
AXIOMS FOR VECTOR SPACES

MATH 108A, March 28, 2010

Among the most basic structures of algebra are fields and vector spaces over
fields. It is well worth the effort to memorize the axioms that define fields and
vector spaces.

1 Field axioms

Definition. A field is a set F together with two operations (functions)

f : F × F → F, f(x, y) = x + y

and
g : F × F → F, g(x, y) = xy,

which satisfy the following axioms:

1. addition is commutative: x + y = y + x, for all x, y ∈ F .

2. addition is associative: (x + y) + z = x + (y + z), for all x, y, z ∈ F .

3. existence of additive identity: there is an element 0 ∈ F such that x+ 0 =
x, for all x ∈ F .

4. existence of additive inverses: if x ∈ F , there is an element −x ∈ F such
that x + (−x) = 0.

5. multiplication is commutative: xy = yx, for all x, y ∈ F .

6. multiplication is associative: (xy)z = x(yz), for all x, y, z ∈ F .

7. existence of multliplicative identity: there is an element 1 ∈ F such that
1 6= 0 and x1 = x, for all x ∈ F .

8. existence of multliplicative inverses: if x ∈ F and x 6= 0, there is an
element (1/x) ∈ F such that x(1/x) = 1.

9. distributivity: x(y + z) = xy + xz, for all x, y, z ∈ F .

1



Example 1. Recall that a rational number is simply the ration of two integers.
The set of rational numbers (denoted by Q) is a field, when it is given the usual
operations of addition and multiplication.

Example 2. The real numbers are the set of all numbers that can be expressed
by infinite decimal expansions. Thus for example

√
2 = 1.41421356237309504880168872420969807857 . . .

is a real number. It is definitely NOT a rational number, because if

√
2 =

m

n
, then 2 =

m2

n2
.

We could then assume that m and n have no common factors. Since m2 = 2n2,
m is even, say m = 2r. Then 4r2 = 2n2 or 2r2 = n2, so n is also even. But if
m and n are both even, they have a common factor, a contradiction. Then

√
2

cannot be rational.
In fact, you learned in Math 8 that the set R of real numbers has uncountably

many elements, while Q is countable, so R is a much larger set than Q.
The set of real numbers R with the usual operations of addition and multi-

plication give us a second important example of field.

Example 3. Unfortunately, it is not possible to take the square roots of a
negative real number and get a real number. This makes it impossible to find
solutions to polynomial equations like

x2 + 1 = 0.

In order to remedy this problem, we need introduce the complex numbers C.
We can regard a complex number as a 2× 2 matrix of the form(

a −b
b a

)
,

where a and b are real numbers. Although matrix do not commute in general,
it is the case that(

a −b
b a

) (
c −d
d c

)
=

(
c −d
d c

) (
a −b
b a

)
,

for any choice of a, b, c and d,as you can verify by direct multiplication. We
often use the notation

1 =
(

1 0
0 1

)
, i =

(
0 −1
1 0

)
so that (

a −b
b a

)
= a + bi.
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The set C of complex numbers is a field under matrix addition and ma-
trix multiplication. Needless to say, it is indispensable for solving differential
equations, as you may have seen.

Example 4. Suppose that p is a prime, and let Zp be the set

{0, 1, 2, . . . , p− 1}

with addition and multiplication modulo p. Thus to add or multiply two ele-
ments of Zp, you simply take the ordinary sum or product and then subtract a
suitable integer multiple of p to get back into the set Zp. Can you figure out
why Zp is NOT a field when p is not a prime?

2 Vector space axioms

Definition. Suppose that F is a field. A vector space over F is a set V together
with two operations (functions)

f : V × V → V, f(v, w) = v + w

and
g : F × V → V, g(a, v) = av,

called vector addition and scalar multiplication, which satisfy the following ax-
ioms:

1. vector addition is commutative: u + v = v + u, for all u, v ∈ V .

2. vector addition is associative: (u+v)+w = u+(v+w), for all u, v, w ∈ V .

3. existence of additive identity: there is an element 0 ∈ V such that v+0 =
v, for all v ∈ V .

4. existence of additive inverses: if v ∈ V , there is an element w ∈ V such
that v + w = 0.

5. scalar multiplication is associative: (ab)v = a(bv), for all a, b ∈ F , v ∈ V .

6. multliplicative identity: 1v = v, for all v ∈ V .

7. distributivity 1: a(u + v) = au + av, for all a ∈ F , u, v ∈ V .

8. distributivity 2: (a + b)v = av + bv for all a, b ∈ F , v ∈ V .

A vector space over the field Q is called a rational vector space. A vector space
over R is called a real vector space. A vector space over C is called a complex
vector space.
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Example 1. If F is a field and n is a positive integer, we let Fn denote the set
of lists of elements of F of length n. If

x = (x1, . . . , xn) and y = (y1, . . . , yn)

are elements of Fn, we define vector addition by

x + y = (x1 + y1, . . . , xn + yn).

If a ∈ F , we define scalar multiplication by

ax = (ax1, . . . , axn).

You have already encountered the vector space Rn over R in Math 3ABC and
5A. But the vector space Cn over C is equally important in applications.

Example 2. If F is a field, we can also let F∞ be the set of infinite sequences
of elements of F . If

x = (x1, x2, . . .) and y = (y1, y2, . . .)

are elements of F∞, we define vector addition by

x + y = (x1 + y1, x2 + y2, . . .).

If a ∈ F , we define scalar multiplication by

ax = (ax1, ax2, . . .).

Example 3. Suppose that F = R and let

V = { functions f : R→ R }.

If f and g are elements of V and a ∈ R, we can define vector addition f + g and
scalar multiplication af by

(f + g)(t) = f(t) + g(t), (af)(t) = af(t).

One can check that these operations satisfy the axioms for a vector space over
R. Needless to say, this is an important vector space in calculus and the theory
of differential equations.

Remark. an obvious advantage to proving theorems for general vector spaces
over arbitrary fields is that the resulting theorems apply all of the cases at once.
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