Linear Systems: Exponential Solutions

Ideas: Taking a slightly different approach to diagonalization, if we have a (vector) equation $\dot{x}=A x$, we can define the matrix exponential

$$
e^{A t}:=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \frac{A^{k} t^{k}}{k!}
$$

where the limit is taken with respect to the operator norm. Then our solution is $x(t)=e^{A t} x(0)$ (this of course requires proof). Unfortunately, often the matrix exponential is difficult to compute explicitly; a helpful result is that if $S T=T S$, the usual exponential rule $e^{S+T}=e^{S} e^{T}$ applies. In particular, if $A=P D P^{-1}$, then $e^{A}=P e^{D} P^{-1}$, so this covers the diagonalizable case.

What is $e^{A t}$ when

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] ?
$$

Here, we can diagonalize A : writing the characteristic polynomial yields

$$
\lambda^{2}-2 \lambda=\lambda(\lambda-2)
$$

and we can see an eigenvector for 0 is $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and one for 2 is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. So, we get

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right] .
$$

Taking the exponential then gives

$$
e^{A t}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
e^{2 t} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
e^{2 t}+1 & e^{2 t}-1 \\
e^{2 t}-1 & e^{2 t}+1
\end{array}\right]
$$

We could also realize that

$$
A^{n}=\left[\begin{array}{ll}
2^{n-1} & 2^{n-1} \\
2^{n-1} & 2^{n-1}
\end{array}\right]
$$

so we have directly

$$
e^{A t}=I+\frac{1}{2}\left((2 t)+\frac{1}{2}(2 t)^{2}+\frac{1}{6}(2 t)^{3}+\cdots\right)\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
e^{2 t}+1 & e^{2 t}-1 \\
e^{2 t}-1 & e^{2 t}+1
\end{array}\right]
$$

What is the matrix exponential of

$$
A=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right] ?
$$

We write $A=\lambda I+N$, where I is the identity matrix and

$$
N=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Now, $I N=N=N I$, so $e^{\lambda I+N}=e^{\lambda I} e^{N}=e^{\lambda} e^{N}$ (since $I^{n}=I$ for all $n \in \mathbb{N}$). We can directly compute that $N^{2}=0$, so $e^{N}=I+N$. Thus, we have

$$
e^{A}=\left[\begin{array}{cccc}
e^{\lambda} & e^{\lambda} & 0 & 0 \\
0 & e^{\lambda} & 0 & 0 \\
0 & 0 & e^{\lambda} & e^{\lambda} \\
0 & 0 & 0 & e^{\lambda}
\end{array}\right] .
$$

As motivation for this decomposition, we consider that N clearly (why?) has zero as its only eigenvalue, so some power of it must be the zero matrix (we call N a nilpotent matrix for this reason). Thus, we would like to reduce the computation to an exponential involving this matrix.

What is $e^{A t}$ where

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \text { ? }
$$

From geometric intuition, this is a rotation matrix through an angle of $\frac{\pi}{2}$, so its powers should form a cycle. We compute $A^{2}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right], A^{3}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, and $A^{4}=I$. From here, the sequence repeats ($\left.A^{5}=A, A^{6}=A^{2}, \ldots\right)$, so we see that

$$
e^{A t}=\left[\begin{array}{cc}
1-\frac{1}{2} t^{2}+\frac{1}{2} t^{4}-\cdots & t-\frac{1}{6} t^{3}+\frac{1}{120} t^{5}-\cdots \\
-t+\frac{1}{6} t^{3}-\frac{1}{120} t^{5}+\cdots & 1-\frac{1}{2} t^{2}+\frac{1}{24} t^{4}-\cdots
\end{array}\right]=\left[\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right] .
$$

Suppose we have the linear system

$$
\left\{\begin{array}{l}
\ddot{x}+\ddot{y}+3 \dot{x}+3 \dot{y}+2 x+2 y=0 \\
\ddot{x}-\ddot{y}+5 \dot{x}-5 \dot{y}+6 x-6 y=0 .
\end{array}\right.
$$

