119A

Linear Systems: Diagonalizable Systems

Ideas: We know how to solve the one-dimensional linear system $\dot{x}=\lambda x-x(t)=x(0) e^{\lambda t}$. So, if (potentially after a change of variables), we have a system of equations of the form $\dot{x}_{j}=\lambda_{j} x_{j}$, we actually have a solution formula for the system. This can be viewed as a map $\Phi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ sending $(t, x(0)) \mapsto x(t)$.

Solve the system

$$
\dot{x}=\left[\begin{array}{cc}
7 & -2 \\
16 & -5
\end{array}\right] x
$$

in terms of Φ. Sketch the phase portrait.

To diagonalize, we compute the characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=(7-\lambda)(-5-\lambda)-(-2)(16)=\lambda^{2}-2 \lambda-3=(\lambda+1)(\lambda-3)
$$

An eigenvector for -1 is in the kernel of $\left[\begin{array}{cc}8 & -2 \\ 16 & -4\end{array}\right]$, so one choice is $\left[\begin{array}{l}1 \\ 4\end{array}\right]$. An eigenvector for 3 is in the kernel of $\left[\begin{array}{cc}4 & -2 \\ 16 & -8\end{array}\right]$, so one choice is $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Thus, by making the change of variables from $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ to $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{cc}-1 & \frac{1}{2} \\ 2 & -\frac{1}{2}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, we have the diagonal system

$$
\dot{y}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right] y,
$$

giving the solution $y(t)=\left[\begin{array}{l}e^{-t} y_{1}(0) \\ e^{3 t} y_{2}(0)\end{array}\right]$. Changing back to the original coordinates, we have

$$
\Phi\left(t, x_{0}\right)=\left[\begin{array}{ll}
1 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{3 t}
\end{array}\right]\left[\begin{array}{cc}
-1 & \frac{1}{2} \\
2 & -\frac{1}{2}
\end{array}\right] x_{0}=\left[\begin{array}{cc}
2 e^{3 t}-e^{-t} & \frac{1}{2} e^{-t}-\frac{1}{2} e^{3 t} \\
4 e^{3 t}-4 e^{-t} & 2 e^{-t}-e^{3 t}
\end{array}\right] x_{0}
$$

Solve the equation

$$
\ddot{u}+4 \dot{u}+3 u=0
$$

in terms of $u(0)=u_{0}$ and $\dot{u}(0)=\dot{u}_{0}$.
We first set the vector $x=\left[\begin{array}{l}u \\ \dot{u}\end{array}\right]$, yielding the system

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right] x
$$

This has characteristic polynomial $\lambda^{2}+4 \lambda+3=(\lambda+1)(\lambda+3)$. For -1 we have the eigenvector $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and for -3 we have the eigenvector $\left[\begin{array}{c}-1 \\ 3\end{array}\right]$, so we have the diagonal system

$$
\dot{x}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{cc}
\frac{3}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right] x .
$$

Thus, our dynamic map is

$$
\Phi\left(t, x_{0}\right)=\frac{1}{2}\left[\begin{array}{cc}
3 e^{-t}-e^{-3 t} & e^{-t}-e^{-3 t} \\
3 e^{-3 t}-3 e^{-t} & 3 e^{-3 t}-e^{-t}
\end{array}\right] x_{0}
$$

The first row of this gives the function u, and as $x_{0}=\left[\begin{array}{l}u_{0} \\ \dot{u}_{0}\end{array}\right]$, we see that

$$
u(t)=\left(\frac{3 u_{0}+\dot{u}_{0}}{2}\right) e^{-t}-\left(\frac{u_{0}+\dot{u}_{0}}{2}\right) e^{-3 t}=\left(\frac{3 e^{-t}-e^{-3 t}}{2}\right) u_{0}+\left(\frac{e^{-t}-e^{-3 t}}{2}\right) \dot{u}_{0}
$$

Suppose we have the linear system

$$
\dot{x}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] x
$$

Write down a solution given initial data $x(0)=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.

We can see the matrix has a zero eigenvalue, as it has a repeated row, and it is not hard to see that the vector $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ is in the kernel. Similarly, it is not hard to see that $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are eigenvectors with eigenvalue 2 . So, we have a diagonalization

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

This implies a solution

$$
\begin{aligned}
x(t) & =\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & e^{2 t} & 0 \\
-1 & e^{2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right]\left[\begin{array}{c}
\frac{a-b}{2} \\
\frac{a+b}{2} \\
c
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{2} a\left(e^{2 t}+1\right)+\frac{1}{2} b\left(e^{2 t}-1\right) \\
\frac{1}{2} a\left(e^{2 t}-1\right)+\frac{1}{2} b\left(e^{2 t}+1\right) \\
c e^{2 t}
\end{array}\right] .
\end{aligned}
$$

