covering, were
M̃ and M are pathwise connected. If M is simply connected, then π is a
diffeomorphism.

To prove this we need only show that π is one-to-one. Suppose that p̃ and q̃ are
points in M̃ such that π(p̃) = π(q̃). Since M̃ is pathwise connected, there is a
continuous path γ̃ : [0, 1]→ M̃ such that γ̃(1) = p̃ and γ̃(1) = q̃. Let γ = π ◦ γ̃.
If p = π(p̃) = π(q̃), then γ ∈ P (M,p). Since M is simply connected there is a
continuous map α : [0, 1]× [0, 1]→M such that

α(s, 0) = p = α(s, 1), α(0, t) = γ(t), α(1, t) = p.

By the Homotopy Lifting Theorem, there is a continuous map α̃ : [0, 1]×[0, 1]→
M̃ such that

α̃(0, t) = γ̃(t), π ◦ α̃ = α.

The Unique Path Lifting Theorem implies that

α̃(s, 0) = α̃(0, 0) = γ̃(0) = p̃ and α̃(s, 1) = α̃(0, 1) = γ̃(1) = q̃.

On the other hand, the Unique Path Lifting Theorem also implies that α̃(1, t)
is constant. Hence p̃ = q̃ and π is indeed one-to-one, exactly what we wanted
to prove.

3.5.3 Universal covers

The final fact we need regarding the fundamental group and covering spaces is
the existence of a universal cover.

Universal Cover Theorem. If M is a connected smooth manifold, there
exists a simply connected smooth manifold M̃ together with a smooth covering
π : M̃ → M . Moreover, if M̃1 is another simply connected smooth manifold
with with smooth covering π1 : M̃1 →M , there exists a smooth diffeomorphism
T : M̃ → M̃1 such that π = π1 ◦ T .

We sketch the argument. A complete proof can be found in [14].
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We start with a point p0 ∈M and let

M̃ = {(p, [γ]) : p ∈M, [γ] ∈ π1(M ; p0, p)}.

We can then define π : M̃ →M by π(p, [γ]) = p. We need to define a metrizable
topology on M̃ , check that π is a covering and show that M̃ is simply connected.
Then M̃ inherits a unique smooth manifold structure such that π is a local
diffeomorphism.

Here is the idea for constructing the topology: Suppose that p̃ = (p, [γ]) ∈ M̃
and let U be a contractible neighborhood of p within M . We then let

Ũ(p,[γ]) = {(q, [λ]) ∈ M̃ : q ∈ U, [λ] = [γ · α], where α lies entirely within U }.

Then π maps Ũ(p,[γ]) homeomorphically onto U . From this one concludes that
π is a covering.

To show that M̃ is simply connected, we suppose that λ̃ : [0, 1] → M̃ is a
continuous path with

λ̃(0) = λ̃(1) = (p0, [ε]),

where ε is the constant path at p0. Then λ = π ◦ λ̃ is a closed curve from p0 to
p0. For t ∈ [0, 1], we define

λt : [0, 1]→M by λt(s) = λ(st),

and define
λ̂ : [0, 1]→ M̃ by λ̂(t) = (λ(t), [λt]).

Then λ̂(0) = (p0, [ε]) and π ◦ λ̂ = λ. By the Unique Path Lifting Theorem,
λ̂ = λ̃. But

λ̂(1) = λ̃(1) ⇒ (p0, [λ]) = (p0, [ε]) ⇒ [λ] = [ε].

Thus λ is homotopic to a constant in M and by the Homotopy Lifting Theorem,
λ̃ is homotopic to a constant in M̃ .

If M̃1 is another simply connected smooth manifold with with smooth cov-
ering π1 : M̃1 → M , we choose p̃1 ∈ M̃1 such that π1(p̃1) = p0. We then
define

T : M̃ → M̃1 by T (p, [γ]) = γ̃(1),

where γ̃ : [0, 1] → M̃1 is the unique lift of γ such that γ̃(0) = p̃1. It is then
relatively straightforward to check that T is a diffeomorphism such that π =
π1 ◦ T .

Definition. If M is a connected smooth manifold and π : M̃ →M is a smooth
covering with M̃ simply connected, we say that π : M̃ → M (or sometime M̃
itself) is the universal cover of M .

Note that the above construction of the universal cover shows that the elements
of the fundamental group of M correspond in a one-to-one fashion with the
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elements of π−1(p0). One can also show that there is a one-to-one correspon-
dence between elements of the fundamental group of M and the group of deck
transformations of the universal cover π : M̃ →M , where a deck transformation
is a diffeomorphism

T : M̃ → M̃ such that π ◦ T = π.

3.6 Uniqueness of simply connected space forms

The Hadamard-Cartan Theorem has an important consequence regarding space
forms, that is, Riemannian manifolds whose sectional curvatures are constant:

Space Form Theorem. Let k be a given real number. If (M, 〈·, ·〉) and

(M̃, 〈̃·, ·〉) are complete simply connected Riemannian manifolds of constant cur-

vature k, then (M, 〈·, ·〉) and (M̃, 〈̃·, ·〉) are isometric.

The proof divides into two cases, the case where k ≤ 0 and the case where k > 0.
It is actually the first case that the Hadamard-Cartan Theorem directly applies.

Case I. Suppose that k ≤ 0. In this case, the idea for the proof is really simple.
Let p ∈M and p̃ ∈ M̃ . Then

expp : TpM →M and expp̃ : Tp̃M̃ → M̃

are both diffeomorphisms by the Hadamard-Cartan Theorem. Let F̃ : TpM →
Tp̃M̃ be a linear isometry and let

F = expp̃ ◦F̃ ◦ exp−1
p .

Clearly F is a diffeomorphism, and it suffices to show that F is an isometry
from M onto M̃ .

Suppose that q ∈M , v ∈ TqM . Let q̃ be the corresponding point in M̃ and
let ṽ be the corresponding vector in Tq̃M̃ . It suffices to show that ‖v‖ = ‖ṽ‖.

Since M is complete, there is a geodesic γ : [0, 1] → M1 such that γ(0) = p
and γ(1) = q. The geodesic γ is the image under expp of a line segment in TpM .
The commutativity of the diagram

TpM
F̃−−−−→ Tp̃M̃

expp
y expp̃

y
M

F−−−−→ M̃

shows that F will take γ to a geodesic γ̃ from p̃ to q̃. Moreover, F takes Jacobi
fields along γ to Jacobi fields along γ̃. Let V be the unique Jacobi field along
γ which vanishes at p and is equal to v at q. Then Ṽ = F∗V is the Jacobi field
along γ̃ which vanishes at p̃ and is equal to ṽ at q̃. Since F̃ is an isometry,

the length of ∇γ′V (0) = the length of ∇γ̃′ Ṽ (0).
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It follows from the explicit formula (3.4) for Jacobi fields that the lengths of V
and Ṽ are equal at corresponding points, and hence ‖v‖ = ‖ṽ‖. This completes
the proof when k ≤ 0.

Case II. Suppose now that k > 0 and let a = 1/
√
k. It suffices to show that if

(M̃, 〈̃·, ·〉) is an n-dimensional complete simply connected Riemannian manifold
of constant curvature k, then it is globally isometric to (Sn(a), 〈·, ·〉), where 〈·, ·〉
is the standard metric on Sn(a). This case is a little more involved than the
previous one, because Sn(a) is not diffeomorphic to its tangent space.

Lemma 1. Suppose that p ∈ Sn(a), p̃ ∈ M̃ and F̃ : TpSn(a)→ Tp̃M̃ is a linear
isometry. If q is the antipodal point to p in Sn(a), then there is a unique smooth
map

F : Sn(a)− {q} → M̃ such that (F∗)p = F̃ .

The proof is similar to the construction given for Case I. Note first that expp
maps

{v ∈ TpSn(a) :
√
〈v, v〉 < π} diffeomorphically onto Sn(a)− {q}.

Since we need (F∗)p = F̃ and F must take geodesics to geodesics, we are forced
to define F : Sn(a)− {q} → M̃ by

F = expp̃ ◦F̃ ◦ exp−1
p ,

just as in the previous case, establishing uniqueness The argument given in Case
I shows that F is indeed an isometric mapping:

˜〈F∗(v), F∗(w)〉 = 〈v, w〉, for v, w ∈ TqSn(a),

establishing existence.

Returning to the proof of the theorem, we choose a point p ∈ M and apply
Lemma 1 to obtain an isometric map F : Sn(a) − {q} → M̃ , where q is the
antipodal point to p. Let r be a point in Sn(a)−{p, q}. Then (F∗)r : TrSn(a)→
M̃ is a linear isometry. We obtain Lemma 1 once again to obtain an isometric
map F̂ : Sn(a)− {s} → M̃ , where s is the antipodal point to r. By uniqueness,
F = F̂ on overlaps. Hence F extends to a map F̄ : Sn(a) → M̃ . In particular,
F̄ takes the antipodal point q to p to a single point of M̃ .

Clearly, F̄ is an immersion and a local isometry. Since F̄ maps M onto M̃
by commutativity of the diagram

TpSn(a) F̃−−−−→ Tp̃M̃

expp
y expp̃

y
Sn(a) F̄−−−−→ M̃,
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we see that M̃ is compact. Thus the rest of the proof will follow from:

Lemma 2. Suppose that M and M̃ are compact smooth n-dimensional smooth
manifolds and F̄ : M → M̃ is an immersion. Then F̄ is a smooth covering map.

The proof is a straightforward exercise in the theory of covering spaces.

In the context of our theorem, M̃ is simply connected, so F̄ is a diffeomorphism.
Thus we obtain the required diffeomorphism from (Sn(a), 〈·, ·〉) to (M̃, 〈̃·, ·〉).

3.7 Non simply connected space forms

There is a wide variety of different space forms which are not simply connected.
In the flat case, we can take a basis (v1, . . . , vn) for Rn and consider the free

abelian subgroup Zn of Rn which is generated by the elements of the basis; thus

Zn = {m1v1 + · · ·mnvn : m1, . . .mn ∈ Z}.

As usual, we let En denote Rn with the flat Euclidean metric. Then the quotient
group Tn = En/Zn inherits a flat Riemannian metric; the resulting Riemannian
manifold is called a flat n-torus. Note that π1(Tn) ∼= Zn.

In the positive curvature case, we can take identify antipodal points in Sn(1)
obtaining the n-dimensional real projective space RPn. The obvious projection
π : Sn(1)→ RPn is a smooth covering. Since the antipodal map is an isometry,
there is a unique Riemannian metric on RPn which pulls back under π to the
metric of constant curvature one on Sn(1). Thus RPn has a metric of constant
curvature one and π1(RPn) ∼= Z2.

There are many other Riemannian manifolds which have metrics of constant
curvature one. To construct further examples of three-dimensional manifolds
with constant positive curvature, we make use of Hamilton’s quaternions.

A quatenion Q can be regarded as a 2× 2 matrix with complex entries,

Q =
(
a b
−b̄ ā

)
.

The set H of quaternions can be regarded as a four-dimensional real vector space
with basis

I =
(

1 0
0 1

)
, Ex =

(
0 1
−1 0

)
, Ey =

(
0 i
i 0

)
, Ez =

(
i 0
0 −i

)
.

Then if

Q =
(
t+ iz x+ iy
−x+ iy t− iz

)
, we can write Q = tI + xEx + yEy + zEz.

Note that

detQ = (t+ iz)(t− iz)− (−x+ iy)(x+ iy) = t2 + x2 + y2 + z2
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can be taken to be the Euclidean length of the quaternion.
Matrix multiplication makes H− {0} into a noncommutative Lie group. If

Q =
(
a b
−b̄ ā

)
, then Q−1 =

1
|Q|2

(
ā −b
b̄ a

)
, (3.6)

where |Q|2 = |a|2 + |b|2 = detQ. Note that the determinant map

det : H− {0} −→ R+ = (positive real numbers)

is a group homomorphism when the group operation on R+ is ordinary multi-
plication. We can now identify S3(1) with the group of unit-length quaternions

{Q ∈ H : detQ = 1} = {tI + xEx + yEy + zEz : t2 + x2 + y2 + z2 = 1}.

Since S3(1) is the kernel of the determinant map, it is a Lie subgroup of H−{0}.
It follows directly from (3.6) that

S3(1) ∼= SU(2) = {A ∈ GL(2,C : A−1 = ĀT },

the special unitary group.
If A ∈ S3(1) and Q ∈ H, then det(AQ) = det(Q) = det(QA) so the induced

metric on S3(1) is biinvariant.
Moreover, if A ∈ S3(1), we can define a linear isometry

π(A) : H→ H by π(A)(Q) = AQA−1.

Since π(A) preserves the t-axis, it can in fact be regarded as an element of

SO(3) = {B ∈ GL(3,R : BTB = I and detB = 1}.

Thus we obtain a group homomorphism π : S3(1) → SO(3) and it is an easy
exercise to check that the kernel of π is {±I}. It follows that SO(3) is in fact
diffeomorphic to RP 3, and we can consider the group of unit-length quaternions
as the universal cover of SO(3).

The group SO(3) has many interesting finite subgroups. For example, the
group of symmetries of a polygon of n sides is a group of order 2n called the
dihedral group and denoted by Dn. It is generated by a rotation through an
angle 2π/n in the plane and be a reflection, which can be regarded as a rotation
in an ambient E3. Thus the dihedral group can be regarded as a subgroup of
SO(3).

One also has groups of rotations of the five platonic solids, the tetrahedron,
the cube, the octahedron, the dodecahedron and the icosahedron. The group of
rotations of the tetrahedron T is just the alternating group on four letters and
has order 12. The group of rotations O of the octahedron is isomorphic to the
group of rotations of the cube and has order 24. Finally, the group of rotations
I of the icosahedron is isomorphic to the group of rotations of the dodecahdron
and has order 60. It is proven in §2.6 of Wolf [37] that the only finite groups of
SO(3) are cyclic and those isomorphic to Dn, T, O and I.
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One can take the preimage of these groups under the projection π : S3(1)→
SO(3) obtaining the binary dihedral groups D∗n, the binary tetrahedral group
T∗, the binary octahedral group O∗ and the binary icosahedral group I∗. Thus
one gets many examples of finite subgroups G ⊆ S3(1). For each of these, one
has a universal cover

π : S3(1)→ S3(1)/G,

left translations by elements of G being the deck transformations. Since these
left translations are isometries, the quotient space S3(1)/G inherits a Rieman-
nian metric of constant curvature one with fundamental group G.

We can produce yet more examples by constructing finite subgroups of SO(4)
which act on S3(1) without fixed points. For constructing such examples, it is
helpful to know that SU(2) × SU(2) is a double cover of SO(4). Indeed, if
(A+, A−) ∈ SU(2)× SU(2), we can define

π(A+, A−) : H→ H by π(A+, A−)(Q) = A+QA
−1
− .

This provides a surjective Lie group homomorphism π : SU(2)×SU(2)→ SO(4)
with kernel {(I, I), (−I,−I)}.

In §4.4 we will show that any compact oriented connected surface of genus
g ≥ 2 possesses a Riemannian metric of constant negative curvature. In higher
dimensions, there is an immense variety of nonsimply connected manifolds of
constant negative curvature; such manifolds are called hypberbolic manifolds,
and they possess a rich theory (see [34]).

3.8 Second variation of action

Curvature also affects the topology of M indirectly, through its effect on the
stability of geodesics. We recall from §1.3 that geodesics are critical points of
the action function J : Ω(M ; p, q)→ R, where

Ω(M ; p, q) = { smooth paths γ : [0, 1]→M : γ(0) = p, γ(1) = q},

and the action J is defined by

J(γ) =
1
2

∫ 1

0

〈γ′(t), γ′(t)〉γ(t)dt.

Recall that a variation of γ is a map

ᾱ : (−ε, ε)→ Ω(M ; p, q)

such that ᾱ(0) = γ and the map

α : (−ε, ε)× [a, b]→M defined by α(s, t) = ᾱ(s)(t),

is smooth. Our next goal is to calculate the second derivative of J(ᾱ(s)) at
s = 0 when ᾱ(0) is a geodesic, which gives a test for stability because at a local
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minimum the second derivative must be nonnegative. This second derivative is
called the second variation of J at γ. We will see that the sectional curvature
of M plays a crucial role in the formula for second variation.

The first step in deriving the second variation formula is to differentiate
under the integral sign which yields

d2

ds2
(J(ᾱ(s)))

∣∣∣∣
s=0

=
d2

ds2

[
1
2

∫ 1

0

〈
∂α

∂t
(s, t),

∂α

∂t
(s, t)

〉
dt

]∣∣∣∣
s=0

=
[

1
2

∫ 1

0

∂2

∂s2

〈
∂α

∂t
(s, t),

∂α

∂t
(s, t)

〉
dt

]∣∣∣∣
s=0

=
∫ 1

0

[〈
∇ ∂

∂s

(
∂α

∂t

)
,∇ ∂

∂s

(
∂α

∂t

)〉
+
〈
∇ ∂

∂s
∇ ∂

∂s

(
∂α

∂t

)
,

(
∂α

∂t

)〉]
dt

∣∣∣∣
s=0

=
∫ 1

0

[〈
∇ ∂

∂t

(
∂α

∂s

)
,∇ ∂

∂t

(
∂α

∂s

)〉
+
〈
∇ ∂

∂s
∇ ∂

∂t

(
∂α

∂s

)
,

(
∂α

∂t

)〉]
dt

∣∣∣∣
s=0

.

Using the curvature, we can interchange the order of differentiation to obtain

d2

ds2
(J(ᾱ(s)))

∣∣∣∣
s=0

=
∫ 1

0

[〈
∇ ∂

∂t

(
∂α

∂s

)
,∇ ∂

∂t

(
∂α

∂s

)〉
+
〈
∇ ∂

∂t
∇ ∂

∂s

(
∂α

∂s

)
,

(
∂α

∂t

)〉
−
〈
R

(
∂α

∂t
,
∂α

∂s

)(
∂α

∂s

)
,

(
∂α

∂t

)〉]
dt

∣∣∣∣
s=0

.

(3.7)

Now comes an integration by parts, using the formula

∂

∂t

〈
∇ ∂

∂s

(
∂α

∂s

)
,

(
∂α

∂t

)〉
=
〈
∇ ∂

∂t
∇ ∂

∂s

(
∂α

∂s

)
,

(
∂α

∂t

)〉
+
〈
∇ ∂

∂s

(
∂α

∂s

)
,∇ ∂

∂t

(
∂α

∂t

)〉
.

Note that ∫ 1

0

∂

∂t

〈
∇ ∂

∂s

(
∂α

∂s

)
,

(
∂α

∂t

)〉
= 0

because α(s, 0) and α(s, 1) are both constant. Hence (3.7) becomes

d2

ds2
(J(ᾱ(s)))

∣∣∣∣
s=0

=
∫ 1

0

[〈
∇ ∂

∂t

(
∂α

∂s

)
,∇ ∂

∂t

(
∂α

∂s

)〉
−
〈
R

(
∂α

∂t
,
∂α

∂s

)(
∂α

∂s

)
,

(
∂α

∂t

)〉
−
〈
∇ ∂

∂s

(
∂α

∂s

)
,∇ ∂

∂t

(
∂α

∂t

)〉]
dt

∣∣∣∣
s=0

.

Finally, we evaluate at s = 0 and use the fact that ᾱ(0) = γ is a geodesic to
obtain

d2

ds2
(J(ᾱ(s)))

∣∣∣∣
s=0

=
∫ 1

0

[〈∇γ′X,∇γ′X〉 − 〈R(X, γ′)γ′, X〉] dt,
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where X is the variation field defined by X(t) = (∂α/∂s)(0, t).

For γ ∈ Omega(M ; p, q), we define the “tangent space” to the “infinite-dimensional
manifold” Ω(M ; p, q) at the point γ to be

TγΩ(M ; p, q) = { smooth vector fields X along γ : X(0) = 0 = X(1)}.

Definition. If γ ∈ Ω(M ; p, q) is a geodesic, the index form of J at γ is the
symmetric bilinear form

I : TγΩ(M ; p, q)× TγΩ(M ; p, q)→ R

defined by

I(X,Y ) =
∫ 1

0

[〈∇γ′X,∇γ′Y 〉 − 〈R(X, γ′)γ′, Y 〉] dt, (3.8)

for X,Y ∈ TγΩ(M ; p, q).

By the polarization identity, the index form at a geodesic γ is the unique real-
valued symmetric bilinear form I on TγΩ(M ; p, q) such that

I(X,X) =
d2

ds2
(J(ᾱ(s)))

∣∣∣∣
s=0

,

whenever ᾱ : (−ε, ε)→ Ω(M ; p, q) is a smooth variation of γ with variation field
X.

We can integrate by parts in (3.8) to obtain

I(X,Y ) = −
∫ 1

0

〈∇γ′∇γ′X +R(X, γ′)γ′, Y 〉dt =
∫ 1

0

〈L(X), Y 〉dt,

where L is the Jacobi operator , defined by

L(X) = −∇γ′∇γ′X −R(X, γ′)γ′.

Thus I(X,Y ) = 0 for all Y ∈ TγΩ(M ; p, q) if and only if X is a Jacobi field in
TγΩ(M ; p, q).

Note that the second variation argument we have given shows that if γ is
a minimizing geodesic from p to q, the index form I at γ must be positive
semi-definite.

3.9 Myers’ Theorem

Recall that the Ricci curvature of a Riemannian manifold (M, 〈·, ·〉) is the bi-
linear form

Ric : TpM × TpM → R defined by Ric(x, y) = (Trace of v 7→ R(v, x)y).
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Myers’ Theorem (1941). If (M, 〈·, ·〉) is a complete connected n-dimensional
Riemannian manifold such that

Ric(v, v) ≥ n− 1
a2
〈v, v〉, for all v ∈ TM , (3.9)

where a is a nonzero real number, then M is compact and d(p, q) ≤ πa, for all
p, q ∈M . Moreover, the fundamental group of M is finite.

Proof of Myers’ Theorem: It suffices to show that d(p, q) ≤ πa, for all p, q ∈
M , because closed bounded subsets of a complete Riemannian manifold are
compact.

Suppose that p and q are points of M with d(p, q) > πa. Let γ : [0, 1]→M
be a minimal geodesic with γ(0) = p and γ(1) = q. Let (E1, . . . , En) be a
parallel orthonormal frame along γ with γ′ = d(p, q)E1. Finally, let

Xi(t) = sin(πt)Ei(t), for t ∈ [0, 1] and 2 ≤ i ≤ n.

Then for each i, 2 ≤ i ≤ n,

∇γ′Xi = π cos(πt)Ei, ∇γ′∇γ′Xi = −π2 sin(πt)Ei,

and hence
〈∇γ′∇γ′Xi, Xi〉 = −π2 sin2(πt).

On the other hand,

〈R(Xi, γ
′)γ′, Xi〉 = sin2(πt)d(p, q)2〈R(Ei, E1)E1, Ei〉,

so

〈∇γ′∇γ′Xi +R(Xi, γ
′)γ′, Xi〉 = sin2(πt)[d(p, q)2〈R(Ei, E1)E1, Ei〉 − π2].

Hence

n∑
i=2

I(Xi, Xi) = −
n∑
i=2

∫ 1

0

〈∇γ′∇γ′Xi +R(Xi, γ
′)γ′, Xi〉dt

=
∫ 1

0

sin2(πt)

[
(n− 1)π2 − π2d(p, q)2

n∑
i=2

〈R(Ei, E1)E1, Ei〉

]
dt

=
∫ 1

0

π2 sin2(πt)
[
(n− 1− d(p, q)2Ric(E1, E1)

]
dt.

Since Ric(E1, E1) ≥ (n− 1)/a2, we conclude that

n∑
i=2

I(Xi, Xi) <
∫ 1

0

π2 sin2(πt)
[
(n− 1− (n− 1)

d(p, q)2

a2

]
dt,

and the expression in brackets is negative because d(p, q) > a. This contradicts
the assumption that γ is a minimal geodesic, by the second variation argument
given in the preceding section.
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To show that the fundamental group of M is finite, we let M̃ be the universal
cover of M , and give M̃ the Riemannian metric π∗〈·, ·〉, where π : M̃ →M is the
covering map. The Ricci curvature of M̃ satisfies the same inequality (3.9) as
the Ricci curvature of M ; moreover M̃ is complete. Thus by the above argument
M̃ must also be compact. Hence if p ∈M , π−1(p) is a finite set of points. But
by the arguments presented in §3.5.3, the number of points in π−1(p) is the
order of the fundamental group of M . Thus the fundamental group of M must
be finite.

For example, one can apply Myers’ Theorem to show that S1×S2 cannot admit
a Riemannian metric of positive Ricci curvature, because π1(S1 × S2, x0) ∼= Z,
and is therefore not finite. A famous open question posed by Hopf asks whether
S2 × S2 admits a Riemannian metric with positive sectional curvatures.

Another application is to Lie groups with biinvariant Riemannian metrics.
If G is a Lie group with Lie algebra g, then the center of the Lie algebra is

z = {X ∈ g : [X,Y ] = 0 for all Y ∈ g}.

Recall that any compact Lie group possesses a biinvariant Riemannian metric.
This fact has a partial converse:

Corollary. Suppose that G is a Lie group which has a biinvariant Riemannian
metric. If the Lie algebra of G has trivial center, then G is compact.

Proof: We use the explicit formula for curvature of biinvariant Riemannian
metrics presented in §1.12. If E1 is a unit-length element of g, we can extend
E1 to an orthonormal basis (E1, . . . , En) for g, and conclude that

Ric(E1, E1) =
n∑
i=2

〈R(E1, Ei)Ei, E1〉 =
n∑
i=2

1
4
〈[E1, Ei], E1, Ei]〉 > 0.

As E1 ranges over the unit sphere in g, the continuous function E1 7→ Ric(E1, E1)
must assume its minimum value. Hence Ric(E1, E1) is bounded below, and it
follows from Myers’ Theorem that G is compact.

Remark. Although Myers’ Theorem puts a major restriction on the topology
of compact manifolds of positive Ricci curvature, it is known that any manifold
of dimension at least three has a complete Riemannian metric with negative
Ricci curvature and finite volume [21].

3.10 Synge’s Theorem

Recall from §1.19, smooth closed geodesics can be regarded as critical points
for the action function J : Map(S1,M)→ R, where Map(S1,M) is the space of
smooth closed curves and

J(γ) =
1
2

∫ 1

0

〈γ′(t), γ′(t)〉γ(t)dt.
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Here S1 is regarded as being obtained from [0, 1] by identifying endpoints of the
interval. It is interesting to consider conditions under which such critical points
are stable.

In this case a variation of a point γ ∈ Map(S1,M) is a map

ᾱ : (−ε, ε)→ Map(S1,M)

such that ᾱ(0) = γ and the map

α : (−ε, ε)× S1 →M defined by α(s, t) = ᾱ(s)(t),

is smooth. We can calculate the second derivative of J(ᾱ(s)) at s = 0 when ᾱ(0)
is a smooth closed geodesic, just as we did in §3.8, and in fact the derivation is
a little simpler because we do not have to worry about contributions from the
boundary of [0, 1]. Thus we obtain the analogous result

d2

ds2
(J(ᾱ(s)))

∣∣∣∣
s=0

=
∫ 1

0

[〈∇γ′X,∇γ′X〉 − 〈R(X, γ′)γ′, X〉] dt, (3.10)

where now the variation field X is an element of

TγMap(S1,M) = { smooth vector fields X along γ : S1 →M },

and by polarization we have an index form

I : TγMap(S1,M)× TγMap(S1,M)→ R

defined by I(X,Y ) =
∫ 1

0

[〈∇γ′X,∇γ′Y 〉 − 〈R(X, γ′)γ′, Y 〉] dt,

which must be positive semi-definite if the smooth closed geodesic is stable.
The fact that the sectional curvature appears in the second variation formula
(3.10) implies that there is a relationship between sectional curvatures and the
stability of geodesics. This fact can be exploited to yield relationships between
curvature and topology, as the following theorem demonstrates.

Synge’s Theorem (1936). Suppose that (M, 〈·, ·〉) is a compact n-dimensional
Riemannian manifold with positive sectional curvatures. IfM is even-dimensional
and orientable then M is simply connected.

To prove this theorem, we use the Closed Geodesic Theorem from §1.19. Indeed,
the nonconstant geodesic γconstructed in the proof is stable, and hence if ᾱ(s)
is any variation of γ,

d2

ds2
(J(ᾱ(s)))

∣∣∣∣
s=0

=
∫ 1

0

[〈∇γ′X,∇γ′X〉 − 〈R(X, γ′)γ′, X〉] dt ≥ 0.

To construct an explicit variation that decreases action, we p = γ(0) and
make use of the parallel transport around γ:

τγ : TpM −→ TpM.
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If M is orientable, we know that this is an orientation-preserving isometry of
TpM . If e1 = (1/d(p, q))γ′(0), we can extend to a positively oriented orthonor-
mal frame (e1, . . . , en) for TpM . From the canonical form theorem for special
orthogonal transformations, if M is even-dimensional, say of dimension 2m, we
can choose the orthonormal basis so that τγ is represented by the matrix

cos θ1 sin θ1

− sin θ1 cos θ1
· · ·

· cos θ2 sin θ2

− sin θ2 cos θ2
· ·

· · · ·

· · · cos θm sin θm
− sin θm cos θm


. (3.11)

In the first block, we can take θ1 = 0 because τγ(e1) = e1. But then it follows
that τγ(e2) = e2, so there is a unit-length vector e2 perpendicular to e1 which
is preserved by parallel transport around γ. We let X be the vector field along
γ obtained by parallel transport along γ. Then since M has positive sectional
curvatures,

I(X,X) =
∫ 1

0

[−〈R(X, γ′)γ′, X〉] dt < 0.

