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Linear Systems: Diagonalizable Systems

Ideas: We know how to solve the one-dimensional linear system x = Ax—x(t) = x(0)e**. So, if (potentially after
a change of variables), we have a system of equations of the form x; = A;x;, we actually have a solution formula
for the system. This can be viewed as a map @ : RxR"” — R" sending (t,x(0)) > x(t).

Solve the system

X = 7 _2x
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in terms of ®. Sketch the phase portrait.

To diagonalize, we compute the characteristic polynomial

det(A—AI) = (7= A)(=5—- 1) = (=2)(16) = A2 =21 =3 = (A + 1)(1 - 3).

An eigenvector for —1 is in the kernel of _2], so one choice is [411] An eigenvector for 3 is in the kernel of
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_g|soone choice is Nt Thus, by making the change of variables from to = 2 , we have
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the diagonal system
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]. Changing back to the original coordinates, we have
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giving the solution y(t) = [egty2(0)
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Solve the equation
ti+41u+3u=0

in terms of u(0) = ugy and 1(0) = 1.

We first set the vector x = [Z], yielding the system

This has characteristic polynomial A2 +4) +3 = (A + 1)(A + 3). For —1 we have the eigenvector [_11

have the eigenvector [ 3 ], so we have the diagonal system
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Thus, our dynamic map is

q)(t,XO) =

. . . u
The first row of this gives the function u, and as x; = [14'0]' we see that
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Suppose we have the linear system
1 1 0
x=(1 1 Ofx.
0 0 2
a
Write down a solution given initial data x(0) = | b|.
c
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We can see the matrix has a zero eigenvalue, as it has a repeated row, and it is not hard to see that the vector |-1
0
1 0
is in the kernel. Similarly, it is not hard to see that |1| and |0[ are eigenvectors with eigenvalue 2. So, we have a
0 1
diagonalization
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This implies a solution
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