(a) Make a change of variables to decouple the system to two independent second order equations. [Note: this is not always possible, but will greatly simplify the work to come when it is.]
(b) Introduce new variables to find an equivalent first order system of the fourth order.
(c) Diagonalize the system (it should be diagonalizable; to save work, consider that the two sets of variables can be thought of separately since they are independent).
(d) Write down the solution to the system, and re-interpret in terms of the original variables (feel free to leave it as a product of matrices, though).
(a) A good choice of variables is $u=x+y$ and $v=x-y$-this should be suggested by the structure of the equations (x and y enter both with the same coefficients, and the same sign in the upper and opposite signs in the lower equation). Then $x=\frac{1}{2}(u+v)$ and $y=\frac{1}{2}(u-v)$, and we have the equations

$$
\left\{\begin{array}{l}
\ddot{y}+3 \dot{u}+2 u=0 \\
\ddot{v}+5 \dot{v}+6 v=0 .
\end{array}\right.
$$

(b) We set $z=\dot{u}$ and $w=\dot{v}$ to obtain the matrix system

$$
\left[\begin{array}{l}
u \\
z \\
v \\
w
\end{array}\right]^{\prime}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-2 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -6 & -5
\end{array}\right]\left[\begin{array}{c}
u \\
z \\
v \\
w
\end{array}\right] .
$$

This is block diagonal, and we can see the characteristic equations for the blocks are the respective characteristic equations for the two second order equations, so we get

$$
\left(\lambda^{2}+3 \lambda+2\right)\left(\lambda^{2}+5 \lambda+6\right)=(\lambda+1)(\lambda+2)^{2}(\lambda+3)=0
$$

as our characteristic equation. For the upper block with eigenvalues -1 and -2 , we choose eigenvectors $\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -2 \\ 0 \\ 0\end{array}\right]$, respectively. For the lower block with eigenvalues -2 and -3 , we choose eigenvectors $\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 3\end{array}\right]$, respectively. Then we get

$$
\left[\begin{array}{l}
u \\
z \\
v \\
w
\end{array}\right]^{\prime}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & -2 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -2 & 3
\end{array}\right]\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -3
\end{array}\right]\left[\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
z \\
v \\
w
\end{array}\right]
$$

as our diagonalization (you can check the inversion yourself, but note that this choice of eigenvectors makes both the upper left and lower right blocks have determinant 1 , simplifying the computation).
(c) As this is a diagonalized system, we get a solution

$$
\left[\begin{array}{c}
u(t) \\
z(t) \\
v(t) \\
w(t)
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & -2 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -2 & 3
\end{array}\right]\left[\begin{array}{cccc}
e^{-t} & 0 & 0 & 0 \\
0 & e^{-2 t} & 0 & 0 \\
0 & 0 & e^{-2 t} & 0 \\
0 & 0 & 0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
u(0) \\
z(0) \\
v(0) \\
w(0)
\end{array}\right] .
$$

We can return this to our original variables by noting that $z=\dot{x}+\dot{y}$ and $w=\dot{x}-\dot{y}$, so

$$
\left[\begin{array}{l}
x(t) \\
\dot{x}(t) \\
y(t) \\
\dot{y}(t)
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & -2 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -2 & 3
\end{array}\right]\left[\begin{array}{cccc}
e^{-t} & 0 & 0 & 0 \\
0 & e^{-2 t} & 0 & 0 \\
0 & 0 & e^{-2 t} & 0 \\
0 & 0 & 0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x(0) \\
\dot{x}(0) \\
y(0) \\
\dot{y}(0)
\end{array}\right] .
$$

If we had the motivation, computing the first row would give an analytic solution for $x(t)$, and the third row a solution for $y(t)$, given any initial data.