Thus if ᾱ : (−ε, ε) → Map(S1,M) is a deformation of γ with deformation field
X,

d

ds
(J(ᾱ(s)))

∣∣∣∣
s=0

= 0,
d2

ds2
(J(ᾱ(s)))

∣∣∣∣
s=0

< 0.

This contradicts the stability of the minimal geodesic γ, finishing the proof of
the theorem.

Remark 1. It follows from Synge’s Theorem, that the only even-dimensional
complete Riemannian manifolds of constant curvature one are the spheres S2m(1)
and the projective spaces RP 2m, the latter being nonorientable.

Exercise XI. Show that an odd-dimensional compact manifold with positive
sectional curvatures is automatically orientable by an argument similar to that
provided for Synge’s Theorem. You can follow the outline:

a. By modifying the proof of the Closed Geodesic Theorem, show that if M
were not orientable, one could construct a smallest smooth closed geodesic γ
among curves around which parallel transport is orientation-reversing.

b. Show that in this case, the orthogonal matrix representing the parallel trans-
port must have determinant −1, and its standard form is like (3.11) except for
an additional 1× 1 block containing −1.

c. As before, since the tangent vector to γ gets transported to itself, there is an
additional unit vector e2 perpendicular to γ which is transported to itself, and
this implies that there is a nonzero parallel vector field X perpendicular to γ.
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Use the second variation formula to show that one can deform in the direction of
X to obtain an orientation-reversing curve which is shorter, thereby obtaining
a contradiction just as before.
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Chapter 4

Cartan’s method of moving
frames

4.1 An easy method for calculating curvature

Suppose that (M, 〈·, ·〉) is an n-dimensional Riemannian manifold, U an open
subset of M . By a moving orthonormal frame on U , we mean an ordered n-tuple
(E1, . . . , En) of vector fields on U such that for each p ∈ U , (E1(p), . . . , En(p))
is an orthonormal basis for TpM , for each p ∈M . Suppose that M is oriented.
Then we say that a moving orthonormal frame (E1, . . . , En) is positively oriented
if (E1(p), . . . , En(p)) is a positively basis for TpM , for each p ∈M .

Given a moving orthonormal frame on U , we can construct a correspond-
ing moving orthonormal coframe (θ1, . . . , θn) by requiring that each θi be the
smooth one-form on U such that

θi(Ej) = δij =

{
1, if i = j,
0, if i 6= j.

(4.1)

We can then write the restriction of the Riemannian metric to U as

〈·, ·〉|U =
n∑
i=1

θi ⊗ θi.

Indeed, if

v =
n∑
i=1

aiEi(p) and w =
n∑
i=1

biEi(p),

then

〈v, w〉 =
n∑

i,j=1

aibj〈Ei(p), Ej(p)〉 =
n∑
i=1

aibi =
n∑
i=1

θi ⊗ θi(v, w).
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Conversely, if we can write the Riemannian metric 〈·, ·〉 in the form

〈·, ·〉|U =
n∑
i=1

θi ⊗ θi,

where θ1, . . . θn are smooth one-forms on U , then (θ1, . . . , θn) is a moving or-
thonormal coframe on U , and one can use (4.1) to define a moving orthonormal
frame (E1, . . . , En) on U .

Corresponding to a given orthonormal frame (E1, . . . , En) we can define
connection one-forms ωij for 1 ≤ i, j ≤ n by

∇XEj =
n∑
i=1

ωij(X)Ei or ωij(X) = 〈Ei,∇XEj〉, (4.2)

as well as curvature two-forms Ωij by

R(X,Y )Ej =
n∑
i=1

Ωij(X,Y )Ei or Ωij(X,Y ) = 〈Ei, R(X,Y )Ej〉. (4.3)

Since 〈Ei, Ej〉 = δij and the Levi-Civita connection preserves the metric,

0 = X〈Ei, Ej〉 = 〈∇XEi, Ej〉+ 〈Ei,∇XEj〉 = ωji(X) + ωij(X),

and hence the matrix ω = (ωij) of connection one-forms is skew-symmetric. It
follows from the curvature symmetries that the matrix Ω = (Ωij) of curvature
two-forms is also skew-symmetric.

Theorem. If (M, 〈·, ·〉) is a Riemannian manifold and (E1, . . . , En) is a mov-
ing orthonormal coframe defined on an open subset U of M , with dual coframe
(θ1, . . . , θn), then the connection and curvature forms satisfy the structure equa-
tions of Cartan:

dθi = −
n∑
j=1

ωij ∧ θj , (4.4)

dωij = −
n∑
j=1

ωik ∧ ωkj + Ωij . (4.5)

Moreover, the ωij ’s are the unique collection of one-forms which satisfy (4.4)
together with the skew-symmetry condition

ωij + ωji = 0. (4.6)

The proof of the two structure equations is based upon the familiar formula for
the exterior derivative of a one-form:

dθ(X,Y ) = X(θ(Y ))− Y (θ(X))− θ([X,Y ]). (4.7)

160



Indeed, to establish (4.4), we need to verify that

dθi(Ek, El) = −
n∑
j=1

(ωij ∧ θj)(Ek, El).

and a straightforward calculation shows that

dθi(Ek, El) +
n∑
j=1

(ωij ∧ θj)(Ek, El)

= Ek(θi(El))− El(θi(Ek))− θi([Ek, El]) +
n∑
j=1

(ωij ∧ θj)(Ek, El)

= −θi([Ek, El]) +
n∑
j=1

ωij(Ek)θj(El)−
n∑
j=1

ωij(El)θj(Ek)

= ωil(Ek)− ωik(El)− θi([Ek, El])
= 〈Ei,∇EkEl −∇ElEk − [Ek, El]〉 = 0,

where we have used the fact that the Levi-Civita connection is symmetric in the
last line of the calculation. Similarly,

dωij(Ek, El) +
n∑
r=1

(ωir ∧ ωrj)(Ek, El)

= Ek(ωij(El))− El(ωij(Ek))− ωij([Ek, El])

+
n∑
r=1

ωir(Ek)ωrj(El)−
n∑
r=1

ωir(El)ωrj(Ek)

= Ek(ωij(El))− El(ωij(Ek))− ωij([Ek, El])

−
n∑
r=1

ωri(Ek)ωrj(El) +
n∑
r=1

ωri(El)ωrj(Ek).

But

Ek(ωij(El)) = Ek〈Ei,∇ElEj〉 = 〈∇EkEi,∇ElEj〉+ 〈Ei,∇Ek∇ElEj〉

=
n∑
r=1

ωri(Ek)ωrj(El) + 〈Ei,∇Ek∇ElEj〉,

while

El(ωij(Ek)) =
n∑
r=1

ωri(El)ωrj(Ek) + 〈Ei,∇El∇EkEj〉.
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Hence

dωij(Ek, El) +
n∑
r=1

(ωir ∧ ωrj)(Ek, El)

= 〈Ei,∇Ek∇ElEj〉 − 〈Ei,∇El∇EkEj〉 − 〈Ei,∇[Ek,El]Ej〉
= 〈Ei, R(Ek, El)Ej〉,

and the second structure equation is established.
Finally, to prove the uniqueness of the ωij ’s, we suppose that we have two

matrices of one-forms ω = (ωij) and ω̃ = (ω̃ij) which satisfy the first structure
equation (4.4) and the skew-symmetry condition (4.6). Then the one-forms
φij = ωij − ω̃ij must satisfy

n∑
j=1

φij ∧ θj = 0, φij + φji = 0.

We can write

φij =
n∑

j,k=1

fijkθj ∧ θk,

where each fijk is a smooth real-valued function on U . Note that

n∑
j=1

φij ∧ θj = 0 ⇒ fijk = fikj ,

while
φij + φji = 0 ⇒ fijk = −fjik.

Hence
fijk = −fjik = −fjki = fkji = fkij = −fikj = −fijk.

Thus the functions fijk must vanish, and uniqueness is established.

The Cartan structure equations often provide a relatively painless procedure for
calculating curvature:

Example. Suppose that we let

Hn = {(x1, . . . , xn−1, y) ∈ Rn : y > 0},

and give it the Riemannian metric

〈·, ·〉 =
1
y2

(
dx1 ⊗ dx1 + · · ·+ dxn−1 ⊗ dxn−1 + dy ⊗ dy

)
.

In this case, we can set

θ1 =
1
y
dx1, . . . , θn−1 =

1
y
dxn−1, θn =

1
y
dy, (4.8)

162



thereby obtaining an orthonormal coframe (θ1, . . . , θn) on Hn.
Differentiating (4.8) yields

dθ1 =
1
y2
dx1 ∧ dy = θ1 ∧ θn, · · ·

dθn−1 =
1
y2
dxn−1 ∧ dy = θn−1 ∧ θn, dθn = 0.

In other words, if 1 ≤ a ≤ n− 1,

dθa = θa ∧ θn, while dθn = 0.

The previous theorem says that there is a unique collection of one-forms ωij
which satisfy the first structure equation and the skew-symmetry condition.
We can solve for these connection forms, obtaining

ωab = 0, for 1 ≤ a, b ≤ n− 1, ωan = −θa, for 1 ≤ a ≤ n− 1.

From the explicit form of the ωij ’s, it is now quite easy to show that the curva-
ture two-forms are given by

Ωij = −θi ∧ θj , for 1 ≤ i, j ≤ n.

It now follows from (4.3) that

Ωij(X,Y ) = 〈Ei, R(X,Y )Ej〉 = −θi ∧ θj(X,Y )
= −[〈Ei, X〉〈Ej , Y 〉 − 〈Ej , X〉〈Ei, Y 〉],

so that
〈R(X,Y )W,Z〉 = −[〈X,Z〉〈Y,W 〉 − 〈X,W 〉〈Y, Z〉].

In other words the Riemannian manifold (Hn, 〈·, ·〉) has constant sectional cur-
vatures.

4.2 The curvature of a surface

The preceding theory simplifies considerably when applied to two-dimensional
Riemannian manifolds, and yields a particularly efficient method of calculating
Gaussian curvature of surfaces (compare §1.10).

Indeed, if (M, 〈·, ·〉) is an oriented two-dimensional Riemannian manifold, U
an open subset of M , then a moving orthonormal frame (E1, E2) is uniquely
determined up to a rotation: If (E1, E2) and (Ẽ1, Ẽ2) are two positively-oriented
moving orthonormal frames on a contractible open subset U ⊆M , then

(
E1 E2

)
=
(
Ẽ1 Ẽ2

)(cosα − sinα
sinα cosα

)
,
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for some smooth function α : U → R. It is no surprise that the correspond-
ing moving orthonormal coframes (θ1, θ2) and (θ̃1, θ̃2) are related by a similar
formula: (

θ1 θ2

)
=
(
θ̃1 θ̃2

)(cosα − sinα
sinα cosα

)
.

It follows that the volume form is invariant under change of positively oriented
moving orthonormal frame:

θ1 ∧ θ2 = θ̃1 ∧ θ̃2.

We claim that the corresponding skew-symmetric matrix of connection forms

ω =
(

0 ω12

−ω12 0

)
,

transforms by the rule
ω12 = ω̃12 − dα.

To see this, recall that ω12 is defined by the formula

∇XE2 = ω12(X)E1,

and hence

∇X(− sinαẼ1 + cosαẼ2 = ω12(X)(cosαẼ1 + sinαẼ2),

which expands to yield

− cosαdα(X)Ẽ1 + sinαdα(X)Ẽ2 − sinα∇XẼ1 + cosα∇XẼ2

= ω12(X)(cosαẼ1 + sinαẼ2).

Taking the inner product with Ẽ1 yields

− cosαdα(X) + cosα〈Ẽ1,∇XẼ2〉 = ω12(X) cosα,

and dividing by cosα yields the desired formula

−dα+ ω̃12 = ω12.

The skew-symmetric matrix of curvature forms

Ω =
(

0 Ω12

−Ω12 0

)
is now determined by the Cartan’s second structure equation

Ω12 = dω12 = dω̃12 = Ω̃12.

Note that the curvature form Ω12 is independent of the choice of positively
oriented moving orthonormal frame. Indeed, it follows from (4.3) that

Ω12(E1, E2) = 〈E1, R(E1, E2)E2〉 = K,
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where K is the Gaussian curvature of (M, 〈·, ·〉), and hence

Ω12 = Kθ1 ∧ θ2.

This formula makes it easy to calculate the curvature of a surface using differ-
ential forms.

Definition. Suppose that (M, 〈·, ·〉) is an oriented two-dimensional Rieman-
nian manifold. A positively-oriented coordinate system (U, (x, y)) is said to be
isothermal if on U

〈·, ·〉 = e2λ(dx⊗ dx+ dy ⊗ dy), (4.9)

where λ : U → R is a smooth function.

Here is a deep theorem whose proof lies beyond the scope of the course:

Theorem. Any oriented two-dimensional Riemannian manifold (M, 〈·, ·〉) has
an atlas consisting of isothermal coordinate systems.

A proof (using regularity theory of elliptic operators) can be found on page 378
of [33]. Assuming the theorem, we can ask: What is the relationship between
positively oriented isothermal coordinate systems?

Suppose that (x1, x2) and (u1, u2) are two positively oriented coordinate
systems on U with

〈·, ·〉 =
n∑

i,j=1

gijdx
i ⊗ dxj =

n∑
i,j=1

g̃ijdu
i ⊗ duj ,

where
gij = e2λδij , g̃ij = e2µδij .

Then since the gij ’s transform as the components of a covariant tensor of rank
two,

gij =
n∑

k,l=1

g̃kl
∂uk

∂xi
∂ul

∂xj

or (
e2λ 0
0 e2λ

)
=
(
∂u1/∂x1 ∂u2/∂x1

∂u1/∂x2 ∂u2/∂x2

)(
e2µ 0
0 e2µ

)(
∂u1/∂x1 ∂u1/∂x2

∂u2/∂x1 ∂u2/∂x2

)
= JT

(
e2µ 0
0 e2µ

)
J, where J =

(
∂u1/∂x1 ∂u1/∂x2

∂u2/∂x1 ∂u2/∂x2

)
.

Hence
JTJ = e2λ−2µI, or BTB = I, where B = eµ−λJ.

Since both coordinates are positively oriented, B ∈ SO(2), and hence if U is
contractible, we can write

B =
(

cosα − sinα
sinα cosα

)
,
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for some function α : U → R. Thus we see that

J =
(
a b
c d

)
, where a = d and b = −c.

This implies that
∂u1

∂x1
=
∂u2

∂x2
,

∂u1

∂x2
= −∂u

2

∂x1
.

These are just the Cauchy-Riemann equations, which express the fact that the
complex-valued function w = u1 + iu2 is a holomorphic function of z = x1 + ix2.

Thus isothermal coordinates make an oriented two-dimensional Riemannian
manifold (M, 〈·, ·〉) into a one-dimensional complex manifold, in accordance with
the following definition:

Definition. An n-dimensional complex manifold is a second-countable Haus-
dorff space M , together with a collection A = {(Uα, φα) : α ∈ A} of “charts,”
where each Uα is an open subset of M and each φα is a homeomorphism from
Uα onto an open subset of Cn, such that φα ◦φ−1

β is holomorphic where defined,
for all α, β ∈ A. A one-dimensional complex manifold is also called a Riemann
surface.

We say that A is the atlas of holomorphic charts. If (M,A) and (N,B) are
two complex manifolds, we say that a map F : M → N is holomorphic if
ψβ ◦ F ◦ φ−1

α is holomorphic where defined, for all charts (Uα, φα) ∈ A and
(Vβ , ψβ) ∈ B. Two complex manifolds M and N are holomorphically equivalent
if there is a holomorphic map F : M → N which has a holomorphic inverse
G : N →M .

In particular, we can speak of holomorphically equivalent Riemann surfaces.
Two Riemannian metrics 〈·, ·〉1 and 〈·, ·〉2 on an oriented surface M are said to
be conformally equivalent if there is a smooth function λ : M → R such that

〈·, ·〉1 = e2λ〈·, ·〉2.

This defines an equivalence relation, and given the existence of isothermal co-
ordinates, it is clear that conformal equivalence classes of Riemannian metrics
are in one-to-one correspondence with Riemann surface structures on a given
oriented surface M .

Exercise XI. a. Suppose that (M, 〈·, ·〉) is an oriented two-dimensional Rie-
mannian manifold with isothermal coordinate system (U, (x, y)) so that the
Riemannian is given by (4.9). Use the method of moving frames to show that
the Gaussian curvature of M is given by the formula

K = − 1
e2λ

(
∂2λ

∂x2
+
∂2λ

∂y2

)
.

Hint: To start with, let θ1 = eλdx and θ2 = eλdy. Then calculate ω12 and Ω12.
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b. Consider the Poincaré disk, the open disk D = {(x, y) ∈ R2} with the
Poincaré metric

〈·, ·〉 =
4

[1− (x2 + y2)]2
(dx⊗ dx+ dy ⊗ dy).

Show that the Gaussian curvature of (D, 〈·, ·〉) is given by K = −1.

c. Show that reflections through lines passing through the origin are isome-
tries and hence that lines passing through the origin in D are geodesics for the
Poincaré metric. Show that the boundary of D is infinitely far away along any
of these lines, and hence the geodesics through the origin can be extended in-
definitely. Conclude from the Hopf-Rinow theorem that (D, 〈·, ·〉) is a complete
Riemannian manifold, hence isometric to the model of the hyperbolic plane we
constructed in §1.8.

4.3 The Gauss-Bonnet formula for surfaces

We now sketch the proof of the Gauss-Bonnet formula for surfaces in a version
that suggests how it might be extended to n-dimensional oriented Riemannian
manifolds. (See [29] for a more leisurely treatment.)

We start with an oriented two-dimensional Riemannian manifold (M, 〈·, ·〉)
without boundary and a smooth vector field X : M → TM with finitely many
zeros at the points p1, p2, . . . , pk of M . Let V = M − {p1, . . . , pk} and define
a unit length vector field Y : V → TM by Y = X/‖X‖.

The covariant differential DY = ∇·Y of Y is the endomorphism of TM
defined by v 7→ ∇vY . We will find it convenient to regard ∇·Y as a one-form
with values in TM :

DY = ∇·Y ∈ Ω1(TM).

If (E1, E2) is a positively oriented orthonormal moving frame defined on an
open subset U ⊆M , we can write

Y = f1E1 + f2E2 on U ∩ V,

and
∇·Y = (df1 + ω12f2)E1 + (df2 − ω12f1)E2.

We let J denote counterclockwise rotation through 90 degrees in the tangent
bundle, so that

JE1 = E2, JE2 = −E1,

and
JY = −f2E1 + f1E2 on U ∩ V.

Then

ψ = 〈JY,DY 〉 = f1(df2 − ω12f1)− f2(df1 + ω12f2) = f1df2 − f2df1 − ω12
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is a globally defined one-form on V = M −{p1, . . . , pk} which depends upon X,
and since d(f1df2 − f2df1) = 0,

dψ = −Ω12 = −Kθ1 ∧ θ2, (4.10)

where θ1 ∧ θ2 is the area form on M . The idea behind the proof of the Gauss-
Bonnet formula is to apply Stokes’s Theorem to (4.10).

Let ε be a small positive number. For each zero pi of X, we let Cε(pi) =
{q ∈ M : d(pi, q) = ε}, a circle which inherits an orientation by regarding it as
the boundary of

Dε(pi) = {q ∈M : d(pi, q) ≤ ε}.

Definition. The rotation index of X about pi is

ω(X, pi) =
1

2π
lim
ε→0

∫
Cε(pi)

ψ,

if this limit exists.

Lemma. If (M, 〈·, ·〉) is a two-dimensional compact oriented Riemannian man-
ifold and X is a vector field on M with finitely many isolated zeros, then at
each zero pi the rotation index ω(X, pi) exists and depends only on X, not on
the choice of Riemannian metric on M .

To prove this, we make use of the notion of the degree deg(F ) of a continuous
map F from S1 to itself, as described in §3.5.2. Recall that such a map F :
S1 → S1 determines a homomorphism of fundamental groups

F] : π1(S1)→ π1(S1),

and since π1(S1) ∼= Z, this group homomorphism must be multiplication by
some integer n ∈ Z. We set deg(F ) = n.

Note that for ε > 0 sufficiently small, we can define a map

Fε : Cε(pi)→ S1 = {(x, y) ∈ R2 : x2 + y2 = 1} by Fε(q) = (f1(q), f2(q)).

Then

deg(Fε) =
1

2π

∫
Cε(pi)

F ∗ε (xdy − ydx)

=
1

2π

∫
Cε(pi)

f1df2 − f2df1 =
1

2π
lim
ε→0

∫
Cε(pi)

ψ.

Thus ω(X, pi) does indeed exist and is an integer.
To see that this integer is independent of the choice of Riemannian metric,

note that any two Riemannian metrics 〈·, ·〉0 and 〈·, ·〉1 can be connected by a
smooth one-parameter family

t 7→ 〈·, ·〉t = (1− t)〈·, ·〉0 + t〈·, ·〉1.
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We can let ωt(X, pi) be the degree of X at pi with respect to 〈·, ·〉t. Then
ωt(X, pi) is a continuously varying integer and must therefore be constant.

It follows from transversality theory (as presented for example in Hirsch [15])
that any compact oriented surface possesses a vector field which has finitely
many nondegenerate zeros. If X is any such vector field, we can apply Stokes’s
Theorem to W = M −

⋃k
i=1Dε(pi):∫

W

Kθ1 ∧ θ2 =
∫
W

−dψ =
k∑
i=1

∫
Cε(pi)

ψ, (4.11)

the extra minus sign coming from the fact that the orientation Cε(pi) inherits
from W is opposite to the orientation it receives as boundary of Dε(pi). In the
limit as ε→ 0, we obtain∫

M

Kθ1 ∧ θ2 = 2π
k∑
i=1

ω(X, pi). (4.12)

Since the left-hand side of (4.12) does not depend on the vector field while
the right-hand side does not depend on the metric, neither side can depend on
either the vector field or the metric, so both sides must equal an integer-valued
topological invariant of compact oriented smooth surfaces χ(M), which is called
the Euler characteristic of M . Thus we obtain two theorems:

Poincaré Index Theorem. Suppose that M be a two-dimensional compact
oriented smooth manifold and that X is a vector field on M with finitely many
isolated zeros at the points p1, p2, . . . , pk. Then

k∑
i=1

ω(X, pi) = χ(M).

Gauss-Bonnet Theorem. Let (M, 〈·, ·〉) be a two-dimensional compact ori-
ented Riemannian manifold with Gaussian curvature K and area form θ1 ∧ θ2.
Then

1
2π

∫
M

Kθ1 ∧ θ2 = χ(M).

Recall that a compact connected oriented surface is diffeomorphic to a sphere
with h handles Mh. We can imbed Mh into E3 in such a way that the standard
height function has exactly one nondegenerate maximum and one nodegenerate
minimum, and 2h nondegenerate saddle points. The gradient X of the height
function is then a vector field with nondegenerate zeros at the critical points
of the height function. The maximum and minimum are zeros with rotation
index one while each saddle point is a zero with rotation index −1. Thus
χ(Mh) = 2− 2h.

The previous theorems can be extended to manifolds with boundary. In this
case we consider a vector field X which has finitely many zeros at the points p1,
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p2, . . . , pk in the interior of M , is perpendicular to ∂M along ∂M and points
outward along ∂M . As before, we let V = M−{p1, . . . , pk}, define Y : V → TM
by Y = X/‖X‖ and set ψ = 〈JY,DY 〉. Then just as before

dψ = −Ω12 = −Kθ1 ∧ θ2.

But this time, when we apply Stokes’s Theorem to W = M −
⋃k
i=1Dε(pi) we

obtain ∫
W

Kθ1 ∧ θ2 =
∫
W

−dψ = −
∫
∂M

ψ +
k∑
i=1

∫
Cε(pi)

ψ.

Thus when we let ε→ 0, we obtain∫
M

Kθ1 ∧ θ2 +
∫
∂

Mψ = 2π
k∑
i=1

ω(X, pi). (4.13)

Along ∂M , one can show that

〈JY,DY 〉 = κgds,

where κg is known as the geodesic curvature. Note that κg = 0 when ∂M con-
sists of geodesics. As before, the left-hand side of (4.13) does not depend on the
vector field while the right-hand side does not depend on the metric, so neither
side can depend on either the vector field or the metric. The two sides must
therefore equal a topological invariant which we call the Euler characteristic of
M once again, thereby obtaining two theorems:

Poincaré Index Theorem for Surfaces with Boundary. Suppose that M
be a two-dimensional compact oriented smooth manifold with boundary ∂M
and that X is a vector field on M with finitely many isolated zeros at the points
p1, p2, . . . , pk in the interior of M which is perpendicular to ∂M and points out
along ∂M . Then

k∑
i=1

ω(X, pi) = χ(M).

Gauss-Bonnet Theorem for Surfaces with Boundary. Let M be a
compact oriented smooth surface in with boundary ∂M . Then∫

M

KdA+
∫
∂S

κgds = 2πχ(M),

where f is the number of faces, e is the number of edges and v is the number of
vertices in T .

The celebrated uniformization theorem for Riemann surfaces shows that any
Riemann surface has a complete Riemannian metric in its conformal equivalence
class that has constant Gaussian curvature. For compact oriented surfaces, see
that
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1. the sphere has a Riemannian metric of constant curvature K = 1,

2. the torus T 2 has a metric of constant curvature K = 0,

3. and we will show in the next section that a sphere with h handles, where
h ≥ 2, has a Riemannian metric with constant curvature K = −1.

Of course, one could not expect such simple results for Riemannian mani-
folds of dimension ≥ 3, but as a first step, one might try to construct analogs
of the Gauss-Bonnet formula for Riemannian manifolds of higher dimensions.
Such an analog was discovered by Allendoerfer, Weil and Chern and is now
called the generalized Gauss-Bonnet Theorem. This formula expresses the Eu-
ler characteristic of a compact oriented n-dimensional manifold as an integral
of a curvature polynomial. It turns out that there are also several other topo-
logical invariants that can be expressed as integrals of curvature polynomials.
Our next goal is to present part of the resulting theory, called the theory of
characteristic classes, as developed by Chern, Pontrjagin and others [26].

Exercise XII. Use the Gauss-Bonnet Theorem for surfaces with boundary to
calculate the Euler characteristic of the disk D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

4.4 Application to hyperbolic geometry

The hyperbolic plane (also called the Poincaré upper half plane) is the open set
H2 = {(x, y) ∈ R2 : y > 0} together with the “Riemannian metric”

g = ds2 =
1
y2

[dx⊗ dx+ dy ⊗ dy] =
(
dx

y

)2

+
(
dy

y

)2

.

The geometry of the “Riemannian manifold”(H2, g) has many striking similar-
lities to the geometry of the ordinary Euclidean plane. In fact, the geometry
of this Riemannian manifold is exactly the non-Euclidean geometry, which had
been studied by Bolyai and Lobachevsky towards the beginning of the nine-
teenth century. It would be nice indeed if this non-Euclidean geometry could be
realized as the geometry on some surface in R3, but this is not the case because
of a famous theorem of David Hilbert (1901): The hyperbolic plane H2 cannot
be realized on a surface in R3. In fact, a part of the hyperbolic plane can be
realized as the geometry of the pseudo-sphere, but according to Hilbert’s Theo-
rem, the entire hyperbolic plane cannot be realized as the geometry of a smooth
surface in R3. Thus abstract Riemannian geometry is absolutely essential for
putting non-Euclidean geometry into its proper context as an important special
case of the differential geometry of surfaces.

To study the Riemannian geometry of the hyperbolic plane in more detail,
we can utilize the Darboux-Cartan method of moving frames to calculate the
curvature of this metric. We did this before and found that the Gaussian cur-
vature is given by the formula K ≡ −1. In particular the Gaussian curvature
of the hyperbolic plane is the same at every point, just like in the case of the
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sphere. (Of course, there is nothing special about the constant −1; any other
negative constant could be achieved by rescaling the metric.)

Another quite useful fact is that angles measured via the hyperbolic met-
ric are exactly the same as those measured via the standard Euclidean metric
dx2 + dy2. Indeed, the form of the metric shows that the coordinates (x, y) are
isothermal.

Amazingly, the geodesics in the hyperbolic plane are very simple. Indeed,
the straight line x = c is the fixed point set of the reflection

φ :
(
x
y

)
7→
(

2c− x
y

)
,

which is easily seen to be an isometry of the metric:

1
y2

[d(2c− x)2 + dy2] =
1
y2

[dx2 + dy2].

Thus if γ is the geodesic with initial conditions γ(0) = (c, 1), γ′(0) = (0, 1)
then φ ◦ γ is also a geodesic with the same initial conditions. By uniqueness
of geodesics satisfying given initial conditions, φ ◦ γ = γ and γ must lie in the
vertical line x = c. It therefore follows that each vertical line x = c is a geodesic.
We can therefore ask if we can find a function α : R → [0,∞) such that the
curve

γ(t) = (0, α(t))

is a unit-speed geodesic.
To solve this problem, note that

α′(t)2

α(t)2
= 1 ⇒ α′(t)

α(t)
= ±1 ⇒ α(t) = cet or α(t) = ce−t.

