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Linear Systems: Exponential Solutions
Ideas: Taking a slightly different approach to diagonalization, if we have a (vector) equation ẋ = Ax, we can

define the matrix exponential

eAt := lim
N→∞

N∑
k=1

Aktk

k!
,

where the limit is taken with respect to the operator norm. Then our solution is x(t) = eAtx(0) (this of course
requires proof). Unfortunately, often the matrix exponential is difficult to compute explicitly; a helpful result is
that if ST = T S, the usual exponential rule eS+T = eSeT applies. In particular, if A = PDP −1, then eA = P eDP −1, so
this covers the diagonalizable case.

What is eAt when

A =
[
1 1
1 1

]
?

Here, we can diagonalize A: writing the characteristic polynomial yields

λ2 − 2λ = λ(λ− 2),

and we can see an eigenvector for 0 is
[

1
−1

]
and one for 2 is

[
1
1

]
. So, we get

A =
[
1 1
1 −1

][
2 0
0 0

][
1
2

1
2

1
2 −1

2

]
.

Taking the exponential then gives

eAt =
[
1 1
1 −1

][
e2t 0
0 1

][
1
2

1
2

1
2 −1

2

]
=

1
2

[
e2t + 1 e2t − 1
e2t − 1 e2t + 1

]
.

We could also realize that

An =
[
2n−1 2n−1

2n−1 2n−1

]
,

so we have directly

eAt = I +
1
2

((2t) +
1
2

(2t)2 +
1
6

(2t)3 + · · · )
[
1 1
1 1

]
=

1
2

[
e2t + 1 e2t − 1
e2t − 1 e2t + 1

]
.
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What is the matrix exponential of

A =


λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ

?
We write A = λI +N , where I is the identity matrix and

N =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
Now, IN = N = NI , so eλI+N = eλIeN = eλeN (since In = I for all n ∈ N). We can directly compute that N2 = 0, so
eN = I +N . Thus, we have

eA =


eλ eλ 0 0
0 eλ 0 0
0 0 eλ eλ

0 0 0 eλ

 .
As motivation for this decomposition, we consider that N clearly (why?) has zero as its only eigenvalue, so

some power of it must be the zero matrix (we call N a nilpotent matrix for this reason). Thus, we would like to
reduce the computation to an exponential involving this matrix.

What is eAt where

A =
[

0 1
−1 0

]
?

From geometric intuition, this is a rotation matrix through an angle of π
2 , so its powers should form a cycle. We

compute A2 =
[
−1 0
0 −1

]
, A3 =

[
0 −1
1 0

]
, and A4 = I . From here, the sequence repeats (A5 = A, A6 = A2, ...), so we

see that

eAt =
[

1− 1
2 t

2 + 1
24 t

4 − · · · t − 1
6 t

3 + 1
120 t

5 − · · ·
−t + 1

6 t
3 − 1

120 t
5 + · · · 1− 1

2 t
2 + 1

24 t
4 − · · ·

]
=
[

cos t sin t
−sin t cos t

]
.
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Suppose we have the linear system ẍ+ ÿ + 3ẋ+ 3ẏ + 2x+ 2y = 0
ẍ − ÿ + 5ẋ − 5ẏ + 6x − 6y = 0.

(a) Make a change of variables to decouple the system to two independent second order equations. [Note:
this is not always possible, but will greatly simplify the work to come when it is.]

(b) Introduce new variables to find an equivalent first order system of the fourth order.

(c) Diagonalize the system (it should be diagonalizable; to save work, consider that the two sets of variables
can be thought of separately since they are independent).

(d) Write down the solution to the system, and re-interpret in terms of the original variables (feel free to
leave it as a product of matrices, though).

(a) A good choice of variables is u = x+y and v = x−y—this should be suggested by the structure of the equations
(x and y enter both with the same coefficients, and the same sign in the upper and opposite signs in the lower
equation). Then x = 1

2 (u + v) and y = 1
2 (u − v), and we have the equationsü + 3u̇ + 2u = 0

v̈ + 5v̇ + 6v = 0.

(b) We set z = u̇ and w = v̇ to obtain the matrix system
u
z
v
w


′

=


0 1 0 0
−2 −3 0 0
0 0 0 1
0 0 −6 −5



u
z
v
w

 .
This is block diagonal, and we can see the characteristic equations for the blocks are the respective charac-
teristic equations for the two second order equations, so we get

(λ2 + 3λ+ 2)(λ2 + 5λ+ 6) = (λ+ 1)(λ+ 2)2(λ+ 3) = 0

as our characteristic equation. For the upper block with eigenvalues −1 and −2, we choose eigenvectors


−1
1
0
0


and


1
−2
0
0

, respectively. For the lower block with eigenvalues −2 and −3, we choose eigenvectors


0
0
1
−2

 and


0
0
−1
3

, respectively. Then we get


u
z
v
w


′

=


−1 1 0 0
1 −2 0 0
0 0 1 −1
0 0 −2 3



−1 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −3



−2 1 0 0
−1 1 0 0
0 0 3 1
0 0 2 1



u
z
v
w


as our diagonalization (you can check the inversion yourself, but note that this choice of eigenvectors makes
both the upper left and lower right blocks have determinant 1, simplifying the computation).
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(c) As this is a diagonalized system, we get a solution
u(t)
z(t)
v(t)
w(t)

 =


−1 1 0 0
1 −2 0 0
0 0 1 −1
0 0 −2 3



e−t 0 0 0
0 e−2t 0 0
0 0 e−2t 0
0 0 0 e−3t



−2 1 0 0
−1 1 0 0
0 0 3 1
0 0 2 1



u(0)
z(0)
v(0)
w(0)

 .
We can return this to our original variables by noting that z = ẋ+ ẏ and w = ẋ − ẏ, so
x(t)
ẋ(t)
y(t)
ẏ(t)

 =


1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 −1

2 0
0 1

2 0 −1
2



−1 1 0 0
1 −2 0 0
0 0 1 −1
0 0 −2 3



e−t 0 0 0
0 e−2t 0 0
0 0 e−2t 0
0 0 0 e−3t



−2 1 0 0
−1 1 0 0
0 0 3 1
0 0 2 1



1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



x(0)
ẋ(0)
y(0)
ẏ(0)

 .
If we had the motivation, computing the first row would give an analytic solution for x(t), and the third row
a solution for y(t), given any initial data.
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