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Our goal in these notes is to explain a few facts regarding linear systems of
equations not included in the first few chapters of the text [1], in the hopes
of providing a better geometric picture of what the results in the text mean,
and facilitate computations of examples. You are probably familiar with the
dot product from calculus. We review the dot product in §1; this material is
included in more general form in Chapter 6 of [1]. We advise you to skim over
§1, and focus on §2 and §3, which will enable you to find bases for the subspaces
that come up frequently when solving linear systems of equations. The material
in §3 on elementary row operations should be a review of what you studied in
Math 3C.

1 The dot product

You will recall that we discussed the dot product briefly before. If x = (x1. . . . , xn)
and y = (y1. . . . , yn) are elements of Rn, we define their dot product by

x · y = x1y1 + · · ·+ xnyn.

The dot product satisfies several key axioms:

1. it is symmetric: x · y = y · x;

2. it is bilinear: (ax + x′) · y = a(x · y) + x′ · y;

3. and it is positive-definite: x · x ≥ 0 and x · x = 0 if and only if x = 0.

The dot product is an example of an inner product on the vector space V = Rn,
as will be explained in Chapter 6 of [1].

Recall that the length of an element x ∈ Rn is defined by

|x| =
√

x · x.

Note that the length of an element x ∈ Rn is always nonnegative.

Cauchy-Schwarz Theorem. If x 6= 0 and y 6= 0, then

−1 ≤ x · y
|x||y|

≤ 1. (1)
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Sketch of proof (included to satisfy your curiosity—you may skip the proof if
you want): If v is any element of Rn, then v · v ≥ 0. Hence

(x(y · y)− y(x · y)) · (x(y · y)− y(x · y)) ≥ 0.

Expanding using the axioms for dot product yields

(x · x)(y · y)2 − 2(x · y)2(y · y) + (x · y)2(y · y) ≥ 0

or
(x · x)(y · y)2 ≥ (x · y)2(y · y).

Dividing by y · y, we obtain

|x|2|y|2 ≥ (x · y)2 or
(x · y)2

|x|2|y|2
≤ 1,

and (1) follows by taking the square root.

The key point of the Cauchy-Schwarz Inequality (1) is that it allows us to define
angles between vectors x and y in Rn. It follows from properties of the cosine
function that given a number t ∈ [−1, 1], there is a unique angle θ such that

θ ∈ [0, π] and cos θ = t.

Thus we can define the angle between two nonzero vectors x and y in Rn by
requiring that

θ ∈ [0, π] and cos θ =
x · y
|x||y|

.

Then the dot product satisfies the formula

x · y = |x||y| cos θ.

In particular, we can say that two vectors vectors x and y in Rn are perpen-
dicular or orthogonal if x ·y = 0. This provides much intuition for dealing with
vectors in Rn.

Thus if a = (a1, . . . an) is a nonzero element of Rn, the homogeneous linear
equation

a1x1 + · · ·+ anxn = 0

describes the set of all vectors x = (x1, . . . , xn) ∈ Rn that are perpendicular to
a. The set of solutions

W = {x ∈ Rn : a · x = 0}

to this homogeneous linear equation is a subspace of Rn. We remind you that
to see this we need to check three facts:

1. a · 0 = 0, so 0 ∈W .
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2. If x ∈W and y ∈W , then a · x = 0 and a · y = 0, and it follows from the
axioms for dot product that a · (x + y) = 0 so x + y ∈W .

3. If c ∈ R and x ∈W , then a ·x = 0, and it follows from the axioms for dot
product that a · (cx) = 0, so cx ∈W .

One can also show that W is a subspace of Rn by showing that it is the null
space of a linear map, as described in the following section. (Recall that the
null space of a linear map is always a subspace by a theorem in [1].)

2 Linear systems and orthogonal complements

Linear algebra is the theory behind solving systems of linear equations, such as

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

· · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm.

(2)

Here the aij ’s and bi’s are known elements of the field F, and we are solving
for the unknowns x1, . . . , xn. This system of linear equations can be written in
terms of the matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
am1 am2 · · · amn

 .

as Ax = b, where

x =


x1

x2

·
xn

 and b =


b1
b2
·
bm

 .

The matrix A defines a linear map

TA : Fn → Fm by TA(x) = Ax.