We conclude that the x-axis is infinitely far away in terms of the Poincaré metric.
Other geodesics can be found by rewriting the metric in polar coordinates

ds2 =
1

r2 sin2 θ
[dr2 + r2dθ2] =

1
sin2 θ

[(
dr

r

)2

+ dθ2

]
.

The map φ which sends r 7→ 1/r and leaves θ alone is also an isometry:

r2

sin2 θ
[(d(1/r))2 + (1/r)2dθ2] =

1
r2 sin2 θ

[dr2 + r2dθ2].

From this representation, it is easily seen that the map which sends r 7→ R2/r
and leaves θ alone is an isometry which fixes the semicircle

x2 + y2 = R2, y > 0,

so this semicircle is also a geodesic. Since translation to the right or to the left
are isometries of the hyperbolic metric, we see that all circles centered on the
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x-axis intersect the hyperbolic plane in geodesics. (Of course, we have not found
their constant speed parametrizations.)

Thus semicircles perpendicular to the x-axis and vertical rays are geodesics.
Since there is one of these passing through any point and in any direction, we
have described all the geodesics on the hyperbolic plane.

There is another property which the hyperbolic plane shares with Euclidean
space and the sphere but with no other surfaces. That is, the hyperbolic plane
has a large group of isometries, namely enough isometries to rotate through an
arbitrary angle about any point and translate any point to any other point.

To study isometries in general, it is useful to utilize complex notation z =
x+ iy. (This is beneficial because the coordinates are isothermal.) Then H2 is
simply the set of complex numbers with positive imaginary part.

Theorem. The map

z 7→ φ(z) =
az + b

cz + d
(4.14)

is an isometry whenever a, b, c and d are real numbers such that ad− bc > 0.

Proof: Note that the transformation (4.14) is unchanged if we make the replace-
ments

a 7→ λa, b 7→ λb, c 7→ λc, d 7→ λd,

where λ > 0. So we can assume without loss of generality that ad− bc = 1. We
can then factor the map

φ(z) = z′ =
az + b

cz + d

into a composition of four transformations

z1 = z +
d

c
, z2 = c2z1, z3 = − 1

z2
, z′ = z3 +

a

c
. (4.15)

To see this, note that

z2 = c(cz + d), z3 = − 1
c(cz + d)

,

z′ =
a(cz + d)
c(cz + d)

− 1
c(cz + d)

=
acz + ad− 1
c(cz + d)

=
az + b

cz + d
.

The first and fourth transformations from (4.15) are translations of the hy-
perbolic plane which are easily seen to be isometries. It is straightforward to
check (using polar coordinates) that the other two are also isometries. Since the
composition of isometries is an isometry, φ itself is an isometry.

We will call the transformations

φ(z) =
az + b

cz + d
, ad− bc = 1,

the linear fractional transformations and denote the space of linear fractional
transformations by PSL(2,R). The reflection R : H2 → H2 in the line x =
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0 is also an isometry, but it cannot be written as a special linear fractional
transformation. It can be proven that any isometry of H2 can be written as a
special linear fractional transformation, or as the composition R ◦ φ, where φ is
a linear fractional transformation.

Suppose that φ is a linear fractional transformation of H2. If we set c = 0,
we see that

φ(z) =
az + b

d
=
a

d
z +

b

d
= a2z + ab,

since d = 1/a. This is a radial expansion or contraction about the origin,
followed by a translation. Thus we can move any point in H2 to any other point
by means of an isometry. This gives a rigorous proof that the hyperbolic plane
is homogeneous; that is, it has the same geometric properties at every point!

Moreover, we can do an arbitrary rotation about a point. Suppose, for
example, that we want to fix the point i = (0, 1). We impose this condition on
the linear fractional transformation

φ(z) = w =
az + b

cz + d
,

and do a short calculation

i =
ai+ b

ci+ d
⇒ −c+ id = ai+ b ⇒ a = d, b = −c.

Since
ad− bc = 1⇒ a2 + b2 = 1,

we can reexpress the linear fractional transformation in terms of sines and
cosines:

φ(z) = w =
cos θz + sin θ
− sin θz + cos θ

.

This isometry fixes the point i but there are clearly not the identity for
arbitrary values of θ. An orientation-preserving isometry which fixes a point
must act as a rotation on the tangent space at that point. This can be proven
in general, but there is also a direct way to see it in our very specific context.

Simply note that

dw =
adz(cz + d)− cdz(az + b)

(cz + d)2
= · · · = dz

(cz + d)2
.

If we evaluate at our chosen point, we see that if everything is evaluated at the
point i,

dw =
dz

(ci+ d)2
=

dz

(− sin θi+ cos θ)2
=

dz

(e−iθ)2
= e2iθdz.

Writing this out in terms of real and imaginary parts by setting

dw = du+ idv, dz = dx+ idy,
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we see that the linear fractional transformation rotates the tangent space through
an angle of 2θ.

Since H2 has the same geometric properties at every point, we see that we
can realize rotations about any point by means of isometries.

Thus we have a group of hyperbolic motions which just as rich as the group
of Euclidean motions in the plane. We can therefore try to develop the geometry
of hyperbolic space in exactly the same way as Euclidean geometry of the plane.

In Euclidean geometry, any line can be extended indefinitely. In hyperbolic
geometry the geodesic from the point i = (0, 1) straight down to the x-axis has
infinite length as we have seen above. Since any geodesic ray can be taken to
any other geodesic ray by means of an isometry, we see that any geodesic ray
from a point in the hyperbolic plane to the x-axis must have infinite length. In
other words, geodesics can be extended indefinitely in the hyperbolic plane.

In Euclidean geometry there is a unique straight line between any two points.
Here is the hyperbolic analogue:

Proposition. In hyperbolic geometry, there is a unique geodesic connecting
any two points.

Proof: Existence is easy. Just take a circle perpendicular to the x-axis (or
vertical line) which connects the two points.

If two geodesics intersect in more than one point, they would form a geodesic
biangle, which is shown to be impossible by the Gauss-Bonnet Theorem:

Exercise XIII. a. Construct a geodesic biangle in S2 with its standard metric
using two geodesics from the north to the south poles, and use the Gauss-Bonnet
Theorem to show that area of the geodesic biangle is 2α, where α is the angle
between the geodesics.

b. Use the Gauss-Bonnet theorem to show that there is no geodesic biangle in
the hyperbolic plane.

Proposition. In hyperbolic geometry, any isosceles triangle, with angles α, β
and β once again, can be constructed, so long as α+ 2β < π.

Proof: Starting from the point i, construct two downward pointing geodesics
which approach the x-axis and are on opposite sides of the y-axis. We can
arrange that each of these geodesics makes an angle of α/2 with the y-axis.
Move the same distance d along each geodesic until we reach the points p and
q. Connect p and q by a geodesic, thereby forming a geodesic triangle.

The interior angles at p and q must be equal because the triangle is invariant
under the reflection R in the y-axis. When d → 0, the Gauss-Bonnet formula
shows that the sum of the interior angles of the geodesic approaches π. On
the other hand, as the vertices of the triangle approach the x axis, the interior
angles β at p and q approach zero.

By the intermediate value theorem from analysis, β can assume any value
such that

0 < β <
1
2

(π − 2α),
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and the Proposition is proven.

Once we have this Proposition, we can piece together eight congruent isosceles
geodesic triangles with angles

α =
π

4
, β =

π

8

to form a geodesic octagon. All the sides have the same length so we can
identify them in pairs. This prescription identifies all of the vertices on the
geodesic octagon. Since the angles at the vertices add up to 2π, a neighborhood
of the identified point can be made diffeomorphic to an open subset of R2.

We need to do some cut and paste geometry to see what kind of surface
results. The answer is a sphere with two handles, the compact oriented surface
of genus two. Actually, it is easiest to see this by working in reverse, and
cutting the sphere with two handles along four circles which emanate from a
given point. From this we can see that the sphere with two handles can be cut
into an octagon.

This then leads to the following remarkable fact:

Theorem. A sphere with two handles can be given an abstract Riemannian
metric with Gaussian curvature K ≡ −1.

Indeed, a similar construction enables give a metric of constant curvature one
on a sphere with g handles, where g is any integer such that g ≥ 2.

Exercise XIV. Show that any geodesic triangle in the Poincaré upper half
plane must have area ≤ π.

Exercise XV. We now return to consider the Riemannian manifold (Hn, 〈·, ·〉)
described at the end of §??. We claim that it is also homogeneous, that is, given
any two point p, q ∈ Hn, there is an isometry

φ : (Hn, 〈·, ·〉) −→ (Hn, 〈·, ·〉)

such that φ(p) = q. Indeed, we have shown this above in the case where n = 2.

a. Show that (Hn, 〈·, ·〉) is also homogeneous.

b. Use this fact to show that (Hn, 〈·, ·〉) is complete. (Hint: If the exponential
map expp at p is defined on a ball of radius ε > 0 then so is φ ◦ expp, which can
be taken to be the exponential map at q. Thus no matter how far any geodesic
has been extended, it can be extended for a distance at least ε > 0 for a fixed
choice of ε, and this implies that geodesics can be extended indefinitely.

Remark. Thus it follows from the uniqueness of simply connected complete
space forms, that (Hn, 〈·, ·〉) is isometric to the model of hyperbolic space we
constructed in §1.8.
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4.5 Vector bundles

The way to put Cartan’s method of moving frames into a modern context is to
imbed it in the theory of connections on vector bundles. Roughly speaking, a
vector bundle of rank m over a manifold M is just a smoothly varying family of
m-dimensional vector spaces parametrized by M . We have already seen several
examples of smooth vector bundles, but it is helpful to have a precise definition.

Definition. A smooth F -vector bundle of rank m (where F = R or C) is a
pair of manifolds E and M , together with a smooth map π : E →M , with the
following additional structures:

1. For p ∈ M , Ep = π−1(p) has the structure of a m-dimensional vector
space over F .

2. There is an open cover {Uα : α ∈ A} of M , together with smooth maps

ψα : π−1(Uα)→ Uα × Fm,

such that π1 ◦ ψα = π, where π1 is the projection from Uα × Fm to Uα.

3. If ψα = (π, ηα), then ηα|Ep is a vector space isomorphism from Ep to Fm.

If F = R, we say that E is a real vector bundle over M , while if F = C, it is
a complex vector bundle over M . We call E the total space, M the base space
and Ep the fiber over p. The open cover {Uα : α ∈ A} is called the trivializing
cover for the vector bundle and the maps ψα are called the trivializations.

Let GL(m,F ) denote the group of m × m nonsingular matrices with entries
in F . If E is a vector bundle of rank m over M , we can define its transition
functions

gαβ : Uα ∩ Uβ → GL(m,F ) by ψα ◦ ψ−1
β (p, v) = (p, gαβ(p)v),

for p ∈ Uα ∩ Uβ . These transition functions satisfy the relations

gαα = I. gαβgβα = I, gαβgβγgγα = I, (4.16)

wherever the products are defined.
Conversely, given an open cover {Uα : α ∈ A} of a smooth manifold M , and

smooth functions gαβ : Uα ∩Uβ → GL(m,F ) which satisfy the relations (4.16),
we can construct a smooth vector bundle of rank m over M as follows: First we
let Ê be the collection of all triples

(α, p, v) ∈ A×M × Fm such that p ∈ Uα.

We then define an equivalence relation ∼ on Ê by

(α, p, v) ∼ (β, q, w) ⇔ p = q ∈ Uα ∩ Uβ and v = gαβ(p)w.
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Denote the equivalence class of (α, p, v) by [α, p, v] and the set of all equivalence
classes by E. Define a projection π : E →M by π([α, p, v]) = p and a bijection

ψα : π−1(Uα)→ Uα × Fm by ψα([α, p, v]) = (p, v).

There is a unique topology and smooth manifold structure on E such that
π−1(Uα) is open for each α ∈ A and each ψα is a diffeomorphism from π−1(Uα)
to Uα × Fm.

One of the most basic examples is the tangent bundle TM of a smooth
manifold M . If M has a smooth atlas

{(Uα, φα) : α ∈ A}, where φα = (x1
α, . . . , x

n
α),

we can define the local trivialization

ψα : π−1(Uα)→ Uα × Rn by ψα

(
n∑
i=1

ai
∂

∂xiα

∣∣∣∣
p

)
=

p,
a1

·
an

 .

One can check that in this case,

gαβ = D(φα ◦ φ−1
β ).

We have encountered many other examples of vector bundles including the
cotangent bundle (T ∗M,π,M) with transition functions

gαβ =
[
[D(φα ◦ φ−1

β )]T
]−1

and the various exterior and tensor powers of the cotangent bundle ⊗kT ∗M and
ΛkT ∗M .

Definition. Suppose that E is a smooth vector bundle over M . A smooth
section of E is a smooth map σ : M → E such that π ◦ σ = idM . We let Γ(E)
denote the space of smooth sections of E. Note that Γ(E) is a module over the
ring F(M) of smooth real-valued functions on M .

Similarly, if U is an open subset of M a smooth section of E over U is a smooth
map σ : U → E such that π ◦ σ = idU .

If σ is a smooth section of E and Uα is an element of the trivializing cover
{Uα : α ∈ A} for E, then

σα = η ◦ σ : Uα → Fm

is callled a local representative of σ. Alternatively, we can write

σ(p) = [α, p, σα(p)], for p ∈ Uα.

Note that two local representatives σα and σβ are related on the overlap Uα∩Uβ
by

σα = gαβσβ . (4.17)
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For example, a section of the tangent bundle TM is just a vector field on
M . If Uα is the domain of the local coordinate system (x1

α, . . . , x
n
α) and

X =
n∑
i=1

f iα
∂

∂xiα
on Uα, then Xα =

f1
α

·
fnα


is the local representative of X on Uα.

Suppose that (E1, π1) and (E2, π2) are two smooth vector bundles over M .
A vector bundle morphism from (E1, π1) and (E2, π2) is a smooth map F :
E1 → E2 such that F takes the fiber of E1 over p to the fiber of E2 over p and
the restriction of F to each fiber is linear. A vector bundle isomorphism is an
invertible vector bundle morphism.

Given two vector bundles E and F over M , we can form their direct sum
E ⊕ F and their tensor product E ⊗ F . We can also construct the dual bundle
E∗ of a vector bundle and the endomorphism bundle End(E) whose fiber at a
point p ∈M is just the space of endomorphisms of Ep.

4.6 Connections on vector bundles

Suppose that E is a smooth vector bundle over M . Let X (M) denote the space
of smooth vector fields on M , Γ(E) the space of smooth sections of E. We give
several closely related definitions of connections on E.

Definition 1. A connection on E is a map

∇ : X (M)× Γ(E)→ Γ(E)

which satisfies the following axioms (where ∇Xσ = ∇(X,σ)):

∇X(fσ + τ) = (Xf)σ + f∇Xσ +∇Xτ, (4.18)

∇fX+Y σ = f∇Xσ +∇Y σ. (4.19)

Here f is a real-valued function if E is a real vector bundle or a complex-valued
function if E is a complex vector bundle.

If E is a vector bundle, we let

Ωk(E) = Γ(ΛkT ∗M ⊗ E) = { smooth k-forms with values in E }.

Given a connection ∇ in E, we can then define the covariant differential

D : Ω0(E)→ Ω1(E) by (Dσ)(X) = ∇Xσ.

Then D satisfies the second definition of connection:

Definition 2. A connection on E is a map D : Ω0(E)→ Ω1(E) which satisfies
the following axiom:

D(fσ + τ) = df ⊗ σ + fDσ +Dτ, (4.20)
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whenever f is a smooth function on M and σ, τ ∈ Ω0(E).

Remark. If D1 and D2 are two connections in E, then the difference D1 −D2

satisfies the identity

(D1 −D2)(fσ + gτ) = f(D1 −D2)σ + g(D1 −D2)τ,

that is the difference D1 − D2 is linear over functions. Hence we can regard
D1 − D2 as an element of Ω1(End(E)). Conversely if D is a connection on E
and φ is any element of the vector space Ω1(End(E)), then D + φ is also a
connection. Thus although the zero operator is not a connection, the space of
connections forms an “affine space”D0+Ω1(End(E)), whereD0 is any particular
choice of base connection in E.

Each of the definitions has its advantages, and we will find it convenient to pass
back and forth between the two definitions.

The simplest example of a connection occurs on the trivial bundle E =
M × Rm. A section of this bundle can be regarded as an Rm-valued map

σ =

σ1

...
σm

 .

In this case, we can use the exterior derivative to define the trivial flat connection
on E:

D

σ1

...
σm

 =

dσ1

...
dσm

 .

More generally, given an m×m matrix of one-forms on M ,

ω =

ω1
1 · · · ω1

m
...

. . .
...

ωm1 · · · ωmm

 ,

we can define a connection on E by

D

σ1

...
σm

 =

dσ1

...
dσm

+

ω1
1 · · · ω1

m
...

. . .
...

ωm1 · · · ωmm


σ1

...
σm

 . (4.21)

We can write this last equation in a more abbreviated form as

Dσ = dσ + ωσ,

matrix multiplication being understood in the last term. Indeed, the axiom
(4.20) can be verified directly, using the familiar properties of exterior derivative.
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Of course, we can construct a connection in the trivial complex vector bundle
E = M × Cm in exactly the same way, by choosing ω to be an m ×m matrix
of complex-valued one-forms.

It is not difficult to check that any connection on the trivial bundle is of the
form (4.21). To see this we apply D to the constant sections

E1 =


1
0
...
0

 , E2 =


0
1
...
0

 , · · · , Em =


0
0
...
1

 ,

obtaining

(
DE1 · · · DEm

)
=
(
E1 · · · Em

)ω1
1 · · · ω1

m
...

. . .
...

ωm1 · · · ωmm

 ,

for some collection of one-forms ωij . If we then write a section as a linear
combination of basis elements,

σ =
(
E1 . . . Em

)σ1

...
σm

 ,

it follows directly from (4.20) that

Dσ =
(
E1 . . . Em

)dσ1

...
dσm

+
(
DE1 . . . DEm

)σ1

...
σm


=
(
E1 . . . Em

)
dσ1

...
dσm

+

ω1
1 · · · ω1

m
...

. . .
...

ωm1 · · · ωmm


σ1

...
σm


 ,

which is just another way of rewriting (4.21).
Recall that any vector bundle is locally trivial. Suppose, for example, that

E is an F vector bundle of rank m defined by the open cover {Uα : α ∈ A} and
the transition functions {gαβ}. In the notation of the preceding section

ψα : π−1(Uα)→ Uα × Fm

is a vector bundle isomorphism from the restriction of E to Uα onto the trivial
bundle over Uα. Such a trivialization defines a corresponding an orderedm-tuple
(Eα1 , . . . E

α
m) of smooth sections of E over Uα by the prescription

ψα(Eαi (p)) = (p,Ei),
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where (E1, . . . , Em) is the standard basis of Fm. If σ is a smooth section of E
over Uα, then

σ =
m∑
i=1

σiαE
α
i where σα =

σ1
α

·
σmα


is the local representative of σ over Uα. If D is a connection on E, then

Dσ = D

(
m∑
i=1

σiαE
α
i

)
=

m∑
i=1

dσiα +
m∑
j=1

(ωα)ijσ
j
α

Eαi .
We can write this as

Dσ =
m∑
i=1

(Dσα)iEαi ,

where

 (Dσα)1

...
(Dσα)m

 =

dσ
1
α

...
σmα

+

 (ωα)1
1 · · · (ωα)1

m
...

. . .
...

(ωα)m1 · · · (ωα)mm


dσ

1
α

...
σmα

 ,

an m-tuple of ordinary one-forms on Uα. Just as we did above, we can write

(Dσ)α = dσα + ωασα,

where ωα is an m×m matrix of ordinary one-forms on Uα. We call the matrix
operator d+ ωα the local representative of the connection D.

We can use (4.17) to see how the local representatives corresponding to two
elements of the distinguished covering are related on overlaps. We note that
since the connection is well-defined on overlaps, we must have

dσα + ωασα = gαβ(dσβ + ωβσβ) on Uα ∩ Uβ .

Since σβ = g−1
αβσα,

dσα + ωασα = gαβ [d(g−1
αβσα) + ωβg

−1
αβσα]

= dσα + [gαβdg−1
αβ + gαβωβg

−1
αβ ]σα,

and we conclude that

ωα = gαβdg
−1
αβ + gαβωβg

−1
αβ . (4.22)

This yields yet another definition of connection:

Definition 3. A connection on an F -vector bundle E of rank m defined by
an trivializing open cover {Uα : α ∈ A} and transition functions {gαβ} is a
collection of differential operators

{d+ ωα, α ∈ A},

operating on local representatives, where d denotes the usual exterior derivative
acting on Fm-valued sections and ωα is an m×m matrix of F -valued one-forms,
the differential operators transforming in accordance with (4.22).
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4.7 Metric connections

A fiber metric on a real vector bundle E is a smooth function which assigns to
each p ∈M an inner product

〈·, ·〉p : Ep × Ep → R.

Thus a Riemannian metric on a smooth manifold M is a fiber metric in its
tangent bundle TM . If σ and τ are sections of E we can define a function

〈σ, τ〉 : M → R by 〈σ, τ〉(p) = 〈σ(p), τ(p)〉p.

Similarly, a Hermitian metric on a complex vector bundle E is a smooth function
which assigns to each p ∈M a map

〈·, ·〉p : Ep × Ep → C

such that 〈v, w〉p is complex linear in v and conjugate linear in w,

〈v, w〉p = 〈w, v〉p,

and 〈v, v〉p ≥ 0 with equality holding if and only if v = 0.

Definition. A metric connection on a real vector bundle E with a fiber metric
or a complex vector bundle E with a Hermitian metric is a connection D :
Ω0(E)→ Ω1(E) such that

d〈σ, τ〉 = 〈Dσ, τ〉+ 〈σ,Dτ〉, for σ, τ ∈ Ω0(E). (4.23)

Here we are using Definition 2 of connection. Of course, we can also use Defi-
nition 1 and write this condition as

X〈σ, τ〉 = 〈∇Xσ, τ〉+ 〈σ,∇Y τ〉, for X ∈ X (M) and σ, τ ∈ Γ(E).

Using a partition of unity, we can show that any real vector bundle with fiber
metric or any complex vector bundle with Hermitian metric admits a metric
connection.

If E is a real vector bundle of rank m with fiber metric 〈·, ·〉, we can choose triv-
ializations which map each fiber of Ep isometrically onto Rm with its standard
dot product. In this case the transition functions {gαβ} take their values in the
orthogonal group O(m). If

ψα : π−1(Uα)→ Uα × Rm

is such a trivialization and (E1, . . . , Em) is the standard orthonormal basis for
Rm, then the m-tuple (Eα1 , . . . E

α
m) of smooth sections of E over Uα defined by

ψα(Eαi (p)) = (p,Ei)

183



has the property that (Eα1 (p), . . . Eαm(p)) is an orthonormal basis for Ep for each
p. It then follows from (4.23) that

0 = d〈Eαi , Eαj 〉 = 〈DEαi , Eαj 〉+ 〈Eαi , DEαj 〉 = (ωα)ji + (ωα)ji ,

so that the matrix ωα is skew-symmetric. Recall that the Lie algebra ofGL(m,R)
is just

gl(m,R) ∼= { m×m-matrices with entries in R },

with Lie bracket defined by [A,B] = AB − BA, while the Lie algebra of O(m)
is the Lie subalgeba

o(m) = {A ∈ gl(m,R) : AT +A = 0}.

Thus each local representative d+ ωα has the property that the matrix-valued
one-form ωα is o(m)-valued, where o(m) is the Lie algebra of the orthogonal
group.

Remark 1. Of course, the m-tuple (Eα1 , . . . E
α
m) of smooth sections of E over

Uα is just an extension of Cartan’s notion of moving orthonormal frame from
the tangent bundle TM to an arbitrary vector bundle E.

Remark 2. It is customary to lower the index and write ωij instead of ωij when
the matrix-valued form ω is o(m)-valued.

Similarly, if E is a complex vector bundle with Hermitian metric 〈·, ·〉, we can
choose trivializations which map each fiber of Ep isometrically onto Cm with its
standard Hermitian inner product. In this case the transition functions {gαβ}
take their values in the unitary group U(m). If

ψα : π−1(Uα)→ Uα × Cm

is such a trivialization and (E1, . . . , Em) is the standard orthonormal basis for
Cm, then the m-tuple (Eα1 , . . . E

α
m) of smooth sections of E over Uα defined by

ψα(Eαi (p)) = (p,Ei)

has the property that (Eα1 (p), . . . Eαm(p)) is an orthonormal basis for Ep for each
p, and (4.23) implies that

0 = d〈Eαi , Eαj 〉 = 〈DEαi , Eαj 〉+ 〈Eαi , DEαj 〉 = (ωα)ji + (ωα)ji ,

so that the matrix ωα is skew-Hermitian. The Lie algebra of GL(m,C) is just

gl(m,C) ∼= { m×m-matrices with entries in C },

with Lie bracket defined by [A,B] = AB −BA, while the Lie algebra of M(m)
is

u(m) = {A ∈ gl(m,C) : ĀT +A = 0}.
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Thus each local representative d+ ωα has the property that the matrix-valued
one-form ωα is u(m)-valued in this case.

More generally, we could consider any Lie subgroup G of GL(m,F ), where
F = R or C. We could then define a G-vector bundle over M to be a rank m
vector bundle over M whose transition functions take their values in G. For
example, if G = SO(m) = {A ∈ O(m) : detA = 1}, then an SO(m)-vector
bundle is a real vector bundle of rank m together with a fiber metric and an
orientation.

Suppose that the Lie group G has Lie algebra g. We could then define a G-
connection on the G-vector bundle E defined by an trivializing open cover {Uα :
α ∈ A} and transition functions {gαβ} is a collection of differential operators

{d+ ωα, α ∈ A}

acting on local representatives σα of sections, where d denotes the usual exterior
derivative and ωα is an g-valued matrix of one-forms, the operators transforming
in accordance with (4.22). To see that this definition is well-defined, we would
need to check that the transformation (4.22) preserves g-valued matrices of one-
forms.

4.8 Curvature of connections

If we use Definition 2 of connection, we can extend the operator D : Ω0(E) →
Ω1(E) to an operator

D : Ω∗(E)→ Ω∗(E), where Ω∗(E) =
n∑
k=0

Ωk(E)

by forcing the Leibniz rule to hold:

D(ωσ) = (dω)⊗ σ + (−1)kω ∧Dσ, for ω ∈ Ωk(M), σ ∈ Γ(E). (4.24)

Unlike the usual exterior derivative, the extended operator D does not in general
satisfy the identity D ◦D = 0. However,

D ◦D(fσ + τ) = D(df ⊗ σ + fDσ +Dτ)
= d(df)⊗ σ − df ∧Dσ + df ∧DΣ + f(D ◦D)σ + (D ◦D)τ

= f(D ◦D)σ + (D ◦D)τ, (4.25)

so D ◦D is linear over functions. This implies that D ◦D is actually a tensor
field; in other words, there is a two-form with values in End(E),

R ∈ Ω2(End(E)) such that D ◦D = R.

This End(E)-valued two-form is called the curvature of the connection.
Suppose that E is a smooth real vector bundle of rank m over M defined by

the open covering {Uα : α ∈ A} and the transition functions {gαβ}. Any element
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σ ∈ Γ(E) possesses local representatives {σα : α ∈ A}, and in accordance with
(4.25),

(D ◦Dσ)α = Ωασα,

where Ωα is a matrix of two-forms. Since D is represented by the operator
d+ ωα on Ω0(E) and the operator d+ ωα satisfies the Leibniz rule, one readily
checks that D must also be represented by d + ωα on every Ωk(E). We thus
conclude that

(D ◦Dσ)α = (d+ ωα)(dσα + ωασα)
= d(dσα) + (dωα)σα − ωα ∧ dσα + ωα ∧ dσα + (ωα ∧ ωα)σα

= (dωα + ωα ∧ ωα)σα,

and hence we obtain a formula for the local representative of the curvature:

Ωα = dωα + ωα ∧ ωα. (4.26)

Since D ◦D is independent of trivialization, the matrices of two-forms must
satisfy

Ωασα = gαβΩβσβ = gαβΩβg−1
αβσα on Uα ∩ Uβ .

In other words, the local representatives transform in accordance with the ex-
pected rule for two-forms with values in End(E),

Ωα = gαβΩβg−1
αβ . (4.27)

Differentiation of (4.26) gives

dΩα = dωα ∧ ωα − ωα ∧ dωα
= (Ωα − ωα ∧ ωα) ∧ ωα − ωα ∧ (Ωα − ωα ∧ ωα),

which simplifies to yield the so-called Bianchi identity ,

dΩα = Ωα ∧ ωα − ωα ∧ Ωα = [Ωα, ωα]. (4.28)

Note that if E is a real vector bundle with metric connection, then the
curvature matrices Ωα are o(m)-valued, while if E is a complex vector bundle
with metric connection, the curvature matrices Ωα are u(m)-valued. In the
special case where E = TM the tangent bundle of a Riemannian manifold
(M, 〈·, ·〉), and D is the Levi-Civita connection, then (4.26) reduces to the second
structure equation of Cartan (4.5) we encountered in Cartan’s method of moving
frames.

Remark. In some ways, it might have been better to use Definition 1 of
connection and define the curvature of a connection ∇ on E to be the operator

R1(X,Y )σ = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ, (4.29)
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for X,Y ∈ X (M) and σ ∈ Γ(E). It would then be straightforward to verify
that

R1(fX, Y )σ = R1(X, fY )σ = R1(X,Y )fσ = fR1(X,Y )σσ,

so that R1 is an element of Ω2(End(E)).
Recall that by means of a local trivialization

ψα : π−1(Uα)→ Uα × Fm,

where F = R or C, we could define an ordered m-tuple (Eα1 , . . . E
α
m) of smooth

sections of E over Uα by the prescription

ψα(Eαi (p)) = (p,Ei),

where (E1, . . . , Em) is the standard basis of Fm. The local representative d+ωα
is then defined so that the entries of the matrix ωα of one-forms satisfy

∇XEj =
m∑
i=1

Ei(ωα)ij(X),

while, just as in §4.1, we could define the matrix Ωα of curvature two-forms by

R1(X,Y )Ej =
m∑
i=1

Ei(Ωα)ij(X,Y ).

Just as in the proof of the Theorem from §4.1 we would then be able to use
(4.7) to derive Cartan’s second structure equation

Ωα = dωα + ωα ∧ ωα.

Since this agrees with (4.26), R1 has exactly the same local representatives as
R and hence R = R1.

The upshot is that we have two equally valid definitions of curvature for
a connection in E; the curvature R ∈ Ω2(End(E)) is either the operator R1

defined by (4.29) or the operator R = D2, where D is the covariant differential.

4.9 The pullback construction

If (E, π,M) is a smooth vector bundle over M and F : N → M is a smooth
map, we can define the pullback bundle with total space

F ∗E = {(p, v) ∈ N × E : F (p) = π(v)},

the projection π : F ∗E → N being the projection onto the first factor. If
{Uα : α ∈ A} is a trivializing open cover for E, then {F−1(Uα) : α ∈ A}
is a trivializing open cover for F ∗E, and the transition functions for F ∗E are
{gαβ ◦ F}. Note that if E is a G-vector bundle, where G is a Lie subgroup of
GL(m,F ) then so is F ∗E.

187



If σ ∈ Γ(E) then we can define a pullback section

F ∗σ ∈ Γ(F ∗E) by (F ∗σ)(p) = (p, σ(F (p)).

More generally, we can define F ∗ : Ωk(E)→ Ωk(F ∗E) by

F ∗(ω ⊗ σ) = F ∗(ω)⊗ F ∗(σ) for ω ∈ Ωk(M) and σ ∈ Γ(E).

Proposition 1. If DE is a connection on the vector bundle E over M and
F : N → M is a smooth map, then there is a unique connection DF∗E in the
vector bundle F ∗E over N which makes the following diagram commute:

Ω0(E) DE−−−−→ Ω1(E)

F∗
y F∗

y
Ω0(F ∗E)

DF∗E−−−−→ Ω1(F ∗E)

.

If DE is a G-connection, so is DF∗E .

To prove uniqueness, one simply notes that if d+ ωα is the local representative
for DE corresponding to the element Uα of the trivializing cover for E, then
d+F ∗ωα must be the local representative for DF∗E corresponding to F−1(Uα).
For existence, one simply definesDF∗E by decreeing that the local representative
for DF∗E corresponding to F−1(Uα) must be d+ F ∗ωα.

We call the connection obtained on F ∗E by Proposition 1 the pullback con-
nection. Note that if Ωα is the local representative of curvature corresponding
to an element Uα of the trivializing cover for E, then F ∗Ωα must be the local
representative of curvature for DF∗E corresponding to F−1(Uα).

The pullback connection formalizes the constructions we used when calculating
first and second variation of the action J in §1.3 and §3.8. It provides a more
rigorous means of discussing the parallel transport we introduced in §3.2.

Indeed, if E is a vector bundle overM with connectionDE and γ : [a, b]→M
is a smooth map we can consider the connection Dγ∗E on the pullback bundle
γ∗E. We say that a section σ of γ∗E is parallel along γ if (Dγ∗E)σ = 0. In
terms of a local trivialization, we can write such a section as σα, where

(d+ ωα)σα = 0 or
d

dt
σiα +

m∑
j=1

(ωα)ij

(
d

dt

)
σjα = 0.

Thus a section σ of γ∗E is parallel along γ if and only if its components in
any local trivialization satisfy a first-order linear system of ordinary differential
equations. It follows from the theory of such systems that given an element
σ0 ∈ (γ∗E)a, there is a unique section σ parallel along γ which satisfies the
initial condition σ(a) = σ0. Thus we can define an isomorphism

τ : (γ∗E)a → (γ∗E)b
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by setting τ(σ0) = σ(b), where σ is the unique parallel section such that σ(a) =
σ0. Since

(γ∗E)a ∼= Eγ(a) and (γ∗E)b ∼= Eγ(b),

this also defines an isomorphism

τ : Eγ(a) → Eγ(b),

which we call parallel transport along γ in E. Of course, this is completely
analogous to the construction we carried out in §3.2.

We can sometimes use parallel transport to prove that two vector bundles
are isomorphic:

Proposition 2. If F0, F1 : N → M are smoothly homotopic maps and E is a
vector bundle over M , then F ∗0E and F ∗1E are isomorphic vector bundles over
N .

Sketch of proof: Define smooth maps

J0, J1 : N → N × [0, 1] by J0(p) = (p, 0), J1(p) = (p, 1).

If F0 is smoothly homotopic to F1, there is a smooth map

H : N × [0, 1]→M such that H ◦ J0 = F0, H ◦ J1 = F1.

Since F ∗0E = J∗0H
∗E and F ∗1E = J∗1H

∗E, it suffices to show that if E is a
vector bundle over N × [0, 1], then J∗0E is isomorphic to J∗1E.

But J∗0E is just the restriction of E to N ×{0}, while J∗1E is the restriction
of E to N × {1}. Give E a connection and let

τp : E(p,0) → E(p,1) be parallel transport along t 7→ (p, t).

We can then define a vector bundle isomorphism τ : J∗0E → J∗! E by

τ(v) = τp(v), for v ∈ E(p,0) = J∗0Ep.

Corollary. Every vector bundle over a contractible manifold is isomorphic to
a trivial bundle.

Proof: If M is a contractible manifold, the identity map on M is homotopic
to the constant map, and hence any vector bundle over M is isomorphic to
the pullback of a bundle over a point via the constant map. Of course, such a
pullback must be trivial.

4.10 Classification of connections in complex line
bundles

If L is complex line bundle (that is a complex vector bundle of rank one), then
End(L) is the trivial line bundle, and hence the curvature of any connection is
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just a complex scalar; it turns out that the curvature is actually purely imaginary
if the L has a Hermitian metric and the connection is metric. There is a very
simple classification for complex line bundles over a given manifold M and for
metric connections in a given line bundle. Thus the differential geometry of
complex line bundles over a given smooth manifold M has a relatively simple
and complete theory.

Note that since U(1) is isomorphic to SO(2), a rank one complex vector
bundle with Hermitian metric is just a rank two oriented real vector bundle
with fiber metric. Indeed, given an oriented rank two real vector bundle E
with fiber metric we can make it into a complex vector bundle of rank one by
defining multiplication by i to be rotation through 90 degrees in the direction
determined by the orientation. If (E1, E2) is a positively oriented moving frame
for E over U , we can define multiplication in the fiber by i by setting E2 = iE1,
thereby obtaining a complex line bundle with Hermitian metric.

If D is a metric connection in E regraded as an oriented real vector bundle,
then the corresponding skew-symmetric matrix of connection forms is(

0 ω12

−ω12 0

)
, where DE1 = −ω12E2 = (−iω12)E1.

We can also regard the single section E1 as defining a unitary frame for the com-
plex line bundle E, and in this case the corresponding skew-Hermitian matrix
of connection forms is (−iω12).

The skew-symmetric curvature matrix of the SO(2)-bundle is(
0 Ω12

−Ω12 0

)
, where Ω12 = dω12,

while the skew-Hermitian curvature matrix for the U(1)-bundle is (−iΩ12).
Since U(1) and SO(2) are commutative, it follows from (4.27) that Ωα = Ωβ
on Uα ∩ Uβ , so the locally defined curvature matrices yield a global curvature
matrix defined on M which has a globally defined entry Ω12. We let F = Ω12.
It follows from the Bianchi identity that

dΩ12 = dF = 0.

Proposition 1. If F1 and F2 are the curvatures of two U(1)-connections D1

and D2 in the same U(1)-bundle, then[
1

2π
F1

]
=
[

1
2π
F2

]
∈ H2

dR(M ; R).

The proof is an easy consequence of the fact that the difference of two connec-
tions is a tensor field. Since D1 −D2 = α ∈ Ω1(End(E)), we see immediately
that F1 − F2 = dα, so (1/2π)F1 and (1/2π)F2 lie in the same de Rham coho-
mology class.
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Definition. If L is a complex line bundle with a Hermitian metric, then the
first Chern class of L or the Euler class of the underlying SO(2)-bundle E is

c1(L) =
[

1
2π
F
]
∈ H2(M ; R),

where F is the curvature of any U(1)-connection in the U(1)-bundle L.

Let us explain the reason for the factor 1/2π. The argument we used in §4.3
for the Poincaré Index Theorem and the Gauss-Bonnet Theorem carries over
word for word to an arbitrary U(1)-bundle over a compact oriented surface M .
Indeed, if σ : M → L is a smooth section with finitely many zeros at the points
p1, p2, . . . , pk of M , we can set V = M − {p1, . . . , pk} and define a unit-length
section E1 on V by E1 = σ/|σ|. We can then define the rotation index ω(σ, pi)
of σ at each zero pi ∈ M just as before. The argument presented in §4.3 then
shows that

k∑
i=1

ω(X, pi) =
1

2π

∫
M

F , (4.30)

and in particular, the differential form (1/2π)F must integrate over the surface
M to an integer. We sometimes write

1
2π

∫
M

F =
〈[

1
2π
F
]
, [M ]

〉
= 〈c1(L), [M ]〉,

and call it the pairing of the fundamental class of M with the first Chern class
or the Euler class.

The fact that c1(L) integrates to an integer is a reflection of the fact that
c1(L) is actually an integral cohomology class, that is, it is the image of an
element, also denoted by c1(L), under the coefficient homomorphism

H2(X; Z)→ H2(X; R) (4.31)

described in §2.8.2. It would be difficult to classify complex vector bundles of
higher rank up to isomorphism, but there is a very simple answer for the case
of complex line bundles:

Classification Theorem for U(1)-bundles. Let V1
C(M) denote the group of

isomorphism classes of complex line bundles over a smooth manifold M , the
group operation being tensor product. Then the map

Γ : V1
C(M)→ H2(M ; Z) defined by Γ(L) = c1(L) ∈ H2(M ; Z)

is a group isomorphism.

The proof is a little difficult, so we defer a sketch of the proof to the next section
(and, in fact, the reader can skip the proof on a first reading).

Example. The two-sphere S2 = C∪{∞} can be regarded as a Riemann surface
with two charts. We let

U0 = C and U∞ = (C− {0}) ∪ {∞}
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and define z : U0 → C to the the identity and w : U∞ → C by w = 1/z. Then
{(U0, z), (U∞, w)} is an atlas on S2 which makes it into a Riemann surface. We
can construct a line bundle Hn over S2 by specifying

g0,∞ : U0 ∩ U∞ → GL(1,C) by g0,∞(z) =
1
zn
.

The complex line bundle Hn will then have two trivializations

ψ0 : π−1(U0)→ U0 × C, ψ∞ : π−1(U∞)→ U∞ × C

such that

ψ∞ ◦ ψ−1
0 (z, c) =

(
z,

1
zn
c

)
.

Define a section σ : S2 → Hn by

ψ0 ◦ σ(z) = (z, zn), ψ∞ ◦ σ(w) = (w, 1).

Then σ has a single zero at z = 0 and one can easily verify that ω(σ, 0) = n.
Using this fact together with (4.30) we find that 〈c1(Hn), [M ]〉 = n. Indeed,
every complex line bundle over S2 is isomorphic to Hn for some n ∈ Z.

We next ask whether it is possible to classify the metric connections in a given
line bundle. Let

A(L) = { metric connections in L }.

In a sense we already know how to classify the connections in A(L). Indeed,
suppose that we are given a base connection D0 on E which is metric for a given
choice of fiber metric 〈·, ·〉. If D is any metric connection on L, then D − D0

is a globally defined u(1)-valued one-form −iα, where α ∈ Ω1(M). So elements
of A(L) are in one-to-one correspondence with elements of Ω1(M). But the
interesting classification is up to “gauge transformation:”

Definition. A gauge transformation of a line bundle L with Hermitiian inner
product 〈·, ·〉 is a bundle automorphism g : L → L which preserves the inner
product 〈·〉.

If g : L → L is a gauge transformation, g(p) : Lp → Lp is multiplication by
some complex number of length one. Thus we can regard g as a map

g : M → U(1) = S1 = {z ∈ C : |z| = 1}.

Let G denote the space of gauge transformations, a group under complex mul-
tiplication in the range. If p0 is some choice of base point in M , we let

G0 = {g ∈ G : g(p0) = 1},

the subgroup of based gauge transformations. Then we have a direct product of
groups G = G0 × S1, where S1 is the group of constant gauge transformations.

192



If D is a metric connection on L and g ∈ G, we can construct a new connec-
tion Dg on L by

Dg = g ◦D ◦ g−1 = D + gdg−1 : Ω0(L)→ Ω1(L).

We say that D and D̂ are gauge equivalent if they differ by a bundle automor-
phism, in other words, if D = Dg for some g ∈ G, and we let

B(L) =
A(L)
G

=
A(L)
G0

= { gauge equivalence classes of metric connections on L }.

Our goal is to classify elements of B(L).
In the case where M is simply connected, the classification of elements of

B(L) is relatively easy. In this case, we let

C(L) =
{
F ∈ Ω2(M) : dF = 0,

[
1

2π
F
]

= c1(L)
}
.

Proposition 2. If H1(M ; R) = 0, the map

Γ : B(L)→ C(L) defined by Γ(D) =
1

2π
F ,

where −iF is the curvature of D, is a bijection.

Proof: To see that Γ is onto, we let D0 be a base connection with curvature
F0. If F ∈ C(L), then dF = 0 and since [F ] = [F0], there is a one-form α on
M such that F − F0 = dα. Let D = D0 − iα. Then D is a a connection with
curvature −iF .

To show that Γ is one-to-one, we suppose that D and D0 are two connections
with the same curvature, so D = D0 − iα where dα = 0. Since H1(M ; R) = 0,
there is a smooth function u : M → R such that du = α and we let g = eiu.
Then

(D0)g = D0 + gdg−1 = D0 − idu = D0 − iα = D,

so D and D0 are gauge equivalent.

We remark that it is possible to establish a similar result when H1(M ; R) 6=
0. For simplicity, let us suppose that H1(M ; Z) is free abelian of rank b1
and let γ1, · · · , γb1 be oriented simple closed curves representing generators for
H1(M ; Z), all passing through a given point p0. Given a metric connection in a
complex line bundle L, let

τj : Lp0 → Lp0

be the holonomy around γj which is an orientation-preserving isometry and
hence a rotation through an angle θj . Then τj must be rotation through some
angle,

τj = eiθj .
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We can then define

Γ : B(L)→ C(L)×

b1︷ ︸︸ ︷
S1 × · · · × S1 by Γ(D) =

(
1

2π
F , eiθ1 , . . . , eiθb1

)
,

and one can prove that this map is a bijection.
Suppose now that (M〈·, ·〉 is a Riemannian or Lorentz manifold so that the

Hodge star ? can be defined on Ω∗(M). We can then define the Yang-Mills
function

Y : A(L)→ R by Y(D) =
∫
M

FD ∧ ?FD,

where FD is the curvature of the connection D. We say that a connection on L
is a Yang-Mills connection if it is a critical point for the function Y.

Exercise XVI. Show that a connection D is a Yang-Mills connection if and
only if it satisfies the equations

dFD = 0, d(?FD) = 0.

Hint: Use the fact that if F0 and F1 are the curvatures of two U(1)-connections
D0 and D1 in the same U(1)-bundle L, then F1 − F0 = dα for some globally
defined one form on M . Moreover, for t ∈ R, if Dt = D0 + tα, then Ft −F0 =
tdα. Now exploit the fact that if D0 is a Yang-Mills connection, then

d

dt

∣∣∣∣
t=0

Y(Dt) = 0.

In the case where (M〈·, ·〉 is a Lorentz manifold, these are just Maxwell’s equa-
tions from electricity and magnetism. In the case where (M〈·, ·〉 is a compact
Riemannian manifold the Yang-Mills connections are just the connections with
harmonic curvature forms.

Application. If the base manifold M has a Lorentz metric and is considered
to be the space-time of general relativity, we can model the Faraday tensor for
an electromagnetic field (described at the end of §2.9) as the curvature F of
a connection in a complex line bundle with a Hermitian metric. Then one of
Maxwell’s equations dF = 0 is automatically satisfied.

What advantages does this model have over just regarding the Faraday ten-
sor as a closed two-form? Well, for one thing, integrality of the first Chern class
implies a quantization condition for F . Second, the connection also provides
holonomy around closed curves, and this has been observed experimentally (the
Bohm-Aharanov effect). Third, a formulation in terms of connections suggests
fruitful generalizations to connections in more general groups, like SU(2) or
SU(3) and these have been used to help explain the weak and strong interac-
tions in physics.

Thus while the geometry of pseudo-Riemannian manifolds has important
applications to general relativity, the geometry of connections in vector bundles
has important applications to the physics underlying the electromagnetic, weak
and strong interactions.
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4.11 Classification of U(1)-bundles*

For completeness, we provide a brief sketch for the proof of the Classification
Theorem for U(1)-bundles described in the previous section (see [11], page 141).
Indeed, this Classification Theorem follows from the proof of the de Rham
Isomorphism Theorem presented in §2.8.3.

We start with a good cover of M , an open cover U = {Uα : α ∈ A} such that
any nonempty intersection Uα0 ∩ · · · ∩ Uαp 6= 0 in the cover is contractible. Let

gαβ : Uα ∩ Uβ → U(1)

be transition functions for a U(1)-bundle L over M . Since the sets Uα ∩Uβ are
contractible, we can define maps

hαβ =
1

2πi
log gαβ : Uα ∩ Uβ → R such that e2πihαβ = gαβ . (4.32)

Then
zαβγ = hαβ + hβγ + hγα ∈ Z (4.33)

and one immediately verifies that (zαβγ) ∈ Č
2
(U ,Z) is a Čech cocycle. Of

course, this also defines a Čech cocycle (zαβγ) ∈ Č
2
(U ,R) whose real cohomology

class is the image under the coefficient homomorphism (4.31) of an integer class.
We need to check that this cohomology class corresponds to the first Chern

class under the de Rham isomorphism.
So we have to follow the zig-zag construction that was used to produce this

isomorphism. We start with z = (zαβγ) ∈ Č
2
(U ,R) which injects to an element

z = (zαβγ) ∈ Č
2
(U ,Ω0). By (4.33), this image is then a Čech coboundary,

z = δ(h), where h ∈ Č
1
(U ,Ω0) satisfies (4.32), and

d(h)αβ =
i

2π
gαβdg

−1
αβ ∈ Č

1
(U ,Ω1).

Exactness of the rows in the double complex then shows that there is an element
(1/2π)Aα ∈ Č

0
(U ,Ω1) which goes to i

2π gαβdg
−1
αβ under δ, and hence

−iAα = −iAβ + gαβdg
−1
αβ .

But the the one-forms ωα = −iAα define a U(1)-connection on L and the el-
ement (1/2π)Aα ∈ Č

0
(U ,Ω1) goes to its curvature (i/2π)Ωα = (1/2π)Fα ∈

Č
0
(U ,Ω2). Exactness of the rows in the double complex once again forces

the Ωα’s to fit together into a globally defined two-form (1/2π)F which is ex-
actly the curvature of the U(1)-connection. The de Rham cohomology class of
(1/2π)F is exactly the first Chern class of L. Thus the cohomology class of
(zαβγ) ∈ Č

2
(U ,R) goes to the first Chern class [(1/2π)F ] under the de Rham

isomorphism, finishing our sketch of the proof of the Classification Theorem.
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4.12 The Pfaffian

Let E be an oriented real vector bundle of rank n = 2m over M with a fiber
metric 〈·, ·〉. The key example to keep in mind is the case where E = TM ,
where M has a Riemannian metric 〈·, ·〉.

We let ΛqE denote the q-fold exterior power of E and let

Ωp,q(E) = Ωp(ΛqE) = { p-forms with values in ΛqE }.

The direct sum

Ω∗,∗(E) =
∞∑
p=0

∞∑
q=0

Ωp,q(E)

forms a “bigraded” algebra in which the product is defined by

(φα) ∧ (ψβ) = (−1)degψ degα(φ ∧ ψ)(α ∧ β),

for φ, ψ ∈ Ω∗,0, α, β ∈ Ω0,∗.
Suppose now that E has not only a fiber metric but also a metric connection

D : Ω0(E) → Ω1(E). The fiber metric and the connection can be extended to
every ΛqE. Moreover, the connection on ΛqE can be extended to a first-order
differential operator

D : Ωp,q(E)→ Ωp+1,q(E)

by forcing the Leibniz rule to hold.
If (Ωα)ij are the curvature forms of the connection in E with respect to a

moving frame (Eα1 , . . . , E
α
n ) on an open subset Uα ⊆M , then the element

Rα = −1
4

n∑
i,j=1

(Ωα)ijEαi ∧ Eαj ∈ Ω2,2(E|Uα).

Moreover, a direct calculation shows that on Uα ∩ Uβ , Rα = Rβ , so the local
representatives fit together to form a globally defined element R ∈ Ω2,2(E). For
simplicity, we write this as

R = −1
4

n∑
i,j=1

ΩijEi ∧ Ej . (4.34)

It is then possible to compute the m-th power within the algebra:

Rm =
(−1)m

22m

∑
i1,...,i2m

Ωi1i2Ei1 ∧ Ei2 · · ·Ωi2m−1i2mEi2m−1 ∧ Ei2m

=
(−1)m

22m

∑
σ∈S2m

Ωσ(1)σ(2) ∧ · · ·Ωσ(2m−1)σ(2m)Eσ(1) ∧ · · · ∧ Eσ(2m)

=
(−1)m

22m

∑
σ∈S2m

sgn(σ)Ωσ(1)σ(2) ∧ · · ·Ωσ(2m−1)σ(2m)E1 ∧ · · · ∧ E2m,
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where S2m is the group of permutations on 2m letters and sgn(σ) is the sign of
the permutation σ.

Definition. If A = (aij) is a skew-symmetric matrix with 2m rows and 2m
columns, the Pfaffian of A is

Pf(A) =
1

2mm!

∑
σ∈S2m

sgn(σ)aσ(1),σ(2) · · · aσ(2m−1)σ(2m).

The above computation then shows that

1
m!
Rm =

(−1)m

2m
Pf(Ω)E1 ∧ · · · ∧ E2m.

Since R is independent of moving frame, the calculation shows that

B ∈ SO(2m) ⇒ Pf(B−1ΩB) = Pf(Ω).

The same identity must hold when Ω is replaced by an arbitrary skew-symmetric
matrix A, so

B ∈ SO(2m) ⇒ Pf(B−1AB) = Pf(A), (4.35)

for A ∈ so(2m). This identity shows, as we will see later, that the Pfaffian is an
example of an “invariant polynomial” for the Lie group SO(2m).

The factor 1/(2mm!) is included in the definition of the Pfaffian so that

Pf



0 a1 0 0 · · · 0 0
−a1 0 0 0 · · · 0 0

0 0 0 a2 · · · 0 0
0 0 −a2 0 · · · 0 0
· · · · · · · · ·
0 0 0 0 · · · 0 am
0 0 0 0 · · · −am 0


= a1a2 · · · am.

One can verify that Pf(A)2 = det(A), so the Pfaffian serves as a square root of
the determinant for skew-symmetric matrices.

4.13 The generalized Gauss-Bonnet Theorem

If M is a (2m)-dimensional Riemannian manifold and Ω = (Ωij) is the matrix
of curvature two-forms corresponding to a moving frame, we can construct the
Pfaffian Pf(Ω), a differential form of degree 2m on M , and it follows from (4.35)
that Pf(Ω) does not depend on the choice of moving frame.

Generalized Gauss-Bonnet Theorem. If M is a compact oriented (2m)-
dimensional Riemannian manifold, then

1
(2π)m

∫
M

Pf(Ω) = χ(M),
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where χ(M) is the Euler characteristic of M .

Here the Euler characteristic of a compact smooth manifold M is a topolog-
ical invariant which can be calculated by means of a vector field on M with
nondegenerate zeros.

Definition. A vector field V : M → TM is said to have a nondegenerate zero
at p ∈M if the covariant differential DV (p) : TpM → TpM is an isomorphism.
If p is a nondegenerate zero of the vector field V : M → TM , then the rotation
index of V at p is

ω(V, p) =

{
1 if det(DV (p)) > 0,
−1 if det(DV (p)) < 0.

Thus suppose that p is a zero of V and that (x1, . . . , xn) are normal coordinates
centered at p, with xi(p) = 0. Then we can write

V =
(
∂
∂x1 · · · ∂

∂xn

)
a

1
1 · · · a1

n
...

. . .
...

an1 · · · ann


x

1

...
xn

+ higher order terms

 ,
(4.36)

while the linearization of the vector field V at the zero p is

DV (p) =
(

∂
∂x1

∣∣
p
· · · ∂

∂xn

∣∣
p

)a
1
1 · · · a1

n
...

. . .
...

an1 · · · ann


dx

1|p
...

dxn|p

 .

Of course, DV (p) corresponds to a linear system of differential equations which
takes the form

dx1

dt = a1
1x

1 + · · · + a1
nx

n,
...

...
...

dxn

dt = an1x
1 + · · · + annx

n,

or

dx
dt

= Ax, where A =

a
1
1 · · · a1

n
...

. . .
...

an1 · · · ann

 .

This linear system is just the linearization of the system of differential equations
at the zero p which corresponds to V itself. We see that V has a nondegenerate
zero at p if detA 6= 0, and

ω(V, p) =

{
1 if det(A) > 0,
−1 if det(A) < 0.

For example, in the case of a surface, the vector field

V = x1 ∂

∂x1
+ x2 ∂

∂x2
=
(
∂
∂x1

∂
∂x2

)(1 0
0 1

)(
x1

x2

)
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has rotation index one at the origin, while

V = x1 ∂

∂x1
− x2 ∂

∂x2
=
(
∂
∂x1

∂
∂x2

)(1 0
0 −1

)(
x1

x2

)
has rotation index minus one, agreeing with the rotation index as described in
§4.3. We can now state the

Poincaré Index Theorem. Suppose that M be a n-dimensional compact
oriented smooth manifold and that V is a vector field on M with finitely many
nondegenerate zeros at the points p1, p2, . . . , pk. Then

k∑
i=1

ω(V, pi) = χ(M).

In our proof of the generalized Gauss-Bonnet Theorem, we will assume the
existence of a vector field with nondegenerate zeros, that is, a vector field V :
M → TM which intersects the zero section transversally. (The gradient of a
Morse function is a vector field with nondegenerate zeros, and such functions are
dense in the space of all real-valued functions on M by Corollary 6.7 in [25].) As
in §4.3 our strategy is to prove the generalized Gauss-Bonnet Theorem and the
Poincaré Index Theorem at the same time as we define the Euler characteristic
of M by establishing the formula

1
(2π)m

∫
M

Pf(Ω) =
k∑
i=1

ω(V, pi). (4.37)

The left-hand side does not depend on the vector field while the right-hand side
does not depend on the Riemannian metric, so neither side can depend on the
metric or vector field. Both sides must equal a topological invariant which we
call the Euler characteristic of M and denote by χ(M).

In the proof, we can replace the tangent bundle TM by an oriented real
vector bundle E with fiber metric and connection, so long as E has the same
rank as the dimension of M . In this case, a zero p of a section V is nondegenerate
if DV (p) : TpM → Ep is an isomorphism, and the rotation index is plus or minus
one if this isomorphism is orientation-preserving or reversing, respectively. For
this to work, we must replace (4.36) by

V =
(
E1 · · · En

)
a

1
1 · · · a1

n
...

. . .
...

an1 · · · ann


x

1

...
xn

+ higher order terms

 , (4.38)

where (E1, . . . , En) is a positively oriented moving orthonormal frame for E.
The key idea in the proof is to construct a smooth closed n-form τ on the

total space E, where n is both the rank of E and the dimension of M , called
the Thom form, which is rapidly decreasing in the fiber direction, and therefore
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after rescaling, concentrated on a small neighborhood of the zero section. If
V : M → E is any section and V0 is the zero section, then by the homotopy
axiom for de Rham theory, ∫

M

V ∗0 τ =
∫
M

V ∗τ.

After we replace V by (1/ε)V and let ε→ 0, (4.37) is obtained in the limit.

4.14 Proof of the generalized Gauss-Bonnet The-
orem

Our basic object of study is a geometric vector bundle: a triple (E, 〈, 〉, D),
where E is an oriented real vector bundle over a smooth manifold M , 〈, 〉 is a
fiber metric on E and D is a metric connection on E. We will associate to any
such geometric vector bundle a Thom form, a smooth closed n-form on the total
space E, where n is the rank of E, an n-form which is rapidly decreasing in the
fiber direction and integrates to one on each fiber.