The range of TA is just the space of vectors b for which the equation Ax = b has
a solution, while the null space of TA is the space of solutions to the associated
homogeneous linear system

a11x1 + a12x2 + · · ·+ a1nxn = 0,
a21x1 + a22x2 + · · ·+ a2nxn = 0,

· · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = 0.

(3)

The fundamental Theorem 3.4 from the text [1] states that

n = dim(Fn) = dim(null(TA)) + dim(range(TA)). (4)
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In particular, it follows that

dim(null(TA)) = 0 ⇔ dim(range(TA)) = n. (5)

Recall that in the special case where n = m, either (5) or Theorem 3.21
from [1] implies that TA is surjective if and only if it is injective. Equivalently,
the system (2) has a solution for every choice of vector b ∈ Rn if and only if
the associated homogeneous system (3) has only the zero solution. This is the
content of problem 3-26 in [1].

In the special case where F = R, the notion of orthogonal complement gives
a nice picture of the process of finding a basis for the space of solutions to
a homogeneous linear system. Indeed, we can use the dot product to write
the homogeneous linear system whose solutions form the null space of TA in a
particularly intuitive form. Let

a1 = (a11, a12, . . . , a1n),
a2 = (a21, a12, . . . , a2n),
· · · · ·

am = (am1, am2, . . . , amn),

and let W = span(a1,a2, . . . ,am). We can then say that

null(TA) = {x ∈ Rn : a1 · x = 0,a2 · x = 0, · · · ,am · x = 0}.

Note that the last space on the right-hand side is simply the collection of all
vectors which are perpendicular to W . We call this space the orthogonal com-
plement to W and denote it by W⊥. We can then write

null(TA) = W⊥ = {x ∈ Rn : a · x = 0 for a ∈W }.

Orthogonal Complement Theorem. If (a1,a2, . . . ,am) is a list of vectors
in Rn, W = span(a1,a2, . . . ,am) and W⊥ is the space of solutions x ∈ Rn to
the homogeneous linear system of equations

a1 · x = 0, a2 · x = 0, · · · , am · x = 0,

then

1. dimW + dimW⊥ = n, and

2. Rn = W ⊕W⊥.

Proof: By Theorem 2.10 in [1], the list (a1,a2, . . . ,am) can be reduced to a basis
(b1,b2, . . . ,bk) for W , where k = dimW . Let B be the k × n matrix whose
rows are the elements of the list (b1,b2, . . . ,bk) and let TB : Rn → Rk be the
corresponding linear map. Then we can write W⊥ = null(TB), and it follows
from (4) that

n = dim(Rn) = dim(null(TB)) + dim(range(TB)) ≤ dimW⊥ + k

= dimW⊥ + dimW. (6)
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On the other hand, if a ∈ W ∩W⊥, then a · a = 0 and hence a = 0. Thus
W ∩W⊥ = {0} and by Theorem 2.18,

dimW + dimW⊥ = dim(W +W⊥) ≤ dim Rn = n. (7)

Statement 1 follows from (6) and (7). Statement 1 together with Proposition
2.19 of [1] then implies that Rn = W ⊕W⊥, finishing the proof of the Theorem.

Corollary. The dimension of the space W spanned by the rows of A equals the
dimension of the space spanned by the columns of A.

Proof: Comparison of (4) with the equation n = dimW⊥ + dimW shows that
dimW = dim(range(TA)). But W is the space spanned by the rows of A, while
range(TA) is the space spanned by the columns of A.

One sometimes expresses this corollary in the following form: Row rank equals
column rank.

3 Elementary row operations

To find the general solution to the homogeneous linear system (3) means to find
a basis for the space of solutions

null(TA) = {x ∈ Fn : Ax = 0}.

Given such a basis (v1, . . . ,vk), an arbitrary solution to the linear system can
be written in a unique way as

x = c1v1 + · · ·+ ckvk.

We can think of (c1, . . . , ck) as coordinates in the solution space which corre-
spond to the basis (v1, . . . ,vk).

As described in the previous section, if F = R, null(TA) is just the orthogonal
complement W⊥ to the subspace W of Rn spanned by the rows of A. For general
choice of field F, we now describe a useful procedure, based upon the elementary
row operations for finding a basis for the space W spanned by the rows of A
and for the null space null(TA) at the same time.