The simplest case is that of the trivial bundle M × Rn, with standard fiber
metric and trivial connection. In this case, we can take Euclidean coordinates
(t1, t2, . . . , tn) on Rn, and define the Thom form on M × Rn by

τ =
(

1√
π

)n
e−(t21+···+t2n)dt1 ∧ · · · ∧ dtn.

This form is closed and invariant under the action of the orthogonal group on
the fiber, and since ∫ ∞

−∞
e−t

2
dt =

√
π, (4.39)

it has the important property that its integral over the fiber Rn is one. Of
course, if ε > 0 is a small positive constant, the rescaled Thom form

τε =
(

1
ε
√
π

)n
e−(t21+···+t2n)/ε2dt1 ∧ · · · ∧ dtn

also integrates to one over the fiber and has the additional property that it is
concentrated near the zero section.

In the case of a general geometric vector bundle (E, 〈, 〉, D), the construction
of the Thom form makes use of the metric connectionD. We consider the algebra
of differential forms with values in the exterior algebra of E as describe in §??.
(To simplify notation, we often suppress writing the wedge.)

A smooth section V of E gives rise to an element DV = ∇·V ∈ Ω1,1, the
covariant differential of V . If

V =
n∑
i=1

viEi,
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where (E1, . . . , En) is a moving orthonormal frame defined on an open subset
U ⊂M , the covariant differential can be expressed by the formula

DV =
n∑
i=1

dvi +
n∑
j=1

ωijvjEi

 ,

where the ωij ’s are the connection one-forms defined by the moving frame. As
we have seen, the curvature forms of the connection,

Ωij = dωij + ωik ∧ ωkj

fit together into an element

R = −1
4

∑
ij

ΩijEi ∧ Ej ∈ Ω2,2,

which like DV , is independent of the choice of moving orthonormal frame. All
the summands in the expression

Φ(V,D) = −|V |2 +DV +R ∈ Ω0,0 ⊕ Ω1,1 ⊕ Ω2,2

have even total degree and must therefore commute with each other. In partic-
ular, all terms in the expanded power series

exp(Φ(V,D)) = I + [−|V |2 +DV +R] + (1/2)[−|V |2 + (DV ) +R]2 + · · ·

commute, and we can write

exp(Φ(V,D)) = e−|V |
2
[I +DV + (1/2)(DV )2 + · · · ][I +R+ (1/2)R2 + · · · ].

The two infinite series within brackets have only finitely many terms because
Ωp,q = 0 when p > dim(M) or q > n = rank(E).

The orientation of E determines a volume element ?1 ∈ Λn(E), which can
be expressed in terms of a positively oriented moving orthonormal frame as

?1 = E1 ∧ · · · ∧ En.

Following Quillen [30], [22], we define the supertrace

Trs : Ωp(Λ∗E)→ Ωp(M),

the space of ordinary p-forms on M , by projection on the ?1-component; thus

Trs

( ∑
i1<···<ik

φi1···ikEi1 ∧ · · · ∧ Eik

)
= φ1···n.

For any choice of section V , we have an n-form on M

τ(V,D) =
(−1)[n/2]

π(n/2)
Trs[exp(Φ(V,D))], (4.40)
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where [n/2] represents the largest integer ≤ n/2, a form which we will soon see
is closed.

It is important to observe that the constructions we have performed are
natural. If F : N → M is a smooth map, F ∗E is the pullback of the bundle E
to N , F ∗V is the pullback section and F ∗D is the pullback connection, then

τ(F ∗V, F ∗D) = F ∗τ(V,D).

In particular, we can carry out the construction not only for the bundle E
itself, but also for the pullback bundle via the bundle projection π : E →M :

π∗E = {(e1, e2) ∈ E × E : π(e1) = π(e2)}

This pullback bundle possesses a “tautological” section

T : E → π∗E, T (e) = (e, e),

such that if V : M → E is any smooth section of E, then V ∗T = V .

Definition. The Thom form on E corresponding to the connection D is the
differential form

τ(D) =
(−1)[n/2]

πn/2
Trs[exp(Φ(T, π∗D))]. (4.41)

Note that π∗ωij restricts to zero on each fiber. Hence if we represent a gen-
eral point in the fiber in terms of a moving orthonormal frame as

∑
tiEi, the

restriction of the tautological section to the fiber is just

T (t1, . . . , tn) = t1E1 + · · ·+ tnEn,

while the restriction of the Thom form to the fiber is

(−1)[n/2]

πn/2
e−(t21+···+t2n)Trs

(
1

(n)!

(∑
dtiEi

)n)
.

In the sum one has n! terms, each of which can be put in the form

(−1)[n/2](dt1 ∧ dt2 ∧ · · · ∧ dtn)(E1 ∧ E2 ∧ · · · ∧ En),

since there we must make n(n− 1)/2 changes of sign when permuting dti’s and
Ej ’s and (−1)n(n−1)/2 = (−1)[n/2]. Thus after we apply Trs, we obtain

1
πn/2

e−(t21+···+t2n)dt1 ∧ · · · ∧ dtn,

and we see that the Thom form integrates to one on each fiber, is rapidly
decreasing in the fiber direction, and specializes to the Thom form constructed
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before in the case of the trivial bundle with trivial connection. By a similar
argument, one sees that

τε(D) =
(−1)[n/2]

πn/2
Trs

[
exp

(
Φ
(
T

ε
, π∗D

))]
specializes to the rescaled Thom form τε in the case of the trivial bundle.

Lemma. The Thom form on E is closed.

Proof: It will suffice to show that the differential form τ(V,D) defined by (4.40)
is closed, since the Thom form is just a special case (where V is replaced by the
tautological section on π∗E and D by the pullback connection).

If V is a section of E, let ι(V ) : Ωp,q → Ωp,q−1 be the interior product, the
skew-derivation such that ι(V )(W ) = 〈V,W 〉 when W is a section of E. It is
then immediate that

ι(V )(−|V |2) = 0 and D(−|V |2) = d(−|V |2) = 2ι(V )DV. (4.42)

We next calculate

2ι(V )R = 2ι(V )

−1
4

∑
i,j

ΩijEi ∧ Ej


= −1

2

∑
i,j

Ωij〈V,Ei〉Ej +
1
2

∑
i,j

Ωij〈V,Ej〉Ei

=
∑
i,j

ΩijvjEi = R(·, ·)
(∑

vjEj

)
= R(·, ·)V,

so that
D(DV ) = 2ι(V )R. (4.43)

Finally, we use the Bianchi identity,

dωij =
∑

Ωik ∧ ωkj −
∑

ωik ∧ Ωkj ,

to calculate

D(R) = D

−1
4

∑
i,j

ΩijEi ∧ Ej


= −1

4

∑
i,j

dΩijEi ∧ Ej −
1
4

∑
i,j

ΩijDEi ∧ Ej +
1
4

∑
i,j

ΩijEi ∧DEj

= · · · = 0.

Thus we conclude that
D(R) = 0. (4.44)
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It follows from (4.42), (4.43) and (4.44) that

DΦ(V,D) = 2ι(V )Φ(V,D),

and since D and ι(V ) are both skew-derivations, that

D(exp(Φ(V,D))) = 2ι(V )exp(Φ(V,D)).

Now one applies the identities

Trs ◦ ι(V ) = 0, Trs ◦D = d ◦ Trs

to conclude that τ(V,D) is closed.

If V : M → E is a smooth section of E, the form τ(V,∇) is obtained from the
Thom form by pulling back via V : τ(V,D) = V ∗(τ(D)). Since any two sections
of E are smoothly homotopic, the de Rham cohomology class of τ(V,D) is
independent of V .

In particular, if n = 2m,

τ(0, D) = τε(0, D) =
(−1)m

m!πm
Trs(Rm) = · · · = 1

(2π)m
Pf(Ω), (4.45)

which is just the Gauss-Bonnet integrand when E = TM .
Suppose now that dim M = rank E and that V is a section of E with

nondegenerate zeros. As ε→ 0,

τ

(
V

ε
,D

)
= (V )∗(τε)

becomes concentrated near the zeros of V , and we claim that in fact,

limε→0

∫
M

τ

(
V

ε
,D

)
=
∑

(rotation indices of V at its zeros). (4.46)

To prove this, we choose a positively oriented moving orthonormal frame
(E1, . . . , En) and normal coordinates (x1, . . . , xn) both defined on a neighbor-
hood Bδ(p) about a zero p for V . We can then write

V =
∑

aijx
jEi + (higher order terms),

and hence
DV =

∑
aijdx

jEi + (higher order terms).

Thus

(DV )n =
∑

ai1j1dx
i1Ej1 · · ·

∑
ainjndx

inEjn + (higher order terms)

= (−1)[n/2]
∑

ai1j1 · · · a
in
jn

(dxi1 ∧ · · · ∧ dxi1)(Ej1 ∧ · · · ∧ Ejn)

+ (higher order terms),
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the sign coming from commuting the dxi’s and the Ej ’s. An easy exercise in
determinants shows that

(DV )n = (−1)[n/2]n! det(aij)(dx
1 ∧ · · · dxn)(E1 ∧ · · · ∧ En)

+ (higher order terms),

and hence

τ(V,D) =
(−1)[n/2]

πn/2
Trs

(
e−|V |

2 1
n!

(DV )n
)

=
1

πn/2
e−|V |

2
det(aij)(dx

1 ∧ · · · dxn)

+ (higher order terms).

After the change of variables ti =
∑
aijx

j , this becomes

τ(V,D) =
1

πn/2
e−(t21+···+t2n)(dt1 ∧ · · · dtn) + (higher order terms).

Finally, we replace V by V/ε (or equivalently replace ti by ti/ε) and note that
the higher order terms go to zero as ε→ 0. Thus it follows from (4.39) that

limε→0

∫
Bδ(p)

τ

(
V

ε
,D

)
=

{
1, if det(aij) > 0,
−1, if det(aij) < 0,

the two cases corresponding to whether the coordinates (t1, . . . , tn) restrict to
positively or negatively oriented coordinates on the fiber over p. But this is just
the rotation index of V at p. Adding together the contributions at all the zeros
of V yields (4.46).

Since the integral of τ(V,D) over M is independent of V , it follows from
(4.45) and (4.46) that if V is a section of E with finitely many nondegenerate
zeros at the points p1, p2, . . . , pk, then (4.37) holds:

1
(2π)m

∫
M

Pf(Ω) =
k∑
i=1

ω(V, pi).

If E = TM , we can now finish the proof of the generalized Gauss-Bonnet
Theorem as sketched at the end of the previous section. If E is an arbitrary
oriented real vector bundle over M with rank(E) = dim(M), the above formula
gives an interpretation for the evaluation of the Euler class of E evaluated on
the fundamental class of M .

Remark. If dim(M) = rank(E) is odd, the same argument shows that if V is
a section of E with finitely many nondegenerate zeros at the points p1, p2, . . . ,
pk, then

k∑
i=1

ω(V, pi) = 0. (4.47)
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Thus we say that the Euler characteristic of odd-dimensional oriented compact
manifolds is zero.

Exercise XVII. a. Suppose that f : M → R is a smooth function and that p
is a critical point for f , that is df |p = 0. Show that we can define a symmetric
bilinear form

d2f(p) : TpM × TpM → R by d2f(p)(x, y) = X(Y (f))(p),

whenever X and Y are vector fields on M such that X(p) = x and Y (p) = y.
We call d2f(p) the Hessian of f at the critical point p. Moreover, we say that
f : M → R is Morse nondegenerate if d2f(p) is a nondegenerate symmetric
bilinear form for each critical point p.

b. Suppose now that M has a Riemannian metric 〈·, ·〉 and define a vector field
V = grad(f) on M by

df = 〈V, ·〉.

Show that if f is Morse nondegenerate, then the zeros of the gradient V are
nondegenerate.

c. We say that a nondegenerate critical point p for f has Morse index λ if
λ is the maximal dimension of linear subspaces W ⊆ TpM on which d2f(p) is
negative definite. Show that if p is a nondegenerate critical point of Morse index
λ, then V has rotation index (−1)λ at p.

d. Show that there is a function f : Sn → R with exactly two critical points,
both nondegenerate, one a local maximum and one a local minimum. Conclude
that if n is even, χ(Sn) = 2.

e. Recall that Sn has a Riemannian metric of constant curvature one, for which
the curvature forms are given by the formula

Ωij = θi ∧ θj .

Use the Gauss-Bonnet formula to calculate the volume of Sn when it is given
this metric.

f. Let M be a compact oriented Riemannian manifold of even dimension 2m
and constant negative curvature. Show that (−1)mχ(M) is positive.

Remark. By triangulating a compact oriented Riemannian manifold M of
dimension n, and using an appropriate gradient vector field, one can show that

χ(M) =
n∑
k=0

(−1)k dimHk(M ; R).

Historical remarks. The Generalized Gauss-Bonnet Theorem was first proven
by Allendoerfer [1] under the assumption that M admits an isometric imbed-
ding into some Euclidean space EN . (This would have proven the theorem for
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general Riemannian manifolds if Nash’s imbedding theorem had been known at
the time.) Allendoerfer and Weil [2] then gave a proof for a “Riemannian poly-
hedron” which is isometrically imbedded in EN , which was complicated by the
fact that they used the classical tensor analysis in terms of components. Since
it was known that real analytic Riemannian manifolds admit “local” isometric
imbeddings into Euclidean space, one could then piece together the result for
Riemannian polyhedra to give a proof for all real analytic Riemannian manifolds.
In a famous article, Chern [8] gave an intrinsic proof of the Gauss-Bonnet for-
mula for smooth Riemannian manifolds, obtaining a major simplification in the
proof by using Cartan’s method of moving frames. Indeed, the proof of Chern
was a first step towards the theory of characteristic classes, to be described in
the next chapter. A more conceptual proof of the generalized Gauss-Bonnet
Theorem was later found by Quillen [30] using the theory of Clifford algebras
and “superconnections.” We have followed the main ideas of Quillen’s proof,
except that we have used the exterior algebra instead of the Clifford algebra.
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Chapter 5

Characteristic classes

5.1 The Chern character

In §4.10 we described how one can classify complex line bundles over a given
smooth manifold M up to isomorphism. It is interesting problem in differential
topology to classify vector bundles of higher rank over a given manifold. Thus
we would like to classify

Vm(M) = { isomorphism classes of real rank m vector bundles over M },

Vm+ (M) = { isomorphism classes of oriented rank m vector bundles over M },

VmC (M) = { isomorphism classes of complex rank m vector bundles over M }.

Note that any real vector bundle has a fiber metric (which can be constructed via
a partition of unity) and the reader can easily verify that any two fiber metrics
in the same vector bundle are equivalent via a vector bundle automorphism.
Similar facts hold for Hermitian metrics in complex vector bundles. Thus we can
regard Vm(M) as isomorphism classes of O(n)-bundles, element of Vm+ (M) as
isomorphism classes of SO(n)-bundles, and elements of VmC (M) as isomorphism
classes of U(n)-bundles.

Let us first consider the case VmC (M). Our previous experience with clas-
sifying line bundles suggests that we should try to develop analogs of the first
Chern class for complex vector bundles of higher rank.

In contrast to complex line bundles, the curvature matrices Ωα for connec-
tions in complex vector bundles of higher rank are only locally defined. However,
it is possible to construct certain polynomials in Ωα that are invariant under
the transformation (4.27) and these give rise to topological invariants that often
enable us to distinguish between nonisomorphic vector bundles over M .

Let us focus first on the case of a U(m)-vector bundle E, a complex vector
bundle of rank m with a Hermitian metric. We give E a metric connection D
which has local representatives d+ ωα and curvature matrices Ωα. As we have
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seen before, the matrices Ωα are skew-Hermitian, so the matrices

i

2π
Ωα and

(
i

2π
Ωα

)k
are Hermitian. Hence for each choice of positive integer k, the differential form

τk(Ωα) = Trace

[(
i

2π
Ωα

)k]

is real-valued, and since trace is invariant under similarity, it follows from (4.27)
that

Trace

[(
i

2π
Ωα

)k]
= Trace

[(
i

2π
gαβΩαg−1

αβ

)k]
= Trace

[(
i

2π
Ωβ

)k]

on Uα ∩ Uβ . Hence the locally defined forms τk(Ωα) fit together into a globally
defined real-valued 2k-form τk(R) on the base space M , where R is the curvature
of the connection D. We say that τk(R) is a characteristic form.

Lemma. The differential form τk(R) is closed.

Proof: It follows from the Bianchi identity that

d(τk(R)) =
(
i

2π

)k
d[Trace(Ωα)k] =

(
i

2π

)k
[Traced(Ωα)k]

=
(
i

2π

)k
Trace(dΩα)Ωk−1

α + · · ·+ Ωk−1
α dΩα)

=
(
i

2π

)k
Trace([Ωα, ωα]Ωk−1

α + · · ·+ Ωk−1
α [Ωα, ωα]) = 0,

the last equality coming from the fact that Trace(A1 · · ·Ak+1) is invariant under
cyclic permutation of A1, . . . , Ak+1.

This Lemma implies that τk(R) represents a de Rham cohomology class

[τk(R)] ∈ H2k(M ; R),

which can be thought of as a generalization of the first Chern class.
Suppose that E is a U(m)-vector bundle over M with unitary connection

DE having curvature RE , and F : N → M is a smooth map. As we saw in
the preceding section, the local representatives Ωα for the curvature of DE for
a trivializing cover {Uα : α ∈ A} for E pull back to local representatives F ∗Ωα
for the curvature RF∗E of the pullback connection DF∗E on F ∗E. Thus the
characteristic forms for DE pull back to the characteristic forms for DF∗E :

τk(RF∗E) = F ∗τk(RE) and hence [τk(RF∗E)] = F ∗[τk(RE)] ∈ H2kN ; R).
(5.1)
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Proposition 1. The de Rham cohomology class [τk(R)] is independent of the
choice of unitary connection on E, as well as the choice of Hermitian metric on
E.

To prove this we use the cylinder construction from topology. From the bundle
π : E →M we construct the cylinder bundle

π × id : E × [0, 1] −→M × [0, 1].

If E possesses the trivializing cover {Uα : α ∈ A}, then E × [0, 1] possesses the
trivializing cover {Uα × [0, 1] : α ∈ A}.

Suppose that D0 and D1 are two metric connections on E, with curvatures
R0 and R1 respectively, which have local representatives d+ω0

α and d+ω1
α over

Uα. If π1 : Uα × [0, 1]→ Uα is the projection on the first factor, then the local
representatives

d+ (1− t)π∗1ω0
α + tπ∗1ω

1
α over Uα × [0, 1]

fit together to form a metric connection D′ on E× [0, 1] with curvature R′ such
that

J∗0 (τk(R′)) = R0 and J∗1 (τk(R′)) = R1,

where J0, J1 : M → M × [0, 1] are the maps defined by J0(p) = (p, 0) and
J1(p) = (p, 1). Since J0 and J1 are homotopic, it follows from the Homotopy
Theorem from de Rham cohomology that

[τk(R0)] = J∗0 [τk(R′)] = J∗1 [τk(R′)] = [τk(R1)].

This shows that [τk(R)] is independent of the choice of unitary connection.
The proof that [τk(R)] is independent of the choice of Hermitian metric is

similar. In this case, we use the fact that any two Hermitian metrics 〈·, ·〉0 and
〈·, ·〉1 can be connected by a one-parameter family

〈·, ·〉t = (1− t)〈·, ·〉0 + t〈·, ·〉1.

According to Proposition 1, to each complex vector bundle E of rank m over
M we can associate a collection of cohomology classes

τk(E) = [τk(R)] ∈ H2k(M ; R)

and by (5.1), these are natural under smooth maps:

τk(F ∗E) = F ∗τk(E).

These are called the characteristic classes of the complex vector bundle E. We
can put these characteristic classes together to form the Chern character

ch(E) =
[
Trace

(
exp

i

2π
R

)]
= rank(E) + τ1(E) +

1
2!
τ2(E) + · · ·+ 1

k!
τk(E) + · · · ,
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which is an element of the de Rham cohomology ring of the base manifold M :

ch(E) ∈ H∗(M ; R) = H0(M ; R)⊕H1(M ; R)⊕ · · · ⊕Hk(M ; R)⊕ · · · .

The Chern character collapses to a polynomial because all of the terms of degree
larger than dimM must vanish.

Proposition 2. If E and F are complex vector bundles over M , then

ch(E ⊕ F ) = ch(E) + ch(F ), ch(E ⊗ F ) = ch(E)ch(F ).

Sketch of proof: Suppose that E and F have Hermitian metrics with metric
connections DE and DF . Then E ⊕ F inherits a direct sum metric and direct
sum connection DE⊕F , the latter defined by

DE⊕F (σE ⊕ σF ) = (DEσE)⊕ (DFσF ).

It follows that
D2
E⊕F (σE ⊕ σF ) = (D2

EσE)⊕ (D2
FσF ),

and hence if {Uα : α ∈ A} is an open cover of M which simultaneously trivialises
both E and F , (

i
2πΩE⊕Fα

)
=
(

i
2πΩEα 0

0 i
2πΩFα

)
.

It follows that (
i

2πΩE⊕Fα

)k
=

((
i

2πΩEα
)k

0
0

(
i

2πΩFα
)k
,

)
and hence

τk(RE⊕F ) = τk(RE) + τk(RF ),

which implies the first of the two assertions.
Similarly, E ⊗ F inherits a product metric and product connection DE⊗F

defined so that the Leibniz rule is satisfied,

DE⊗F (σE ⊗ σF ) = (DEσE)⊗ σF + σE ⊗ (DFσF ).

Differentiating a second time yields

D2
E⊗F (σE ⊗ σF ) = (D2

EσE)⊗ σF − (DEσE)⊗ (DFσF )

+ (DEσE)⊗ (DFσF ) + σE ⊗ (D2
FσF ),

and hence

RE⊗F (σE ⊗ σF ) = (REσE)⊗ σF + σE ⊗ (RFσF ).

By induction, we establish that

RkE⊗F (σE ⊗ σF ) =
k∑
j=0

(
k

j

)
(RjEσE)⊗ (Rk−jF σF ),
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or
1
k!
RkE⊗F (σE ⊗ σF ) =

k∑
j=0

1
j!

(RjEσE)⊗ 1
(k − j)!

(Rk−jF σF ).

We conclude that

exp
(
i

2π
RE⊗F

)
= exp

(
i

2π
RE

)
⊗ exp

(
i

2π
RF

)
,

and taking the trace of both sides yields the second assertion.

Remark. The operations of direct sum as addition and tensor product as
multiplication make the spaces Vm(M), Vm+ (M) and VmC (M) into semirings,
where semirings are defined so that they satisfy all of the axioms for rings
except for the existence of an additive inverse. There is a process of completing
a semiring to form a genuine ring, similar to the construction that creates the
integers from the nonnegative integers. When we apply that process to the
semiring VmC (M), we obtain a semiring K(M), called the K-theory of M .

In more detail, if M is a smooth manifold, we let K(M) denote the space of
equivalence classes of pairs (E,F ), where E and F are complex vector bundles
and the equivalence relation is defined by

(E1, F1) ∼ (E2, F2) ⇔ E1 ⊕ F2 is isomorphic to E2 ⊕ F1.

The equivalence class of the pair (E,F ) is denoted by [E]− [F ] ∈ K(M) and can
be thought of as a difference of vector bundles or as a “virtual” vector bundle
over M . A smooth map F : M → N induces a ring homomorphism

F ∗ : K(N)→ K(M)

by pulling back vector bundles, and the reader can verify easily that the corre-
spondence

M 7→ K(M), (F : M → N) 7→ (F ∗ : K(N)→ K(M))

is a contravariant functor from the category of smooth manifolds and smooth
manifold maps to the category of rings and ring homomorphisms. Moreover, it
follows from Proposition 2 from §4.9 that if F0 : M → N and F1 : M → N are
smoothly homotopic, then

F ∗0 = F ∗1 : K(N)→ K(M).

In particular, if M is contractible, K(M) ∼= Z.
Now Proposition 2 implies that the Chern character induces a ring homo-

morphism
ch : K(M)→ H∗(M ; R).

In fact, it was proven by Atiyah and Hirzebruch that the Chern character yields
a ring isomorphism

ch : K(M)⊗Q→ Hev(M ; Q)⊗Q, where Hev(M ; Q) =
∞∑
i=0

H2i(M ; Q).
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5.2 Chern classes

There is another useful way of constructing the characteristic classes for U(m)-
bundles. In this approach, one starts by defining the Chern polynomials

ck : u(m)→ R by det
(
itA

2π
+ I

)
=

m∑
k=0

ck(A)tk.

The next Proposition shows that each of these polynomials can be expressed in
terms of the trace polynomials τk that we have already constructed:

Proposition 1. The Chern polynomials can be expressed in terms of the trace
polynomials by means of the following Newton identity:

kck =
k∑
i=1

(−1)i−1ck−iτi, for 1 ≤ k ≤ m.

Proof: For any element of A ∈ u(m), there is an element B ∈ U(m) such that

B−1AB = i


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

 ,

it suffices to show that

sk(λ1, . . . , λm) =
k∑
i=1

(−1)i−1sk−i(λ1, . . . , λm)pi(λ1, . . . , λm), (5.2)

where
pi(λ1, . . . , λm) = λi1 + · · ·+ λim,

and sk(λ1, . . . , λm) is the k-th elementary symmetric function,

s1(λ1, . . . , λm) = λ1 + · · ·+ λm,

s2(λ1, . . . , λm) =
∑
i<j

λiλj , · · ·

sm(λ1, . . . , λm) = λ1λ2 · · ·λm.

To prove (5.2) one starts with the identity

Πm
i=1(t− λi) =

m∑
i=0

(−1)m−ism−i(λ1, . . . , λm)ti.

Substituting λj for t yields

0 =
m∑
i=0

(−1)m−ism−i(λ1, . . . , λm)λij ,
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and summing over j yields

0 = (−1)msm(λ1, . . . , λm) +
m∑
i=1

(−1)m−ism−i(λ1, . . . , λm)pm(λ1, . . . , λm).

This is just the Newton identity (5.2) for k = m, that is in the case where the
number of variables equals k.

The general case of the Newton identity follows from the case k = m. Indeed,
in the identity for sk one need only show that the coefficients of λi1 · · ·λik on
both sides of (5.2) are the same. But this follows from the Newton identity
when the number of variables is k.

By induction we can show that each ck is a polynomial in the τk’s and hence by
the Lemma from the previous section, we can conclude that if E is a complex
vector bundle over M with Hermitian metric and metric connection DE , then
the globally defined 2k-form

ck(RE) = ck(Ωα)

is closed. Here RE is the curvature of DE and the Ωα’s are local representatives
with respect to given trivializations. Moreover, it follows Proposition 1 of the
previous section that the de Rham cohomology class

ck(E) = [ck(RE)] ∈ H2k(M ; R)

is independent of choice of Hermitian metric or metric connection.

Definition. If E is a complex vector bundle over M , then the k-th Chern class
of E is the cohomology class

ck(E) = [ck (RE)] ∈ H2k(M ; R)

constructed in the previous paragraph.

Proposition 2. If E and F are complex vector bundles over M , then

ck(E ⊕ F ) =
k∑
i=0

ci(E)ck−i(F ), (5.3)

where the multiplication on the right is the cup product.

Note that if we write

c(E) = 1 + c1(E) + c2(E) + · · ·+ ck(E) + · · ·
∈ H∗(M ; R) = H0(M ; R)⊕H1(M ; R)⊕ · · · ⊕Hk(M ; R)⊕ · · · ,

then (5.3 ) simplifies to c(E ⊕ F ) = c(E)c(F ).

Here is a sketch of the proof: Suppose that E and F have a common trivilializing
open cover {Uα : α ∈ A} and that the curvatures of metric connections in
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E and F have local representative ΩEα and ΩFα respectively. Then the local
representatives of the curvature in E ⊕ F are

ΩE⊕Fα =
(

ΩEα 0
0 ΩFα

)
,

and by definition of the Chern polynomials

∞∑
k=0

ck(ΩE⊕Fα )tk = det
(
itΩE⊕Fα

2π
+ I

)

= det
(
itΩEα
2π

+ I

)
det
(
itΩFα
2π

+ I

)
=
∞∑
i=0

ci(ΩEα )ti
∞∑
j=0

cj(ΩFα )tj .

Comparing the coefficients of tk on the two sides of the equation yields (5.3).

Remark. Use of a Hermitian metric on a complex vector bundle E of rank m
over M shows that the dual bundle E∗ to a U(m)-bundle over M is obtained
by conjugating the transition functions

gαβ 7→ ḡαβ .

Thus we can think of the dual bundle E∗ as the conjugate of E. A connec-
tion DE on E defines a conjugate connection DE∗ on E∗ by conjugating local
representatives

d+ ωα 7→ d+ ω̄α.

Of course, the local representatives of the curvature are also obtained by con-
jugation,

Ωα 7→ Ω̄α,

from which it follows that

ck(E∗) = (−1)kck(E). (5.4)

5.3 Examples of Chern classes

Recall that we can define complex n-dimensional projective space PnC as the
space of one-dimensional subspaces of the complex vector space Cn+1. More
precisely, we define an equivalence relation ∼ on Cn+1 − {0} by

(z0, z1, . . . , zn) ∼ (w0, w1, . . . , wn) ⇔ zi = λwi, for some λ ∈ C− {0}.

We let [z0, z1, . . . , zn] denote the equivalence class of (z0, z1, . . . , zn) and let

Ui = {[z0, z1, . . . , zn] : zi 6= 0}.

We can then define a bijection φi : Ui → Cn by

φi([z0, z1, . . . , zn]) =
(
z0

zi
,
z1

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn
zi

)
.
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We topologize PnC so that every Ui is an open set and each φ is a homeomor-
phism from Ui to Cn. Then φi ◦ φ−1

j is holomorphic where defined, so PnC is
a compact complex manifold, as defined at the beginning of §4.2. Note that
PnC− Un ∼= Pn−1C. and we have inclusions

S2 = P 1C ⊆ P 2C ⊆ · · · ⊆ Pn−1C ⊆ PnC ⊆ · · · .

Exercise XVIII. a. Let Vn be a small neighborhood of Pn−1C in PnC. Show
that Un ∩ Vn is homotopy equivalent to S2n−1.

b. Use induction and the Mayer-Vietoris sequence to establish that

Hk
dR(PnC; R) ∼=

{
R, if k = 0, k = 2, . . . , k = 2n,
0, otherwise.

c. Let α be the generator of H2
dR(PnC; R) such that if i : S2 = P 1C → PnC

is the inclusion, then
∫
S2 i
∗α = 1. Use Poincaré duality and induction to show

that

αk =
k︷ ︸︸ ︷

α ∪ α ∪ · · · ∪ α 6= 0, for k ≤ n, and αn+1 = 0.

Thus we can say that the de Rham cohomology algebra of PnC is a truncated
polynomial ring p[α]/(αn+1 = 0), where the generator α lies in H2(PnC; R).

We can use the results of Exercise XIV to calculate the Chern classes of the
complex projective spaces. To do this, we first note that over PnC there are
two important bundles,

(the universal bundle) = E∞ = {(V, v) ∈ PnC× Cn+1 : v ∈ V }

and
E⊥∞ = {(V, v) ∈ PnC× Cn+1 : v⊥V },

with E∞ ⊕ E⊥∞ ∼= Cn+1, where Cn+1 is the trivial bundle of rank n + 1 over
PnC.

The transition functions for TPnC take values in GL(n,C), so TPnC is a
complex vector bundle of rank n over PnC.

Lemma. We have an isomorphism between complex vector bundles

TPnC ∼= Hom(E∞, E⊥∞)

Sketch of proof: Suppose that L is an element in the fiber Hom(E∞, E⊥∞)V over
V , where V is an element of PnC, so L : (E∞)V → (E⊥∞)V is a complex linear
map. Define

γL : C→ PnC by γL(z) = [v + zL(v)], for v ∈ V .
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Note that γL is well-defined because

[λv + zL(λv)] = [λ(v + zL(v))] = [v + zL(v)],

and we can restrict γL to a real curve µL : R → PnC. Now we define a vector
bundle map

F : Hom(E∞, E⊥∞)→ TPnC by F (L) =
d

dt
µL(t)

∣∣∣∣
t=0

,

and check that L is in fact a vector bundle isomorphism.

We can use this lemma to calculate the Chern classes of the bundle TPnC.
Indeed,

TPnC⊕ C ∼= Hom(E∞, E⊥∞)⊕Hom(E∞, E∞)

∼= Hom(E∞, E∞ ⊕ E⊥∞) ∼= Hom(E∞,Cn+1) =

n+1︷ ︸︸ ︷
H ⊕ · · · ⊕H,

where H denotes the hyperplane bundle (dual to the universal bundle) defined
by

H = E∗∞ = Hom(E∞,C).

Thus we find that

c(TPnC) = c(TPnC⊕ C) ∼= c

 n+1︷ ︸︸ ︷
H ⊕ · · · ⊕H


= (c(H)n+1) = (1 + c1(H))n+1 = (1 + kα)n+1,

where kα = c1(H) and k ∈ R. To evaluate k, we pull back to S2 = P 1C and
use the fact that ∫

S2
c1(TS2) =

∫
S2
c1(H2) = 2.

We must therefore set k = 1, and conclude that

c(TPnC) = (1 + α)n+1.

5.4 Invariant polynomials

Our next goal is to extend the previous theory to real vector bundles or oriented
real vector bundles. More generally, we can let G be a Lie subgroup of GL(m,R)
with Lie algebra g ⊆ gl(m,R). A (real-valued) invariant polynomial for G is a
polynomial function

p : g→ R such that p(B−1AB) = p(A),
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for A ∈ g and B ∈ G. If E is a G-vector bundle with G-connection DE which
has g-valued local curvature representatives Ωα, then just as in the case of U(m),
p(Ωα) will be a globally defined differential form on the base M .

For U(m) ⊆ GL(m,C) ⊆ GL(2m,R), the key examples are the trace poly-
nomials

τk : u(m)→ R defined by τk(A) = Trace

[(
i

2π
A

)k]

or the Chern polynomials

ck : u(m)→ R defined by det
(
itA

2π
+ I

)
=

m∑
k=0

ck(A)tk.

For general choice of G, if p : g→ R is an invariant polynomial of degree k,
we can polarize to obtain a functions of k variables

p :
k︷ ︸︸ ︷

g× · · · × g→ R, defined so that p(A, . . . , A) = p(A).

Recall that if σ ∈ G, we can define an inner automorphism a(σ) ∈ Aut(G)
by a(σ)(τ) = στσ−1. The differential of a(σ) at the identity gives a Lie algebra
isomorphism

Ad(σ) = R∗σ−1 ∈ GL(g),

where GL(g) is just the space of all vector space isomorphisms of g, which is of
course a Lie group itself. Then Ad : G→ GL(g) is a Lie group homomorphism
called the adjoint representation. It induces a Lie algebra homomorphism

ad : g→ gl(g),

also called the adjoint representation, such that

ad(X)(Y ) =
d

dt
(ad(exp(tX))

∣∣∣∣
t=0

(Y )

=
d

dt
(R∗exp(−tX)(Y )

∣∣∣∣
t=0

= − d

dt
(φ∗t (Y ))

∣∣∣∣
t=0

,

where {φt : t ∈ R} is the one-parameter group of diffeomorphisms corresponding
to X. Thus

ad(X)(Y ) = − d

dt
(φ∗t (Y ))

∣∣∣∣
t=0

= [X,Y ].

Thus, for example, if G = U(m),

a(A)B = ABA−1, for A,B ∈ U(m),

Ad(A)X = AXA−1, for A ∈ U(m) and X ∈ u(m),
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ad(X)Y = [X,Y ] = XY − Y X, for X,Y ∈ u(m),

If p is an invariant polynomial, its polarization satisfies

p(Ad(σ)X1, . . .Ad(σ)Xk) = p(A1, . . . Xk),

for σ ∈ G and X1, . . . , Xk ∈ g. We can differentiate this identity with respect
to σ to obtain

p([Y,X1], X2, . . . , Xk) + p(X1, [Y,X2], . . . , Xk)
+ · · ·+ p(A1, X2, . . . , [Y,Xk]) = 0. (5.5)

Thus is E is a G-bundle and D is a G-connection, where G ⊆ GL(m,C) or
GL(m,R) and p is a real-valued invariant polynomial for G, then p(Ωα, · · ·Ωα)
is a globally defined 2k-form on M and it follows from the Bianchi identity and
(5.5) that

d(p(Ωα, · · ·Ωα) = p(dΩα, · · · ,Ωα) + · · ·+ p(Ωα, · · · , dΩα)
= p([Ωα, ωα], · · · ,Ωα) + · · ·+ p(Ωα, · · · , [Ωα, ωα]) = 0.

Thus an invariant polynomial for G determines a closed characteristic form
for each G-bundle. If p is an invariant polynomial for G, then the argument
in §5.1 shows that the cohomology class [p(Ωα)] of the characteristic form does
not depend upon choice of connection, and is natural under smooth maps.

Example 1. In §5.1 and §5.2 we have constructed the invariant polynomials
for G = U(m). In this case, the invariant polynomials are polynomials in either
the trace polynomials τk or the Chern polynomials ck.

Example 2. In a quite similar fashion, we can consider the orthogonal group
O(m), and define invariant polynomials sk by the identity

det
(
λ+

1
2π
X

)
=

m∑
k=0

λm−ksk(X).

One can show that the odd sk’s are automatically zero, but if E is a real bundle
of rank m, then

pk(E) = [s2k(Ωα)] ∈ H4k(M : R)

is a characteristic class of E, which may be nonzero, called the k-th Pontrjagin
class.

But their is an alternate approach to the Pontrjagin classes which is even
simpler. If E is a real vector bundle of rank m we can construct its complexifi-
cation E⊗C. Note that the complexification is isomorphic to its own conjugate
so ck(E ⊗ C) = 0 when k is odd. We can then define the k-th Pontrjagin class
of E to be the cohomology class

pk(E) = (−1)kc2k(E ⊗ C).
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It is easily verified that this gives the same result we obtained before. The sign
is necessary in order to be able to prove the formula

pk(E ⊕ F ) =
k∑
i=0

pi(E)pk−i(F ),

in analogy with (5.3).

Exercise XIX. a. Show that the Pontrjagin classes of the tangent bundle TSn

of the sphere are all zero.

b. Suppose that E is a complex vector bundle of rank two (which can be
regarded as a real vector bundle of rank four). Show that

p1(E) = c1(E)2 − 2c2(E).

Example 3. For the special orthogonal group SO(2m), we have in addition to
the Pontrjagin classes, the Pfaffian, which was described in §4.12 and used in
the proof of the Generalized Gauss-Beonnet Theorem.

Definition. If E is an oriented real vector bundle of rank 2m over M , then the
Euler class of E is the cohomology class

e(E) =
[
Pf
(

Ω
2π

)]
∈ H2m(M ; R).

Exercise XX. Show that if M is an m-dimensional complex manifold, then
e(TM) = cm(TM).

5.5 The universal bundle*

You may want to skip this section on a first reading. It gives an alternate
approach to the theory of Chern classes (and other characteristic classes as
well) which relies on the notion of a “universal bundle.”

We start with infinite-dimensional Hilbert space C∞, regarded as the space
of infinite sequences of complex numbers

z = (z1, z2, . . . , zi, . . .) such that
∞∑
i=1

z2
i <∞.

Just as in the finite-dimensional case, two nonzero elements

z = (z1, z2, . . . , zi, . . .) and w = (w1, w2, . . . , wi, . . .)

of C∞ are said to be equivalent if zi = λwi for each i, for some choice of
λ ∈ C − {0}. This defines an equivalence relation on C∞ − {0} and we let
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P∞C denote the space of equivalence classes. If z = (z1, z2, . . . , zi, . . .) is an
element of C∞−{0}, we let [z] = [z1, z2, . . . , zi, . . .] denote the equivalence class
containing z.

It is not difficult to check that P∞C satisfies the definition of Hilbert mani-
fold as defined for example in [18]. For the convenience of the reader, we recall
the definition. Note that although C∞ is a complex vector space, we can regard
it as a real vector space for the purpose of the following definition.

Definition. Suppose that H1 and H2 are real Hilbert spaces, and that U is an
open subset of H1. A continuous map f : U → H2 is said to be differentiable at
the point x0 ∈ U if there exists a continuous linear map T : H1 → H2 such that

lim
‖h‖→0

‖F (x0 + h)− F (x0)− T (h)‖
‖h‖

= 0,

where ‖ · ‖ denotes both the Hilbert space norms on H1 and H2. We will call
T the derivative of F at x0 and write DF (x0) for T . Note that the derivative
satisfies the formula

Df(x0)h = lim
t→0

F (x0 + th)− F (x)
t

.

Just as in ordinary calculus, the derivative Df(x0) determines the linearization
of f near x0, which is the affine function

F̃ (x) = F (x0) +DF (x0)(x− x0)

which most closely approximates F near x0.

Definition. Let H be a real Hilbert space. A connected smooth manifold
modeled on H is a connected Hausdorff space M together with a collection
A = {(Uα, φα) : α ∈ A}, where each Uα is an open subset of M and each φα is
a homeomorphism from Uα onto an open subset φα(Uα) ⊆ H such that

1.
⋃
{Uα : α ∈ A} =M.

2. φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) is C∞, for all α, β ∈ A.

We say that A = {(Uα, φα) : α ∈ A} is the atlas defining the smooth structure
on M, and each (Uα, φα) is one of the charts in the atlas.

Let M1 and M2 be smooth manifolds modeled on Hilbert spaces H1 and H2

respectively. Suppose that M1 and M2 have atlases A1 = {(Uα, φα) : α ∈ A}
and A2 = {(Vβ , ψβ) : β ∈ B}. A continuous map F : M1 → M2 is said to
be smooth if ψβ ◦ F ◦ φ−1

α is C∞, where defined, for α ∈ A and β ∈ B. It
follows from the chain rule that the composition of smooth maps is smooth. As
in the case of finite-dimensional manifolds, a diffeomorphism between Hilbert
manifolds is a smooth map between manifolds with smooth inverse.
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In the case of P∞C we can construct a countable atlas of smooth charts

{(U1, φ1), (U2, φ2), . . . , (Ui, φi), . . .}

by setting
Ui = {{[z1, z2, . . . , zi, . . .] ∈ P∞C : zi 6= 0}

and defining

φi : Ui → C∞ by φi([z1, z2, . . . , zi, . . .]) =
(
z1

zi
,
z2

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . .

)
.

It is quickly verified that φj ◦ φ−1
i is smooth where defined, just as in the case

of finite-dimensional projective spaces.
We can regard P∞C as the space of one-dimensional subspaces V ⊂ H.

There is a universal bundle over P∞C whose total space is

E∞ = {(v, z) ∈ P∞C×H : v ∈ V }.

The trivialization ψi : π−1(Ui)→ Ui × C over Ui is defined by

ψi(V, z1, z2, . . . , zi, . . .]) = (v, zi),

and the corresponding transition functions are just the maps

gij : Ui ∩ Uj → GL(1,C) defined by gij =
zi
zj
.

We have just described a special case of a more general construcction. Just
like infinite-dimensional projective space, the infinite Grassmannian Gm(C∞),
which is the space of m-dimensional subspaces of infinite-dimensional Hilbert
space C∞. One can show that this is also a smooth Hilbert manifold and that

E∞ = {(V, v) ∈ Gm(C∞)× C∞ : v ∈ V }

is the total space of a smooth vector bundle over Gm(C∞), called the universal
bundle.

If M is a smooth finite-dimensional manifold, we let [M,Gm(C∞)] denote
the space of smooth homotopy classes of maps from M to Gm(C∞)]. The fol-
lowing theorem then gives a homotopy-theoretic classification of complex vector
bundles:

Universal Bundle Theorem I. If M is a finite-dimensional smooth manifold,
there is a bijection

Γ : [M,Gm(C∞)]→ VmC (M),

where VmC (M) is the set of isomorphism classes of smooth complex vector bun-
dles of rank m over M .

Sketch of proof: First note that Γ is well-defined by Proposition 2 of §4.9.
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To see that Γ is surjective, we suppose that the base space M has dimension
n. We claim that M can be covered by n+ 1 open sets (not usually connected)
which have the property that each component of each open set is contractible.

To construct such a cover we triangulate M and take the first barycentric
subdivision. The star of each vertex in the barycentric subdivision is a con-
tractible set. We let Uk be the union of the stars of vertices in the barycentric
subdivision which correspond to k-simplices in the original triangulation. Then
(U0, U1, . . . , Un) is an open cover with the desired properties.

By the Corollary at the end of S 4.9, we can use this cover as a trivializing
cover for the bundle E. Let

ψk : π−1(Uk)→ Uk × Cm

be a trivialization over Uk and compose it with projection on the second factor
to obtain maps

ηk = π2 ◦ ψk : π−1(Uk)→ Cm.

Finally, let (ζ0, ζ1, . . . , ζn) be a partition of unity subordinate to the open cover
(U0, U1, . . . , Un), and define F̃ : E → C(n+1)m ⊂ C∞ by

F̃ (e) = (ζ0(π(e))η0(e), ζ1(π(e))η1(e), . . . ζn(π(e))ηn(e)).

Since F̃ is injective on each fiber, it induces a smooth map F : M → Gm(C∞)
such that F (p) = F̃ (Ep), where Ep is the fiber of E over p ∈M . Then F ∗E∞ = e
and surjectivity is established.

For injectivity, we need two subspaces of complex Hilbert space C∞:

C∞e = {(z1, z2, . . . , zi, . . .) ∈ C∞ : z2i−1 = 0 for i ∈ N }
and C∞o = {(z1, z2, . . . , zi, . . .) ∈ C∞ : z2i = 0 for i ∈ N }.

We define linear maps

T̃e : C∞ → C∞e by Te(z1, z2, z3, z4, . . .) = (0, z1, 0, z2, 0, z3, 0, z4, . . .)

and

T̃oC
∞ → C∞o by Te(z1, z2, z3, z4, . . .) = (z1, 0, z2, 0, z3, 0, z4, 0, . . .).

These induce maps

Te : Gm(C∞)→ Gm(C∞e ) ⊆ Gm(C∞) and To : Gm(H)→ Gm(C∞o ) ⊆ Gm(C∞),

and we claim that these maps are homotopic to the identity. Indeed, we can
define

H̃e : C∞ × [0, 1]→ C∞ by H̃e(z, t) = tz + (1− t)H̃e(z).

If (e1, . . . em) are linearly independent elements of H, then so are

(H̃e(e1, t), . . . , H̃e(em, t))
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for every choice of t ∈ [0, 1]. Hence H̃e induces a smooth homotopy

Ge : Gm(C∞)× [0, 1] −→ Gm(C∞)

from Te to the identity. A similar construction shows that T0 is homotopic to
the identity.

To show that Γ is injective, we need to show that if E ∈ VmC (M) and F,G :
M → Gm(C∞) are two smooth maps such that E = F ∗E∞ = G∗E∞, then F
and G are homotopic. To do this it suffices to show that Te ◦ F and To ◦G are
homotopic. But the maps Te ◦ F and To ◦ F are covered by maps

T̃e ◦ F̃ : E → C∞e , T̃o ◦ G̃ : E → C∞o .

Thus we can define

H̃ : E × [0, 1]→ C∞ by H̃(e, t) = tT̃e ◦ F̃ (e, t) + (1− t)T̃o ◦ G̃(e, t).

Then H̃ induces a map

H : M × [0, 1]→ Gm(C∞) b H(p, t) = H̃(Ep, t).

This is the desired homotopy from Te◦F to To◦G, and injectivity is established.

Remark. One can calculate the real cohomology ring of Gm(C∞), and we find
that it is a polynomial algebra on generators

c1 ∈ H2(Gm(C∞)), c2 ∈ H4(Gm(C∞)), · · · , cm ∈ H2m(Gm(C∞)),

these generators being exactly the Chern classes of the universal bundle. Given a
complex vector bundle E of rankm over a smooth manifold M , the Chern classes
of E are just the pullbacks of the Chern classes of the universal bundle E∞ via
a map F : M → Gm(C∞) such that Γ∗(E∞) = E. Thus we could have defined
the Chern classes in terms of the cohomology of the infinite Grassmannian.

By exactly the same procedure, one can prove real analogs of the Universal
Bundle Theorem. We consider the infinite Grassmannians

Gm(R∞) = { m-dimensional subspaces of infinite-dimensional Hilbert space R∞ }

and

G+
m(R∞) = { m-dimensional subspaces of infinite-dimensional Hilbert space R∞ }

We let

E∞ = {(V, v) ∈ Gm(R∞)× C∞ : v ∈ V },
and E+

∞ = {(V, v) ∈ G+
m(R∞)× C∞ : v ∈ V },

the total space of smooth vector universal vector bundles over Gm(R∞) and
G+
m(R∞).
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Universal Bundle Theorem II. If M is a finite-dimensional smooth manifold,
there is a bijection

Γ : [M,Gm(R∞)]→ Vm(M), Γ(F ) = F ∗E∞

where Vm(M) is the set of isomorphism classes of smooth real vector bundles
of rank m over M .

Universal Bundle Theorem III. If M is a finite-dimensional smooth mani-
fold, there is a bijection

Γ : [M,G+
m(C∞)]→ Vm+ (M), Γ(F ) = F ∗E+

∞

where Vm+ is the set of isomorphism classes of smooth complex vector bundles
of rank m over M .

5.6 The Clifford algebra

Many of the most subtle modern developments in contemporary Riemannian
geometry make use of the Clifford algebra, and the theory of spinors which it
renders accessible. We provide an introduction to that theory here; the reader
can find much more detail in [19], and a quick survey in §1.11 of [16].

To a finite-dimensional real vector space V with inner product 〈·, ·〉 we can
associate its Clifford algebra. This is an associative algebra Cl(V ) with unit 1
together with a monomorphism θ : V → Cl(V ) such that

θ(v) · θ(v) = −〈v, v〉1,

which satisfies the universal property: Given a linear map h : V → A, where A
is an associative algebra with unit, such that h(v) · h(v) = −〈v, v〉1 for v ∈ V ,
there is a unique algebra homomorphism h̃ : Cl(V )→ A such that h̃ ◦ θ = h.

Using the universal property, one can show that such an associative algebra
with unit is unique up to isomorphism, if it exists. For existence, one takes
Cl(V ) to be the quotient of the tensor algebra ⊗∗V/I, where I is the two-sided
ideal generated by v⊗v+ 〈v, v〉1, for v ∈ V . One then defines θ : V → Cl(V ) to
be the composition of inclusion V ⊆ ⊗∗V with the projection to the quotient
⊗∗V/I. One can then show that θ : V → Cl(V ) is a monomorphism.

More informally, we could define the Clifford algebra to be the algebra gener-
ated by the vector space V , with its multiplication being subject to the relations

v · w + w · v = −2〈v, w〉, for v, w ∈ V .

If (e1, . . . , en) is an orthonormal basis for Vn, the unique inner product space of
dimension n, then the Clifford algebra Cl(Vn) is generated by the elements ei
subject to the relations

ei · ej + ej · ei = −2δij .
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We can think of the product on the Clifford algebra as a refinement of the
wedge product in the exterior product Λ∗V . To see how this works, we define,
for v ∈ V ,

εv : Λ∗V → Λ∗V by εv(ω) = v ∧ ω

and let ιv : Λ∗V → Λ∗V be the skew-derivation such that

ιv(w) = 〈v, w〉, for w ∈ V .

We then constsruct a linear map h : V → End(Λ∗V ) by

h(v)(ω) = εv(ω)− ιv(ω).

For arbitrary v ∈ V ,
h(v) ◦ h(v) = −〈v, v〉,

so by the universal property of Clifford algebras, h induces an algebra homo-
morphism

h̃ : Cl(V )→ End(Λ∗V ).

This enables us to define a map

σ : Cl(V )→ Λ∗V by σ(φ) = h̃(φ)1.

If (e1, . . . , en) is an orthonormal basis for V , then one immediately verifies that

σ(ei1 · · · eik) = ei1 ∧ · · · ∧ eik .

From this one easily sees that σ is a vector space isomorphism from Cl(V ) to
Λ∗V . Thus we can regard Λ∗V and Cl(V ) as the same vector space with two
different products, a wedge product or a Clifford product. Note that if φ ∈ ΛkV
and ψ ∈ ΛlV , then

φ ∧ ψ = (component of φ · ψ of degree k + l).

We let Clk(V ) denote the preimage of ΛkV under the vector space isomorphism
σ.

The universal property shows that Clifford multiplication preserves a Z2-
grading. Indeed, we can define a linear map

α : V → V by α(v) = −v.

Note that α2 = id. Composition with θ yields a linear map α : V → Cl(V ) such
that

α(v) · α(v) = −〈v, v〉1, for v ∈ V ,

and hence α induces an algebra homomorphism

α : Cl(V )→ Cl(V ) such that α2 = id.
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We let

Cl0(V ) = {φ ∈ Cl(V ) : α(φ) = φ}, Cl1(V ) = {φ ∈ Cl(V ) : α(φ) = −φ}.

Then Cli(V )Clj(V ) ⊂ Cli+j(V ) where the addition of i and j is modulo two.
We can also write

Cl0(V ) =
∑

Cl2kV, Cl1(V ) =
∑

Cl2k+1V.

To better understand the structure of Clifford algebras, it is convenient to
study the eigenvalues and eigenvectors of the linear operator

L : Cl(V )→ Cl(V ) defined by L(φ) = −
n∑
i=1

ei · φ · ei, (5.6)

where (e1, . . . , en) is an orthonormal basis for V . We claim that

φ ∈ ClkV ⇒ L(φ) = (−1)k(n− 2k)φ.

Indeed, to prove the claim, one can assume that φ = e1 · · · ek. Then a direct
calculation shows that

L(φ) = −
k∑
i=1

ei · e1 · · · ek · ei −
n∑

i=k+1

ei · e1 · · · ek · ei

= (−1)k+1ke1 · · · ek + (−1)k(n− k)e1 · · · ek = (−1)k(n− 2k)φ,

From this one can determine the eigenvalues λ for L and the eigenspace Wλ

for a given choice of λ. If n = 2m is even, then the eigenvalues are

2m, −2(m− 1), 2(m− 2), . . . , −2m

and the corresponding eigenspaces are

W2m = Cl0V, W−2(m−1) = Cl1V, . . . ,W−2m = Cl2mV.

On the other hand when n = 2m+ 1, the eigenvalues are

2m+ 1, −(2m− 1), , . . .

and the corresponding eigenspaces are

W2m+1 = Cl0V ⊕ Cl2m+1V, W−(2m−1) = Cl1V ⊕ Cl2mV, . . . .

An immediate applications is:

Lemma 1. Suppose that (V, 〈·, ·〉) is an inner product space of dimension n. If n
is even, the center of the Clifford algebra Cl(Vn) consists of the scalar multiples
of 1, while if n is odd the center is generated by the scalar multiples of 1 and
e1 · · · en.
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Indeed, if σ is in the center of Cl(V ), L(σ) = nσ. Thus if n = 2m is even, σ
must lie in W2m = Cl0(V ). On the other hand, if n = 2m+ 1 is odd, σ must be
an element of W2m+1 = Cl0(V )⊕ Cln(V ), which is spanned by 1 and e1 · · · en.

Lemma 2. If V is even-dimensional, then the Clifford algebra of V has no
nontrivial ideals.

Indeed, suppose that I is a nonzero ideal in Cl(V ). If φ ∈ I, then so is

Πk 6=p[L− (−1)k(n− 2k)I](φ) = cφp,

where φp is the component of φ in ClpV , c being a nonzero constant. Thus if
φ ∈ I, so is its homogeneous component φp of degree p. We can suppose that

φp = ae1 · · · ep + (linear combination of other terms in ClpV ),

where a ∈ R− {0}. Then

1
a
φp · ep+1 · · · en ∈ I,

so its homogeneous component e1 · · · en of degree n must be in I. Hence
(e1 · · · en)2 = ±1 ∈ I, and I = Cl(V ), finishing the proof.

Remark. It follows immediately that the complexified Clifford algebra Cl(V )⊗
C has no nontrivial ideals as a complex algebra, when V is even-dimensional.

Example 1. The Clifford algebra is easily constructed for a two-dimensional
inner product space (V, 〈·, ·〉) with orthonormal basis (e1, e2). In this case, the
Clifford algebra Cl(V ) is generated as a vector space by

1, e2, e2, e1 · e2.

We could adopt the notation

e1 = i, e2 = j, e1 · e2 = k.

Then the rules of Clifford multiplication show that

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j,

so in this case Cl(V ) is isomorphic to the space of quaternions.
Let Mn(C) denote the space of n×n complex matrices, an associative algebra

with identity over C with matrix multiplication as the product. We can then
define a linear map θ : V →M2(C) by

θ(e1) =
(

0 1
−1 0

)
, θ(e2) =

(
0 i
i 0

)
.

Alternatively, if z = xe1 + ye2 = x+ iy ∈ V , we set

θ(z) =
(

0 z
−z̄ 0

)
.
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Then

θ(z) · θ(z) =
(
−|z|2 0

0 −|z|2
)

= −〈z, z〉I,

so θ induces an injective algebra homomorphism θ : Cl(V ) → M2(C). If we
complexify the Clifford algebra, we obtain an isomorphism

θ : Cl(V )⊗ C→M2(C).

Note that

Cl0(V )⊗ C consists of complex matrices of the form
(
z 0
0 w

)
,

Cl1(V )⊗ C consists of complex matrices of the form
(

0 w
z 0

)
.

We let W0 and W1 be the complex vector subspaces of C2 spanned by the vectors

ε1 =
(

1
0

)
ε2 = and

(
0
1

)
,

respectively. Then Cli(V )Wj ⊂ Wi+j , where the addition is modulo two once
again.

Example 2. We can also give a quite explicit expression for the Clifford algebra
in the case of a four-dimensional inner product space (V, 〈·, ·〉) with orthonormal
basis (e1, e2, e3, e4). In this case, we can let V be the space of 2 × 2 complex
matrices Q such that Q = λA for some λ ∈ R and some A ∈ SU(2). Thus if
Q ∈ V , we can write

Q =
(
t+ iz x+ iy
−x+ iy t− iz

)
= x

(
0 1
−1 0

)
+ y

(
0 i
i 0

)
+ t

(
1 0
0 1

)
+ z

(
i 0
0 −i

)
,

where x, y, z and t are real numbers. Moreover, we can assume that the inner
product on V is defined so that

detQ = t2 + x2 + y2 + z2 = 〈Q,Q〉.