Proposition. Let V be a vector space over a field F, v1,v2, . . . ,vm a collection
of elements of V . Then

1. If σ : {1, 2, . . . ,m} → {1, 2, . . . ,m} is one-to-one and onto. Then

Span(v1,v2, . . . ,vm) = Span(vσ(1),vσ(2), . . . ,vσ(m)).

2. If a ∈ F and a 6= 0, then

Span(v1,v2, . . . ,vm) = Span(av1,v2, . . . ,vm).
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3. If a ∈ F , then

Span(v1,v2, . . . ,vm) = Span(v1 + av2,v2, . . . ,vm).

With the techniques we have studied so far in the course, you should be able to
provide a proof of this Proposition.

We can change an m×n matrix A to a new matrix A′ by one of the elementary
row operations:

1. Interchange two rows in A.

2. Multiply a row by a nonzero constant c.

3. Add a constant multiple of one row to another.

Each of these operations is reversible. Although they change the linear map TA,
the above Proposition, shows that the elementary row operations preserve the
linear subspace W of Fn which is spanned by the rows of A. Moreover, since the
elementary row operations transform the homogeneous linear system appearing
in (3) into a homogeneous linear system with the same space of solutions, the
elementary row operations preserve the null space of TA, which is of course, just
the orthogonal complement to W when F = R.

The idea is to perform elementary row operations to obtain a matrix B which
is sufficiently simple that we can read off bases for W and the null space of TA
with ease.

A commonly used methodical way of doing this leads to replacing A by
a matrix B in row-reduced echelon form. By definition, the matrix B is in
row-reduced echelon form if it has the following properties:

1. The first nonzero entry in any row is a one.

2. If a column contains an initial one for some row all of the other entries in
that column are zero.

3. If a row consists of all zeros, then it is below all of the other rows.

4. The initial one in a lower occurs to the right of the initial one in each
previous row.

It can be proven that any m×n matrix can be put in row-reduced echelon form
by elementary row operations. It is easy to see how to carry out the procedure.
One starts by putting a one in the first row of the first nonzero column. We do
this by interchanging rows if necessary to get a nonzero entry in the first row of
the first nonzero column, and then divide the row by this entry. We then zero
out all other elements in the first nonzero column. In the submatrix obtained
by removing the first row, we then apply the same procedure obtaining an
initial one in a second column and zeroing out all other entries in that column.
Continuing with this procedure leads to a matrix in row-reduced echelon form.
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Properly reformulated, the procedure we have described would give a proof
that any matrix can be put in row-reduced echelon form by elementary row
operations. We will not carry out all of the details, but you may be able to see
how they would go.

It is usually easy to work this out in special cases, and from the resulting
row-reduced echelon matrix we easily construct a basis for the space W spanned
by the rows of A and a basis for the null space of TA.

Indeed, one can show that the nonzero rows of the row-reduced echelon
matrix form a basis for W . indeed, suppose there are k nonzero rows b1, . . . , bk
in the row reduced echelon matrix B. Suppose there is a collection of elements
x1, . . .xk from F, such that

x1b1 + · · ·+ xkbk = 0.

Each component of this equation corresponds to one of the columns of B and
the equation corresponding to the j-th initial one is just the equation xj = 0.
Thus

x1b1 + · · ·+ xkbk = 0 ⇒ x1 = · · · = xk = 0,

and the row vectors b1, . . . , bk are linearly independent. Since they obviously
span W , they form a basis for W .

If there are k nonzero rows and hence W has dimension k, one can solve
for the k variables corresponding to the initial ones in those rows in terms of
the n− k variables corresponding to the other rows. The n− k variables which
do NOT correspond to initial ones are free variables, and can be thought of as
coordinates for the space W⊥. This gives a general solution to the original linear
system, in which the n − k free variables form the coordinates. One can check
that the list of vectors multiplying the free variables are linearly independent
and since they span null(TA), they form a basis for null(TA).

Finding a basis for the range of TA is a quite different matter. In order to do
this, you need to use the elementary column operations on the original matrix
A, since the range of TA is spanned by the columns of A. Note that the columns
of A are not preserved by the elementary row operations.
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