We then define

θ : V →M4(C) by θ(Q) =
(

0 Q
−Q̄T 0

)
,

and immediately verify that

θ(Q) · θ(Q) =
(
−QQ̄T 0

0 −Q̄TQ

)
= 〈Q,Q〉I,
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since Q = λA, where A ∈ SU(2) and hence ĀTA = I. It follows that θ induces
an algebra homomorphism θ : Cl(V4) → M4(C) which must have trivial kernel
by Lemma 2. The complexified map must also have trivial kernel and since
image and range have the same dimension, we obtain an algebra isomorphism

θ : Cl(V4)⊗ C→M4(C).

Note that θ(e1), θ(e2), θ(e3) and θ(e4) are all skew-Hermitian matrices lying in
the off-diagonal blocks. We let W0 and W1 be the complex vector subspaces of
C4 spanned by the vectors

1
0
0
0

 ,


0
1
0
0

 and


0
0
1
0

 ,


0
0
0
1

 ,

respectively, and once again Cli(V )Wj ⊂Wi+j .

A similar structure holds for Clifford algebras of even-dimensional inner product
spaces:

Theorem. If V is even-dimensional, say dimV = 2m, then

ClC(V ) = Cl(V )⊗ C ∼= EndC(W ),

where W is a complex vector space of dimension 2m.

We call W the irreducible Clifford module for the Clifford algebra Cl(V ) ⊗
C. It can be shown that the irreducible Clifford module W is unique up to
isomorphism, and that any Clifford module is isomorphic to

k︷ ︸︸ ︷
W ⊕ · · · ⊕W = W ⊗ Ck, for some k ∈ Z.

When dimV = 2m, we can define a complex volume element

ΘC = ime1 · e2 · · · e2m such that Θ2
C = 1. (5.7)

Hence W divides into a direct sum decomposition, W = W0 ⊕W1, where

W0 = {w ∈W : ΘC(w) = w}, W1 = {w ∈W : ΘC(w) = −w},

and it follows from the relation

(e1 · · · ek)ω = (−1)kω(e1 · · · ek)

that
Cli(V )Wj ⊂Wi+j , (5.8)

where the sum i+ j is taken modulo two. Thus we can say that W = W0 ⊕W1

is a Z2-graded module over the Clifford algebra.

230



One can prove the above theorem is by induction on m using properties of
tensor products of Z2-graded complex algebras. An algebra A is said to be
Z2-graded if it is written as a direct sum A = A0 ⊕ A1 in such a way that
Ai ·Aj ⊆ Ai+j where the sum i+ j is taken modulo two. For example, ClC(V )
is Z2-graded, and so is EndC(W ), with

EndC(W )0 = HomC(W0,W0)⊕HomC(W1,W1),
EndC(W )1 = HomC(W1,W0)⊕HomC(W0,W1).

If A = A0 ⊕A1 and B = B0 ⊕B1 are graded algebras, we can make the tensor
product A ⊗ B into a Z2-graded algebra, called the graded tensor product and
denoted by A⊗̂B, by setting

(A⊗̂B)0 = A0 ⊗B0 ⊕A1 ⊗B1, (A⊗̂B)1 = A0 ⊗B1 ⊕A1 ⊗B0,

and defining the product by

(a⊗ b) · (a′ ⊗ b′) = (−1)(deg b)(deg a′)(aa′)⊗ (bb′).

Following [19], page 11, we can then prove:

Lemma 3. If (V1, 〈·, ·〉) and (V ′2 , 〈·, ·〉) are even-dimensional inner product
spaces, then

ClC(V1 ⊕ V2) ∼= ClC(V1)⊗̂ClC(V2).

Indeed, if
θ1 : V1 → ClC(V1) and θ2 : V2 → ClC(V2)

are the usual inclusions into the Clifford algebras, we simply define

θ : V1 ⊕ V2 → ClC(V1)⊗̂ClC(V2) by θ(v1 + v2) = θ1(v1)⊗ 1 + 1⊗ θ2(v2),

and check that

θ(v1 + v2) · θ(v1 + v2) = (θ1(v1)⊗ 1 + 1⊗ θ2(v2)) · (θ1(v1)⊗ 1 + 1⊗ θ2(v2))
= (θ1(v1) · θ1(v1))⊗ 1 + 1⊗ (θ2(v2) · θ2(v2)) = −〈v1, v1〉 − 〈v2, v2〉.

Then θ induces a map from ClC(V1 ⊕ V2) into ClC(V1)⊗̂ClC(V2) with trivial
kernel, and since both range and domain have the same dimension, it must be
an isomorphism.

The Theorem now follows from Lemma 3 and the relation

EndC(W ⊗W ′) ∼= EndC(W )⊗ EndC(W ′),

by an induction which starts with Examples 1 and 2.

What about Clifford algebras of inner product spaces of odd dimensions? These
can be reduced to the even-dimensional case, yielding:
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Corollary. If V is odd-dimensional, say dimV = 2m+ 1, then

ClC(V ) = Cl(V )⊗ C ∼= EndC(W0)⊕ EndC(W1),

where W0 and W1 are complex vector spaces of dimension 2m.

To prove the Corollary, suppose that V has orthonormal basis (e1, . . . , e2m+1)
and consider V as a hyperplane in an inner product space V ′ with orthonormal
basis (e1, . . . , e2m+2). We can then construct an isomorphism

h : ClC(V )→ Cl0(V ′)⊗ C by setting h(φ) = φ · e2m+2.

5.7 The spin group

In the preceding section, we saw that if (V, 〈·, ·〉) is an inner product space of
even dimension, then the complexification of its Clifford algebra Cl(V ) ⊗ C is
of the form End(W ), for some complex vector space W , while if it is of odd
dimension, it is a subalgebra of End(W ). Within End(W ) is the Lie group

GL(W ) = {T ∈ End(W ) : T is an isomorphism }.

According to the Lie group—Lie algebra correspondence, there is a one-to-
one correspondence between Lie subalgebras of End(W ) and Lie subgroups of
GL(W ). This is explained in most references on Lie groups; see in particular,
Theorem 8.7, page 158 of [5].

One can check directly that the usual bracket operation

[ei · ej , ek · el] = ei · ej · ek · el − ek · el · ei · ej

makes Cl2(V ) into a Lie subalgebra of End(W ). The corresponding Lie group
is the spin group Spin(n), and we will construct it in the following paragraphs.

First we describe the transpose operation on the Clifford algebra. If (V, 〈·, ·〉)
is an inner product space of dimension n with Clifford algebra Cl(V ), the trans-
formation

v1 ⊗ · · · ⊗ vk 7→ vk ⊗ · · · ⊗ v1

determines an antiautomorphism of ⊗∗V which descends an antiautomorphism
of the Clifford algebra Cl(V ),

v1 · · · vk 7→ (v1 · · · vk)T = vk · · · v1.

Note that if v1, v2, . . . , vk are unit-length elements of V , then

(v1 · · · vk)(v1 · · · vk)T =

{
−1, if k is odd,
1, if k is even.

We conclude that the elements of

Pin(n) = {v1 · · · vk : v1, . . . , vk are unit length elements of V }
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have multiplicative inverses and hence Pin(n) is a subgroup of the group of units
in the Clifford algebra, as is the spin group

Spin(n) = Pin(n) ∩ Cl0(V ). (5.9)

Note that if σ ∈ Pin(n) and v ∈ V , then

ρ(σ)(v) = σvσT ∈ V and |ρ(σ)(v)| = |v|.

Thus we have a group homomorphism

ρ : Pin(n)→ O(n) = {T ∈ GL(V ) : |T (v)| = |v|, for all v ∈ V }.

Following Theorem 1.11.1 of [16], we present:

Proposition. The homomorphism ρ restricts to a surjective homomorphism

ρ : Spin(n)→ SO(n)

which has kernel ±1.

To prove this, we note that if v is a unit-length element of V , then ρ(v) : V → V
is a reflection in the hyperplane perpendicular to v. It follows that

ρ(v1 · v2 · · · vk) = ρ(v1) ◦ ρ(v2) ◦ · · · ◦ ρ(vk)

is the composition of the reflection in k hyperplanes. Any element of the or-
thogonal group can be represented as a composition of reflections in hyperplanes
and the element lies in the special orthogonal group if and only if the number
of reflections is even. Thus we see that ρ maps Spin(n) onto SO(n).

Moreover, since σ−1 = σT for σ ∈ Spin(n), we see that an element σ ∈
Spin(n) lies in the kernel of ρ if and only if σv = vσ for all v ∈ V , and hence if
and only if

σφ = φσ for all φ ∈ Cl(V ),

or equivalently, σ lies in the center of Cl(V ). Since no scalar multiple of e1 · · · en
lies in Spin(n) when n is odd, it follows from Lemma 1 from the previous section
that the kernel of ρ is just {±1}, as claimed.

We claim that Spin(n) is the Lie group which has Lie algebra Cl2(V ). To see
this, we note that

ete1·e2 = 1 + te1 · e2 +
t2

2!
(e1 · e2)2 +

t3

3!
(e1 · e2)3 +

t4

4!
(e1 · e2)4 + · · ·

= 1 + te1 · e2 −
t2

2!
− t3

3!
e1 · e2 +

t4

4!
+ · · ·

= cos t+ sin te1 · e2 = e1 · (− cos te1 + sin te2) ∈ Spin(n).

Thus t 7→ ete1·e2 is a one-parameter subgroup of Spin(n) and its tangent vector
at t = 0 must be an element of the Lie algebra spin(n) of Spin(n). Thus Cl2(V )
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is a subspace of spin(n) and since dim(Cl2(V )) = dim(spin(n)), we conclude
that spin(n) = Cl2(V ).

We let Spinc(n) denote the group of units in Cl(V ) ⊗ C generated by the
products e1 · e2, where e1 and e2 are unit-length elements of V , and by the
complex scalars λ of length one. As described more fully on page 71 of [16], we
have an isomorphism

Spinc(n) =
Spin(n)× S1

Z2
,

where the Z2-action is described by (σ, eiθ) 7→ (−σ,−eiθ). In addition to the
homomorphism ρ : Spinc(n)→ SO(n) we have a homomorphism

π : Spinc(n)→ S1 defined by π(σ, eiθ) = e2iθ.

The key advantage to the groups Spin(n) and Spinc(n) is that they have rep-
resentations that are more basic than the representations of SO(n) on Euclidean
space V itself. These are the representations

ρW : Spin(n)→ End(W ), ρW : Spinc(n)→ End(W )

on the space W defined by the inclusion of Cl(V ) into End(W ). Note that this
representation preserves the direct sum decomposition W = W0 ⊕W1.

Example 1. As we saw in the previous section, if (V, 〈·, ·〉) is two-dimensional,
we can represent a typical element of V as a complex number z ∈ C and the
map

θ : V →M2(C) defined by θ(z) =
(

0 z
−z 0

)
allows us to identify the the complexified Clifford algebra Cl(V )⊗C with M2(C).
The spin group Spin(2) is simply the group of matrices of the form(

eit 0
0 e−it

)
, where eit ∈ U(1),

while the group Spinc(2) consists of matrices(
ei(s+t) 0

0 ei(s−t)

)
, where eis, eit ∈ U(1).

Example 2. On the other hand, if (V, 〈·, ·〉) is four-dimensional, we can repre-
sent a typical element of V as a matrix

Q =
(
t+ iz x+ iy
−x+ iy t− iz

)
, where QQ

T
= λ2I, λ = detQ.

Then the map

θ : V →M4(C) defined by θ(Q) =

(
0 Q

−QT 0

)
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allows us to identify Cl(V )⊗ C with M4(C). When this is done the spin group
Spin(4) is simply the group of matrices of the form(

A+ 0
0 A−

)
, where A+, A− ∈ SU(2)

and the map ρ : Spin(4)→ GL(V ) is given by

ρ(A=, A−)Q = A+QA
−1
− .

Similarly the group Spinc(4) is the group of matrices(
λA+ 0

0 λA−

)
, where A+, A− ∈ SU(2), λ ∈ S1.

Thus when m = 1 or 2, the group Spin(2m) preserves an Hermitian inner
product on W = W0 ⊕W1 which respects the direct sum decomposition, such
that W is isomorphic to its complex dual W ∗. By induction based on the
Theorem from §5.6 one can show that Spin(2m) preserves an Hermitian inner
product on W = W0 ⊕W1 with similar properties for every positive integer m.

Similarly, in the odd-dimensional case, Spin(2m + 1) preserves Hermitian
inner products on W0 and W1.

5.8 Spin structures and spin connections

Suppose now that (M, 〈·, ·〉) is an oriented smooth Riemannian manifold. The
Riemannian metric allows us to regard the tangent bundle TM as an SO(n)-
bundle. Thus we can choose a trivializing open cover {Uα : α ∈ A} for TM
such that the corresponding transition functions take their values in SO(n):

gαβ : Uα ∩ Uβ → SO(n).

In the preceding section, we constructed a Lie group Spin(n) together with a
surjective Lie group homomorphism ρ : Spin(n)→ SO(n) which has kernel Z2.

Definition. A spin structure on (M, 〈·, ·〉) is defined by an open covering {Uα :
α ∈ A} of M and a collection of transition functions

g̃αβ : Uα ∩ Uβ → Spin(n)

such that the projections gαβ = ρ ◦ g̃αβ define the SO(n)-structure on TM and

g̃αβ g̃βγ g̃γα = 1 on Uα ∩ Uβ ∩ Uγ ,

for all α, β and γ in A.

We say that an oriented manifold M is a spin manifold if it possesses a Rie-
mannian metric that admits a spin structure.
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Although we cannot go into the details here, we mention that topologists
have found that an oriented manifold M admits a spin structure if and only if
“the second Stiefel-Whitney class” of its tangent bundle

w2(TM) ∈ H2(TM ; Z2)

vanishes. (The definition and properties of Stiefel-Whitney classes are given in
[26], and their application to spin structures is described in [19].)

If (M, 〈·, ·〉) is an oriented Riemannian manifold, then for each p ∈M , TpM
is an inner product space and we can form the Clifford algebra Cl(TpM). The
Clifford algebras at the various points piece together to form bundle of Clifford
algebras, which is a vector bundle Cl(TM) over M with additional structure.

We can think of the various tangent spaces as being modeled on a fixed inner
product space (V, 〈·, ·〉). Thus, given a trivializing open cover {Uα : α ∈ A}, we
can think of the tangent bundle TM as equivalence classes of triples (α, p, v) ∈
A×M × V with equivalence relation

(α, p, vα) ∼ (β, q, vβ) ⇔ p = q ∈ Uα ∩ Uβ and vα = gαβ(p)vβ .

As we saw in §5.6, the Clifford algebra Cl(V ) of V and hence the Lie group
Spin(n) lies within the space End(W ) of complex endomorphisms of some fixed
complex vector space W . Thus if M has a spin structure, we can construct a
complex vector bundle with fiber isomorphic to W by the same construction.
Thus we consider all triples (α, p, w) ∈ A×M ×W with equivalence relation

(α, p, wα) ∼ (β, q, wβ) ⇔ p = q ∈ Uα ∩ Uβ and wα = g̃αβ(p)wβ ,

where now g̃αβ takes values in Spin(n). This yields a complex vector bundle over
M called the spin bundle, and we will denote it by S. Since by definition (5.9)
the group Spin(n) lies in Cl0(V ), it follows that the direct sum decomposition
W = W0 ⊕W1 yields a direct sum of spin bundles,

S = S+ ⊕ S−,

called the spin bundles of positive and negative chirality . Sections of these
bundles are called spinor fields.

Note that by the remarks at the end of the previous section, the spin bundles
S+ and S− are endowed with Hermitian inner products.

If M is even-dimensional, the complexified bundle Cl(TM) ⊗ C of Clifford
algebras over M can be regarded as isomorphic to the endomorphism bundle
End(S). If M is odd-dimensional, Cl(TM) ⊗ C can be regarded as the direct
sum End(S+)⊕ End(S−).

Note that the Levi-Civita connection on TM induces a metric connection
on Λ∗TM and hence a connection on Cl(TM) and Cl(TM)⊗ C. Thus if M is
even-dimensional, the Levi-Civita connection induces a Levi-Civita connection
on End(S) which preserves the direct sum decomposition S = S+ ⊕ S−, while
if M is odd-dimensional it induces a connection on End(S+)⊕ End(S−).
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Theorem. If (M, 〈·, ·〉) is an oriented Riemannian manifold with spin structure,
then S = S+ ⊕ S− possesses a unique Spin(n)-connection which preserves the
direct sum decomposition and induces the Levi-Civita connection on End(S) =
End(S+)⊕ End(S−).

We say that a connection D on S induces the Levi-Civita connection DLC on
End(S) if whenever ω ∈ Γ(End(S)) and σ ∈ Γ(S), then

D(ωσ) = (DLCω)σ + ω(Dσ), (5.10)

which is just the Leibniz rule.

To prove the Theorem, we let ψ̃ be a trivialization of the spin bundle S over
U ⊆ M . This trivialization determines a trivialization of End(S) as well as
trivializations of the subbundles of End(S) which correspond to subspaces of
the Clifford algebra which are left fixed by the action of Spin(n). In particular,
ψ̃ determines a trivialization ψ of TM over U .

Our strategy is to prove existence and uniqueness of the Spin(n)-connection
over U . By local uniqueness, the locally defined Spin(n)-connections will then
piece together to form a globally defined Spin(n)-connection over M which in-
duces the Levi-Civita connection on the bundle of Clifford algebras.

Let (e1, . . . , en) be the standard orthonormal basis of the model space V and
let (ε1, . . . , ε2m) be the standard basis of W . We can then define an orthonormal
moving frame (E1, . . . , En) of TM |U and corresponding orthonormal sections
(ε1, . . . , ε2m) of S|U such that

ψ ◦ Ei(p) = (p, ei), ψ̃ ◦ ελ(p) = (p, ελ).

We can regard (E1, . . . , En) as sections of End(S) and hence they act on sections
of S. Moreover,

Ei · ελ =
2m∑
µ=1

cµiλεµ,

where the cµiλ’s are constants.
Since the Lie algebra spin(n) of Spin(n) is Cl2(V ), a Spin(n)-connection D

over U must have an explicit expression in terms of our local trivilialization,

D = d+ (spin(n)-valued one-form).

Since the Lie algebra spin(n) is just Cl2(V ) which is generated by ei · ej with
i < j, we must in fact have

D = d+
n∑

i,j=1

φijEi · Ej · = d+
n∑

i,j=1

φijdi · dj ·,

where the φij = φji and the φij ’s are ordinary real valued one-forms, and
the sections (E1, . . . , En) are constantly equal to (e1, . . . , en) in terms of the
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trivializations. Since the sections ελ and Ekελ have constant representatives in
terms of the trivialization,

D(ελ) =
n∑

i,j=1

φijEi · Ej · ελ, D(Ekελ) =
n∑

i,j=1

φijEi · Ej · Ek · ελ,

and hence it follows from (5.10) that

n∑
i,j=1

φijEi · Ej · Ek · ελ = (DLCEk)ελ + Ek ·
n∑

i,j=1

φijEi · Ej · ελ,

or equivalently,

(DLCek) · ελ =
n∑

i,j=1

(Ei · Ej · Ek − Ek · Ei · Ej)ελ.

The only terms that survive in the sum on the right are those in which i 6= j
and k = 1 or k = j. A short calculation shows that

DLCek = −4
n∑
i=1

φikEi.

But the connection forms ωij of the Levi-Civita connection are defined by the
equation

DLCej =
n∑
i=1

ωijEi.

Thus we conclude that φij = −(1/4)ωij , and the spin connection must be given
in the local trivialization by the formula

D = d− 1
4

n∑
i,j=1

ωijEi · Ej ·, (5.11)

where the differential forms ωij are the components of the Levi-Civita connection
on TM . This proves uniqueness of the Spin(n)-connection.

For existence, we note that (5.11) does define a Spin(n)-connection over U
and we can check that it induces the Levi-Civita connection, first on the constant
sections Ei of End(S), then on products Ei · Ej , and so forth. Thus we have
established both existence and uniqueness of the Spin(n)-connection over any
open neighborhood U for which we have associated trivializations of both the
tangent bundle TM and the spin bundle S, exactly what we needed to prove.

We now ask: What is the curvature R of the Spin(n)-connection on the spin
bundle S? To obtain this, we just set R = D2, and obtain

D2 =

d− 1
4

n∑
i,j=1

ωijEi · Ej ·

2

.
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Expanding this yields

R = d

−1
4

n∑
i,j=1

ωijEi · Ej ·

+

−1
4

n∑
i,j=1

ωijEi · Ej ·

2

= −1
4

n∑
i,j=1

ΩijEi · Ej ,

where

Ωij = dωij +
m∑
k=1

ωik ∧ ωkj .

In other words, we obtain the remarkable fact that the curvature R of the spin
connection is exactly the element R encountered in (4.34) in the construction
of the Euler form for an SO(n) bundle.

We can define the components Rijkl of the curvature with respect to the
moving orthonormal frame (E1, . . . , En) by

Rijkl = Ωij(Ek, El) so that Ωij =
1
2

n∑
k.l=1

Rijklθk ∧ θl,

where (θ1, . . . , θn) is the dual moving orthonormal coframe.

Definition. If (M, 〈·, ·〉) is a Riemannian manifold, the scalar curvature of M
is given by the formula

s =
n∑

i,j=1

Rijij .

The scalar curvature is a weaker invariant than the sectional curvature or the
Ricci curvature. It is natural to ask whether there are any topological obstruc-
tions to the existence of metrics of positive scalar curvature.

We claim that if R is the curvature of the spin connection, then

n∑
i,j=1

Ei · Ej ·R(EiEj) =
s

2
. (5.12)

Indeed,

n∑
i,j=1

Ei · Ej ·R(EiEj) = −1
4

n∑
i,j,k,l=1

Ei · Ej · Ek · ElΩkl(EiEj)

= −1
4

n∑
i,j,k,l=1

RijklEi · Ej · Ek · El.

If prime denotes the sum over those indices for which j, k and l are distinct,
then

′∑
RijklEi · Ej · Ek · El =

1
3

′∑
(Rijkl +Riklj +Riljk)Ei · Ej · Ek · El = 0,

239



by one of the curvature symmetries. Similarly, we get zero if any three indices
are distinct. Thus the only terms surviving are those for which i, j, k and l
assume at most (and hence exactly) two values. Thus

n∑
i,j=1

Ei · Ej ·R(EiEj)

= −1
4

n∑
i,j=1

RijijEi · Ej · Ei · Ej −
1
4

n∑
i,j=1

RijjiEi · Ej · Ej · Ei

=
1
2

n∑
i,j=1

Rijij =
s

2
,

proving our claim.

5.9 The Dirac operator

Suppose now that (M, 〈·, ·〉) is an oriented Riemannian manifold with a spin
structure and let S → M be the spin bundle of M . We give S the spin con-
nection ∇ inherited from the Levi-Civita connection on TM as described in the
preceding section.

Definition. The Dirac operator on S is the first-order differential operator D :
Γ(S)→ Γ(S) defined in terms of a local moving orthonormal frame (E1, . . . , En)
by

Dψ =
n∑
i=1

Ei∇Eiψ.

Note that in the case in which the spin manifold M is simply Euclidean space
En with standard Euclidean coordinates (x1, . . . , xn) and standard orthonormal
frame E1 = (∂)(∂x1), . . . , En = (∂)(∂xn), the spin bundle S is trivial and

Dψ =
n∑
i=1

Ei
∂ψ

∂xi
.

In this case, the Ei’s can be regarded as constant matrices which satisfy the
identities

Ei · Ej + Ej · Ei =

{
2, for i = j,

0, for i 6= j,

and hence

D2ψ = (D ◦ D)ψ = −
n∑
i=1

∂2ψ

∂x2
i

.

In other words, the Dirac operator is (up to sign) the square root of the Eu-
clidean Laplace operator. Indeed, the spin bundle is the bundle of smallest rank
for which a square root of the Laplace operator can be constructed.
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On a general curved spin manifold, the square of the Dirac operator is not
minus the most obvious “rough” Laplace operator constructed by means of the
Spin(n)-connection. We can proceed just as in §2.13 and define an operator

∇X,Y : Γ(S)→ Γ(S), by ∇X,Y ψ = ∇X∇Y ψ −∇∇XY ψ,

for X,Y ∈ X (M). The point of this construction is that

∇fX,Y ψ = f∇X,Y ψ = ∇X,fY ψ,

so that∇X,Y ψ(p) depends only on X(p), Y (p) and ψ(p). In other words, ∇X,Y ψ
is a tensor field. The rough Laplace operator ∆R is then defined by

∆R(ψ) =
n∑
i=1

∇Ei,Eiψ =
n∑
i=1

[∇Ei ◦ ∇Ei −∇∇EiEi ]ψ,

where (E1, . . . , En) is any choice of local moving orthonormal frame.

Proposition 1. The rough Laplace operator on the spin bundle is related to
the Dirac operator by the formula

D2ψ = −∆Rψ +
s

4
ψ. (5.13)

To prove this we choose a moving orthonormal frame at a given point p so that
(∇EiEj)(p) = 0. Then at the point p,

D2ψ =

(
n∑
i=1

Ei∇Ei

)(
n∑
i=1

Ei∇Ei

)
ψ =

n∑
i,j=1

Ei · Ej∇Ei∇Ejψ

= −
n∑
i=1

∇Ei∇Eiψ +
1
2

n∑
i,j=1

Ei · Ej(∇Ei∇Ej −∇Ej∇Ei)ψ

= −∆Rψ +
1
2

n∑
i,j=1

Ei · EjR(EiEj)ψ = −∆Rψ +
s

4
ψ,

where R is the curvature of the spin connection and we have utilized the curva-
ture identity (5.12) at the very last step.

Recall that the spin bundle S has an Hermitian inner product 〈·, ·〉, which
is complex linear in the first variable, conjugate linear in the second, and that
the Spin(n)-connection is unitary with respect to this Hermitian inner product.
Moreover, the inner product preserves the direct sum decompositions S = S+⊕
S−. Finally, Clifford multiplication by unit-lenght vectors preserves the inner
product, so

〈Ei · η,Ei · φ〉 = 〈η, φ〉 ⇒ 〈Ei · ψ, η〉+ 〈ψ,Ei · η〉 = 0.

We claim that the Dirac operator is “formally self-adjoint”:
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Proposition 2. If ψ and η are sections of the spin bundle S, then∫
M

〈Dψ, η〉ΘM =
∫
M

〈ψ,Dη〉ΘM . (5.14)

We describe the proof as given in [19]; see page 114. We choose a p mov-
ing orthonormal frame (E1, . . . , En) on a neighborhood of a point p so that
(∇EiEj)(p) = 0. Then

〈Dψ, η〉(p) =
n∑
i=1

〈Ei · ∇Eiψ, η〉(p) = −
n∑
i=1

〈∇Eiψ,Ei · η〉(p)

= −
n∑
i=1

[Ei〈ψ,Ei · η〉(p)− 〈ψ,∇Ei(Ei · η)〉(p)]

= −
n∑
i=1

Ei〈ψ,Ei · η〉(p) + 〈ψ,Dη〉(p),

because ∇ is a unitary connection. Thus (5.14) follows from the Divergence
Theorem.

Suppose now that M is of even dimension 2m. Then the spin connection pre-
serves the direct sum decomposition S = S+ ⊕ S−, while multiplication by Ei
interchanges S+ and S−, so the Dirac operator D induces two operators

D+ : Γ(S+)→ Γ(S−) and D− : Γ(S−)→ Γ(S+).

It follows from Proposition 2 that∫
M

〈D+ψ, η〉ΘM =
∫
M

〈ψ,D−η〉ΘM ;

in other words, D+ and D− are “formal adjoints” of each other.
We can also integrate by parts in terms of the rough Laplace operator:

Proposition 3. If (M, 〈·, ·〉) is an Riemannian manifold with spin structure,
then for any ψ, η ∈ Γ(S),∫

M

〈−∆R(ψ), η〉ΘM =
∫
M

〈Dψ,Dη〉ΘM =
∫
M

〈ψ,−∆R(η)〉ΘM .

The proof is based upon Stokes’s Theorem and is virtually identical to the
proof of the Proposition in §2.13 for the rough Laplace operator on k-forms.
Proposition 3 states that the rough Laplace operator ∆R is formally self-adjoint.

We say that a section ψ ∈ Γ(S) is a harmonic spinor field if it satisfies the
equation Dψ = 0. It follows from elliptic regularity theory (just as in the case
of Hodge theory) that harmonic spinor fields are smooth and that the dimension
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of the space of harmonic spinor fields on a compact manifold is finite. (See e.g.
[10].)

It follows from the preceding Propositions that if ψ is a harmonic spinor
field, then

0 =
∫
M

‖∇ψ‖2ΘM +
∫
M

s

4
ΘM ,

and hence an oriented Riemannian manifold with positive scalar curvature can-
not admit any nonzero harmonic spinor fields. We will exploit this fact in the
next section to show that certain spin manifolds cannot have Riemannian met-
rics with positive scalar curvature.

5.10 The Atiyah-Singer Index Theorem

5.10.1 Index of the Dirac operator

Let M be an oriented manifold of dimension 2m with a spin structure and spin
bundle S = S+ ⊕ S−.

Definition. The index or more precisely the analytic index of the Dirac oper-
ator D+ : Γ(S+)→ Γ(S−) is

Index(D+) = dim Ker(D+)− dim Ker(D−).

The Atiyah-Singer index theorem gives a topological expression for the index
of the Dirac operator, and more general types of Dirac operators, such as Dirac
operators with coefficients. The statement of this index theorem for the usual
Dirac operator makes use of the notion of the Â-polynomial in the Pontrjagin
classes.

To describe this, we let E be a vector bundle over M , and for simplicity, we
start by assuming that the complexification E ⊗ C can be written as a direct
sum of complex line bundles,

E ⊗ C ∼= L1 ⊕ L̄1 ⊕ · · · ⊕ Lm ⊕ L̄m.

If we set xi = c1(Li), then it follows from Proposition 2 of §?? that

c(E ⊗ C) = 1 + c1(E ⊗ C) + c2(E ⊗ C) = · · ·
= (1 + x1)(1− x1) · · · (1 + xm)(1− xm) = (1− x2

1) · · · (1− xm)2,

and since pk(E) = (−1)kck(E ⊗ C),

p(E) = 1 + p1(E) + p2(E) + · · · = (1 + x2
1) · · · (1 + xm)2,

which implies that
pk(E) = sk(x2

1, . . . , x
2
m),

where sk denotes the k-th elementary symmetric function.
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Next one determines the power series for the function

x/2
sinh(x/2)

= 1− 1
3!

(x
2

)2

+
7

5 · 3 · 23

(x
2

)4

+ · · · .

Then the power series expansion of

Â(x1, . . . , xm) = Πm
j=1

xj/2
sinh(xj/2)

only involves the symmetric functions of x2
1, . . . , x2

m, so we can write

Â(E) = Πk
j=1

xj/2
sinh(xj/2

= 1 + Â1(p1(E)) + Â2(p1(E)), p2(E)) + · · ·

where each Âk(p1(E)), . . . , pk(E)) is a polynomial in H4k(M ; R) in the Pontr-
jagin classes pj(E) of the vector bundle E. One thus obtains

Â1(p1) = − 1
24
p1, Â2(p1, p2) =

1
27 · 32 · 5

(−4p2 + 7p2
1), . . . .

Finally, note that each polynomial Âk(p1(E)), . . . , pk(E)) in the Pontrjagin
classes is well-defined, even if the direct sum decomposition of E ⊗ C does not
exist, because the Â polynomials involve only the symmetric functions of the
x2
i ’s, that is, they can be defined directly in terms of the Pontrjagin classes. It

is not difficult to show that

Â(E1 ⊕ E2) = Â(E1)Â(E2).

Index Theorem for the Standard Dirac Operator. If (M, 〈·, ·〉) is a
compact spin manifold of dimension 4k, then the index of the Dirac operator
D+ : Γ(S+)→ Γ(S−) is given by

Index(D+) =
∫
M

Âk(p1(TM), . . . , pk(TM)) = Â(M), (5.15)

where Â(M) is called the Â-genus of M .

The proof of this theorem requires techniques such as the theory of pseudo-
differential operators which are beyond the scope of this course (but are treated
throughly in [19]). However, we note that from this theorem and the Weitzenböck
formula, we immediately obtain the consequence:

Lichnerowicz Theorem. A compact spin manifold with nonzero Â-genus
cannot admit a metric with positive scalar curvature.

We remark that the Â-genus can be refined to a topological invariant which is
nonzero exactly for those compact simply connected manifolds of dimension at
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least five which do not admit metrics of positive scalar curvature [32]. In the
special case where M has dimension four,

Index(D+) = − 1
24

∫
M

p1(TM).

Thus the index is nonzero so long as p1(TM)) 6= 0 and we see that a compact
four-dimensional spin manifold with nontrivial first Pontrjagin class cannot ad-
mit a metric with positive scalar curvature.

Dirac operators with coefficients. Suppose that E is a complex vector
bundle over the spin manifold M with Hermitian metric and unitary connection
DE . We can then define a connection on S ⊗ E by forcing the Leibniz rule to
hold; thus for example,

DE(ψ ⊗ σ) = Dψ ⊗ σ + ψ ⊗DEσ,

when ψ ∈ Γ(S) and σ ∈ Γ(E). Moreover, we can construct the Dirac operator
with coefficients in E,

DE : Γ(S ⊗ E)→ Γ(S ⊗ E), by DE(ψ ⊗ σ) =
n∑
i=1

Ei · ∇Ei(ψ ⊗ σ)

which interchanges the summands in the direct sum decomposition

S ⊗ E = S+ ⊗ E ⊕ S− ⊗ E.

Let E∗ be the dual bundle to E with the induced Hermitian inner product
and unitary connection DE∗ . We can then restrict to S+ ⊗ E obtaining the
first-order elliptic operator

D+
E : Γ(S+ ⊗ E)→ Γ(S− ⊗ E).

One can show that this operator has the formal adjoint

D−E∗ : Γ(S− ⊗ E∗)→ Γ(S+ ⊗ E∗).

The index of the operator D+
E is therefore given by the formula

Index(D+
E) = dim Ker(D+

E)− dim Ker(D−E∗).

Atiyah-Singer Index Theorem for Spin Manifolds. If (M, 〈·, ·〉) is an
even-dimensional compact spin manifold and E is a complex vector bundles
over M with Hermitian metric and unitary connection DE , then the index of
the Dirac operator with coefficients in E is given by

Index(D+) =
∫
M

Â(p1(TM), . . . , pk(TM))ch(E).

In this formula, both Â(p1(TM), . . . , pk(TM)) and ch(E) are polynomials in
the de Rham cohomology ring H∗(M ; R). To integrate such an expression over
M one takes a representative of the homogeneous component in this polynomial
in Hn(M ; R), where n is the dimension of M .
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5.10.2 Spinc structures*

The question now arises: Can we construct a Dirac operator on manifolds which
are not necessarily spin? It turns out that we can extend the theory of the
Dirac operator to more general manifolds by considering Dirac operators with
coefficients in a complex vector bundle, or a “virtual complex vector bundle.”
An important special case is a spinc-structure on a smooth manifold M , which
allows us to define a Dirac operator with coefficients in certain virtual line
bundles over M .

The definition of spinc structure is quite similar to that of spin structure,
but spinc structures can be put on more manifolds. For example, every four-
dimensional oriented Riemannian manifold admits a spinc-structure.

To define the notion of spinc structure, we suppose that (M, 〈·, ·〉) is an
oriented smooth Riemannian manifold, and we can choose a trivializing open
cover {Uα : α ∈ A} for TM such that the corresponding transition functions
take their values in SO(n):

gαβ : Uα ∩ Uβ → SO(n).

We can assume that {Uα : α ∈ A} is a good open cover, meaning that any
nonempty intersection Uα0 ∩ · · · ∩ Uαp 6= 0 of sets in the cover is contractible.

Recall that in §5.7 we constructed the Lie group

Spinc(n) =
Spin(n)× S1

Z2
,

where the Z2-action is described by (σ, eiθ) 7→ (−σ,−eiθ). We have two Lie
group homomorphisms

ρ : Spinc(n)→ SO(n), ρ([σ, eiθ]) = ρ(σ),

π : Spinc(n)→ S1, π([σ, eiθ]) = e2iθ.

Definition. A spinc structure on (M, 〈·, ·〉) is defined by an open covering
{Uα : α ∈ A} of M and a collection of transition functions

σαβ : Uα ∩ Uβ → Spinc(n)

such that the projections gαβ = ρ◦σαβ define the SO(n)-structure on TM , and

σαβσβγσγα = 1 on Uα ∩ Uβ ∩ Uγ ,

for all α, β and γ in A.

If (M, 〈·, ·〉) has a genuine spin structure given by transition functions

g̃αβ : Uα ∩ Uβ → Spin(n)

and L is a U(1)-bundle over M with transition functions

hαβ : Uα ∩ Uβ → U(1),
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we can construct a spinc structure on M by taking the transition functions to
be

σαβ = hαβ g̃αβ : Uα ∩ Uβ → Spinc(n),

and in fact all spinc structures on spin manifolds arise in this way. Note that
π ◦ σαβ = (hαβ)2.

If M is only a spinc manifold, we can construct transition functions

g̃αβ : Uα ∩ Uβ → Spin(n) and hαβ : Uα ∩ Uβ → U(1),

but now they satisfy only the weaker conditions

g̃αβ g̃βγ g̃γα = hαβhβγhγα = ±1 on Uα ∩ Uβ ∩ Uγ .

It is only the product σαβ = hαβ g̃αβ which satisfies the “cocycle condition”
allowing the construction of genuine vector bundles. Thus although one cannot
define the spin bundles S+ and S−, or the line bundle L with transition functions
hαβ on a spinc manifold, one can define the tensor product

S ⊗ L = (S+ ⊗ L)⊕ (S− ⊗ L). (5.16)

Although the line bundle L itself is not well-defined on a spinc manifold
which is not spin, the transition functions

π ◦ σαβ : Uα ∩ Uβ → U(1)

always define a complex line bundle over M , called the determinant line bundle
of the spinc structure, and denoted by L2.

We will use somewhat nonstandard terminology and call L a virtual line
bundle over M .

Just as we can construct a Spin(n)-connection on S+ and S− we can con-
struct a unique Spinc(n)-connection DL on S⊗L which induces the Levi-Civita
connection on TM and a given U(1)-connection on the determinant line bundle
L. We can then define the Dirac operator with coefficients in L,

DL : Γ(S ⊗ L)→ Γ(S ⊗ L), by DL(ψ) =
n∑
i=1

Ei · ∇Ei(ψ),

whenever ψ ∈ Γ(S⊗L), and this Dirac operator interchanges the two summands
in the direct sum decomposition (5.16). The determinant line bundle L2 has a
dual line bundle (L∗)2, and a U(1)-connection in L2 induces a corresponding
connection in (L∗)2, so one can provide the bundle S⊗L∗ with a dual Spinc(n)-
connection. The argument for Proposition 2 from §5.9 shows that∫

M

〈DLψ, η〉ΘM =
∫
M

〈ψ,DL∗η〉ΘM , (5.17)

whenever ψ ∈ Γ(S ⊗ L) and η ∈ Γ(S ⊗ L∗). In other words, the Dirac operator
DL∗ is the formal adjoint to DL.
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We can then restrict to S+ ⊗ L obtaining a Dirac operator with coefficients
in L, obtaining

D+
L : Γ(S+ ⊗ L)→ Γ(S− ⊗ L),

an operator which has formal adjoint

D−L∗ : Γ(S− ⊗ L∗)→ Γ(S+ ⊗ L∗).

The index of this operator is defined by

Index(D+
L ) = dim Ker(D+

L )− dim Ker(D−L∗).

Index Theorem for Spinc Manifolds. Suppose that (M, 〈·, ·〉) is a compact
even-dimensional oriented Riemannian manifold and L2 is the determinant line
bundle of a spinc structure on M with Hermitian metric and unitary connection
DL. Then the index of the Dirac operator D+

L with coefficients in L is given by

Index(D+
L ) =

∫
M

Âk(p1(TM), . . . , pk(TM))ch(L).

5.10.3 Dirac operators on general manifolds*

We can now state the general version of the Atiyah-Singer index theorem, which
does not require the base manifold M to have a spin or spinc structure.

To do this, we must generalize the notion of Dirac operator with coefficients
from virtual line bundle to virtual vector bundles. As before, we suppose that
(M, 〈·, ·〉) is an oriented smooth Riemannian manifold, and that {Uα : α ∈ A}
is a trivializing cover for TM such that the corresponding transition functions
take their values in SO(n):

gαβ : Uα ∩ Uβ → SO(n).

Since each Uα∩Uβ is contractible, we can lift these transition functions to maps

g̃αβ : Uα ∩ Uβ → Spin(n)

such that the projections gαβ = ρ ◦ g̃αβ define the SO(n)-structure on TM and

g̃αβ g̃βγ g̃γα = ηαβγ on Uα ∩ Uβ ∩ Uγ ,

for all α, β and γ in A, where ηαβγ = ±1. A virtual complex vector bundle E
of rank m with Hermitian metric over M can then be defined by a collection of
transition functions

hαβ : Uα ∩ Uβ → U(m) such that hαβhβγhγα = ηαβγ .

The key point is that although E itself cannot be defined as a genuine vector
bundle over M , the tensor products S+⊗E and S−⊗E are well-defined vector
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bundles, because the Spin(n) × U(m)-valued transition functions gαβ × hαβ
satisfy the relations

(gαβ × hαβ)(gβγ × hβγ)(gγα × hγα) = 1,

for all α, β and γ in A. Moreover, the Chern character ch(E) of a virtual complex
vector bundle E can be defined as the square root of the Chern character of
E ⊗ E, which is a genuine complex vector bundle.

Just as in the case of spinc structures, if the virtual U(m)-bundle E has a
unitary connection DE , we can define a Dirac operator with coefficients in E,

DE : Γ(S ⊗ E)→ Γ(S ⊗ E), by DE(ψ) =
n∑
i=1

Ei · ∇Ei(ψ),

whenever ψ ∈ Γ(S ⊗ E). Moreover, the restriction to S+ ⊗ E yields a Dirac
operator

D+
E : Γ(S+ ⊗ E)→ Γ(S− ⊗ E)

which has formal adjoint

D−E∗ : Γ(S− ⊗ E∗)→ Γ(S+ ⊗ E∗).

The index of D+
E is defined by

Index(D+
E) = dim Ker(D+

E)− dim Ker(D−E∗).

Atiyah-Singer Index Theorem. Suppose that (M, 〈·, ·〉) is a compact even-
dimensional oriented Riemannian manifold and E is a virtual complex vector
bundle over M with Hermitian metric and unitary connection DE . Then the
index of the Dirac operator D+

E with coefficients in E is given by

Index(D+
E) =

∫
M

Âk(p1(TM), . . . , pk(TM))ch(E).

There is an alternate way of describing Dirac operators with coefficients on
general manifolds. Let M be an oriented Riemannian manifold of dimension
2m with or without a spin structure, and let E be a direct sum of complex
vector bundles over M , say E = E0 ⊕ E1, which we regard as a Z2-graded
vector bundle. We can then also regard End(E) as a Z2-graded vector bundle
with direct sum decomposition

End(E) = End(E)0 ⊕ End(E)1,

where

End(E)0 = Hom(E0, E0)⊕Hom(E1, E1),
End(E)1 = Hom(E0, E1)⊕Hom(E1, E0).
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Following [4], we say that E is a bundle of Clifford modules if there is a vector
bundle homomorphism

c : TM → End(E)1 such that c(v)c(w) + c(w)c(v) = −2〈v, w〉.

Note that c induces a vector bundle map from the bundle of Clifford algebras
into the vector bundle End(E),

c : Cl(TM)→ End(E) such that c : Cli(TM) ⊆ End(E)i.

A connection ∇E on the Z2-graded vector bundle E = E0 ⊕ E1 is called a
Clifford connection if it preserves the direct sum decomposition and satisfies the
condition that

[∇EX , c(Y )] = c (∇XY ) ,

where the connection on the right-hand side is the Levi-Civita connection on
the bundle Cl(TM) of Clifford algebras. Given a Clifford connection ∇E , we
can define a corresponding generalized Dirac operator

DE : Γ(E)→ Γ(E) by DE(ψ) =
n∑
i=1

Ei · ∇Ei(ψ ⊗ σ),

where (E1, . . . , En) is a locally defined moving orthonormal frame defined on
M . This Dirac operator restricts to operators

D+
E : Γ(E0)→ Γ(E1) and D−E : Γ(E1)→ Γ(E0).

We suppose now that the Z2-graded vector bundle E = E0 ⊕ E1 has a
Hermitian metric preserving the direct sum decomposition. Then given any
generalized Dirac operator D+

E : Γ(E0) → Γ(E1) we can construct its formal
adjoint , a first-order operator (D+

E) : Γ(E1)→ Γ(E0) which satisfies the relation∫
M

〈D+
Eψ, η〉ΘM =

∫
M

〈ψ, (D+
Eη)∗〉ΘM , , (5.18)

whenever ψ ∈ Γ(E0) and η ∈ Γ(E1). The exact form of the formal adjoint is
obtained by integration by parts. We can then define the index of D+

E by the
formula

index of D+
E = dim Ker(D+

E)− dim Ker((D−E)∗).

The Atiyah-Singer Index Theorem stated above then gives a formula for the
index of these generalized Dirac operators D+

E in terms of characteristic classes
of the base manifold M .

For a key example, we make E = Λ∗TM⊗C into a Z2-graded vector bundle.
To define the decomposition E = E0 ⊕ E1, it is convenient to make us of the
isomorphism Λ∗TM ∼= Cl(TM) as well as use the complex volume element

ΘC = ime1 · e2 · · · e2m, satisfying Θ2
C = 1.
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introduced before; see (5.7).
Let us suppose that M is 4k-dimensional so that ω = (−1)ke1 · e2 · · · e4k,

and let

E0 = φ ∈ Cl(TM) : ΘC · φ = φ}, E1 = φ ∈ Cl(TM) : ΘC · φ = −φ}.

It is easily verified that eiΘC = ΘCei and hence

Cli(TM)Ej ⊆ Ei+j ,

so once again the vector bundle morphism c makes E = E0 ⊕ E1 into a bundle
of Clifford modules. Once obtains the same Dirac operator d+ δ, but the index
is different because of the different decomposition of Λ∗TM ⊗ C.

Exercise XXI. a. Show that if M is an oriented (4k)-dimensional Riemannian
manifold then for φ ∈ Λk(TM) ∼= Clk(TM), ΘC · φ = ?φ, where ? is the Hodge
star.

b. Conclude that on an oriented 4k-dimensional Riemannian manifold, ?2 = −1.

We let

Ω2k
+ (M) = {ω ∈ Ω2k(M) : ?ω = ω}, Ω2k

− (M) = {ω ∈ Ω2k(M) : ?ω = −ω},

and call Ω2k
+ (M) the space of self-dual (2k)-forms and Ω2k

− (M) the space of
anti-self-dual (2k)-forms. It then follows from the exercise that

Ω∗+ = Γ(E0) =
2k−1∑
i=0

{ω + ?ω : ω ∈ Ωi(M)} ⊕ Ω2k
+ (M),

Ω∗− = Γ(E1) =
2k−1∑
i=0

{ω − ?ω : ω ∈ Ωi(M)} ⊕ Ω2k
+ (M).

Thus we can divide the operator d+ δ into a sum of operators

(d+ δ)+ : Ω∗+ → Ω∗− and (d+ δ)− : Ω∗− → Ω∗ + .

If we let H2k
+ (M) denote the space self-dual harmonic (2k)-forms, H2k

+ (M) the
space of anti-self-dual harmonic (2k)-forms, it follows from Hodge theory that

index of ((d+ δ)+) = dimH2
+(M)− dimH2

−(M).

If M is a compact oriented (4k)-dimensional manifold, the cup product de-
fines a nondegenerate symmetric bilinear form

I : H2k(M ; R)×H2k(M ; R)→ H4(M : R) ∼= R

by the formula

I([α], [β]) =
∫
M

α ∧ β.
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Any such symmetric bilinear form can be represented by a matrix(
Ip×p 0

0 −Iq×q

)
, where p+ q = dimH2k(M ; R).

The difference p−q is called the signature ofM and is one of the basic topological
invariants of M . For our choice of Z2-grading of Λ∗TM ⊗ C,

(the index of the signature operator (d+ δ)+) = signature of M.

In this case, the Atiyah-Singer Index Theorem specializes to yield the Hirze-
bruch Signature Theorem, which gives a formula for the signature in terms of
Pontrjagin classes of TM . More precisely, the signature is expressed in terms
of a sequence of polynomials called the L-polynomials, which start with

L1(p1) =
1
3
p1, L2(p1, p2) =

1
45

(7p2 − p2
1), . . . . (5.19)

The L polynomials are generated in much the same way as the Â-polynomials.
Namely, one imagines that the Pontrjagin classes are written as elementary sym-
metric functions in the indeterminates x2

1, x2
2, . . . , and writes the formal power

series
L = Π∞j=1

xj
tanhxj

= 1 + c1p1 + (c11p
2
1 + c2p2) + · · · .

The homogeneous term of degree 4k then constitutes the polynomial Lk(p1, . . . , pk).

Hirzebruch Signature Theorem. If (M, 〈·, ·〉) is a compact oriented manifold
of dimension 4k, then the index of the signature operator (d+ δ)+ : Ω∗+ → Ω∗−
is given by

Signature of M =
∫
M

Lk(p1(TM), . . . , pk(TM)).

In particular, if M is an oriented four-dimensional manifold,

Signature of M =
1
3

∫
M

p1(TM).

5.10.4 Topological invariants of four-manifolds*

Suppose that M is a compact oriented four-dimensional Riemannian manifold.
Then the Gauss-Bonnet Theorem and the Hirzebruch Signature Theorem give
quite similar relating integrals of curvature to topological invariants. Indeed, if
bi = dimHi(M : R), b+2 = dimH2

+(M) and b−2 = dimH2
−(M), then

χ(M) = 1− b1 + b2 − b3 + 1 =
1

4π2

∫
M

Pf(Ω),
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while

Signature of M = b+2 − b
−
2 =

1
3

∫
M

p1(Ω) =
1

24π2

∫
M

4∑
i,j=1

Ωij ∧ Ωji,

the middle equality following from the Hirzebruch signature theorem.
In the case where the compact oriented four-dimensional has a spin structure,

the characteristic classes of the spin bundles S+ and S− are determined by the
Euler and Pontrjagin classes of M . Indeed, in this case one could prove∫

M

c2(S+) =
1
2

∫
M

e(TM)− 1
4

∫
M

p1(TM),∫
M

c2(S−) = −1
2

∫
M

e(TM)− 1
4

∫
M

p1(TM).

For simply connected four-dimensional compact spin manifolds, b1 = b3 = 0
and b+2 and b−2 are completely determined by the Euler and Pontrjagin classes.

The Euler characteristic and signature are among the most important invari-
ants of smooth four-dimensional manifolds. In fact, using results of Freedman,
it can be proven that two smooth simply connected four-dimensional manifolds
are homeomorphic if and only if they have the same Euler characteristic and
signature, and are both either spin or non-spin.

However, two smooth four-manifolds can be homeomorphic without being
diffeomorphic. This is one of the striking consequences of the invariants for
four-manifolds discovered by Donaldson, and the closely related invariants of
Seiberg and Witten.

5.11 Exotic spheres*

One of the striking applications of the Hirzebruch signature theorem is Milnor’s
proof [24] of the existence of smooth manifolds which are homeomorphic but not
diffeomorphic to S7. These are called exotic spheres. A nice modern presenta-
tion of which exotic spheres might admit metrics of positive sectional, Ricci or
scalar curvature can be found in [17].

These exotic spheres are the total spaces of 3-sphere bundles over S4. To
construct them, we regard S4 as “quaternionic projective space.” Thus if H
denotes the space of quaternions, we define an equivalence relation ∼ on H2−{0}
by

(Q1.Q2) ∼ (Q′1.Q
′
2) ⇔ there exists Λ ∈ H− {0} such that Qi = ΛQ′i.

We let [Q1, Q2] denote the equivalence class of (Q1, Q2). The set of all such
equivalence classes is a manifold which is diffeomorphic to S4.

We call [0, 1] the north pole, [1, 0] the south pole and let U = S4 − {[1, 0]}
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and V = S4 − {[0, 1]}. We then have two stereographic projection charts

φ : U → H defined by φ([Q1, Q2]) = Q−1
2 Q1

and ψ : V → H defined by φ([Q1, Q2]) = Q−1
1 Q2.

Note that φ ◦ ψ−1(Q) = Q−1.
We now define a family of oriented four-dimensional real vector bundles over

S4. These are defined by giving a transition function

gV U : U ∩ V → GL+(4,R).

In fact, it would suffice to define the transition function on the equator

S3 = {[Q1, Q2] ∈ S4 : |Q1| = |Q2|}.

Indeed, the four-dimensional oriented real vector bundles are in one-to-one cor-
respondence with the homotopy classes of maps S3 → GL+(4,R).

For fixed r, s ∈ Z, we define

grsV U : U ∪ V → GL+(4,R) by grsV U ◦ φ−1(Q)X =
QrXQs

|Q|r+s
. (5.20)

This defines an oriented four-dimensional real vector bundle (Ers, π, S4). Note
that Ers is obtained from (H−{0})×H and (H−{0})×H by the identification

(Q,X) ↔ (Q−1, QrXQs).

For Q ∈ S3 we find that grsV U (Q) ∈ SO(4) so the bundle Ers is endowed with a
fiber metric 〈·, ·〉, and we set

B8
rs = {e ∈ Ers : 〈e, e〉 ≤ 1}, M7

rs = ∂B8
rs.

We will see that for certain choices of r and s, M7
rs is homeomorphic but not

diffeomorphic to S7.
We need to calculate the Pontrjagin class p1 of the bundles Ers. First, we

verify that
p1(Er+r′,s+s′) = p1(Er,s) + p1(Er,′s′),

from which we can conclude that

p1(Er,s) = (ar + bs)[α],

where a, b ∈ Z and [α] is the standard generator of H4(S4) such that α integrates
to one. To determine the integers a and b we need only calculate the Pontrjagin
classes for certain examples. First, we verify that E1,1 is just the tangent bundle
to S4, so

p1(E1,1) = p1(TS4) = 0,

as we saw in Exercise XIX. Thus a+ b = 0 and

p1(Er,s) = a(r − s)[α].
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On the other hand, if r = 0 and s = −1, then we get the canonical quater-
nionic line bundle over S4. It is straightforward to verify that in this case

p1(E0,−1) = ±2[α], so p1(Er,s) = ±2(r − s)[α].

We can now present the key theorems which allow us to prove the existence
of exotic spheres:

Theorem 1. If r + s = 1, then M7
rs is homeomorphic to S7.

Theorem 2. Suppose that r + s = 1. If (r − s)2 6= ±1 modulo 7, then M7
rs is

not diffeomorphic to S7.

Thus for example, suppose that r = 2 and s = −1. Then r + s = 1 so M7
rs is

homeomorphic to S7, but (r− s)2 = 9 which is not ±1 modulo 7, so M7
rs is not

diffeomorphic to S7.

To prove Theorem 1, we construct a function f : M7
rs → R which has only two

critical points, both nondegenerate, and apply a theorem of Reeb (see [25], §4,
Theorem 4.1).

From the transition function (5.20) we see that we can regard M7
rs as ob-

tained by indentifying

(Q,X) ∈ H× S3 with (Q′, X ′) ∈ H× S3,

where Q′ = Q−1 and X ′ =
QrXQ1−r

|Q|
,

where we have used the hypothesis that r+ s = 1. We can also write the latter
relation as

X ′ = Qr
XQ

|Q|
Q−r, X = Q−r

X ′Q′

|Q′|
Qr

If Q and X are any two quaternions, Re(QXQ−1) = Re(X), so

Re(X) =
Re(X ′Q′)
|Q′|

or
Re(X)√
1 + |Q|2

=
Re(X ′Q′)√
1 + |X ′Q′|2

.

Thus we can define a smooth function f : M7
rs → R by setting

f ◦ φ̃−1(Q,X) =
Re(X)√
1 + |Q|2

=
Re(X ′Q′)√
1 + |X ′Q′|2

= f ◦ ψ̃−1(Q′, X ′),

where
φ̃ : M7

rs|U → H× S3, ψ̃ : M7
rs|V → H× S3

are the local trivializations over U and V . It is now straightforward to verify
that f has two critical points, both nondegenerate, at the points where Q = 0
and X = ±1. Thus it follows from Reeb’s Theorem that M7

rs is homeomorphic
to S7.
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To prove Theorem 2, we suppose that M7
rs is diffeomorphic to S7 via a dif-

feomorphism F : M7
rs → S7. Note that S7 = ∂D8, where D8 is the usual

eight-dimensional disk. We can therefore construct a smooth compact oriented
eight-dimensional manifold C8

rs by using F to identify B8
rs and −D8 along their

common boundary.
Since B8

rs is homotopy equivalent to S4, the signature of C8
rs must be ±1.

Thus it follows from the Hirzebruch signature theorem that

±45 = 7p2(TC8
rs)[C

8
rs]− p2

1(TC8
rs)[C

8
rs],

which implies that
p2

1(TC8
rs)[C

8
rs] = ±3 modulo 7. (5.21)

So we are led to ask the question: What is p2
1(TC8

rs)[C
8
rs]? To answer this, we

note that the tangent bundle of B8
rs is a direct sum TB8

rs = V ⊕H, where H is
a horizontal bundle and V is a vertical bundle. It is immediately verified that
H = π∗(TS4) while V = π∗(Ers). Hence

p1(H) = 0, p1(V ) = ±2(r − s)[α],

where [α] is the generator of H4(S4) such that
∫
S4 α = 1. Since H4(C8

rs) →
H4(B8

rs) is an isomorphism, we find that

p1(TC8
rs) = ±2(r − s)[α̂],

where [α̂] is a generator of H4(C8
rs). By the integer version of Poincaré duality,

[α̂] ∪ [α̂] is a generator of H∗(C8
rs) such that

([α̂] ∪ [α̂])([C8
rs]) = ±1.

Hence
p2

1(TC8
rs)[C

8
rs] = 4(r − s)2.

From (5.21) we conclude that 4(r − s)2 = ±3 modulo 7 or (r − s)2 = ±1
modulo 7. This proves Theorem 2.
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