First Order Equations

1 Describe the solution of the equation

$$
u_{t}+c u_{x}+u=x^{2}
$$

for c a constant and initial condition $u(0, x)=u_{0}(x)$.

We first rewrite the equation as

$$
(1, c) \cdot \nabla u=x^{2}-u
$$

A change of variables to $\xi=x+c t$ and $\eta=x-c t$ then allows us to write $x=\frac{1}{2}(\xi+\eta)$ and $t=\frac{1}{2 c}(\xi-\eta)$. Note that this is not an orthogonal transformation, but one which allows easy representation of x and t. Then

$$
u_{\xi}=u_{x} x_{\xi}+u_{t} t_{\xi}=\frac{1}{2} u_{x}+\frac{1}{2 c} u_{t}=\frac{1}{2 c}\left(u_{t}+c u_{x},\right)
$$

so our differential equation may be written

$$
u_{\xi}=\frac{c}{2}(\xi+\eta)^{2}-2 c u
$$

The ODE $u_{\xi}=-2 c u$ has as a general solution $f(\eta) \exp (-2 c \xi)$. The ODE $u_{\xi}+2 c u=\frac{c}{2}(\xi+\eta)^{2}$ has a particular solution of the form $A(\eta) \xi^{2}+B(\eta) \xi+C(\eta)$, where $2 c A(\eta)=\frac{c}{2}, 2 A(\eta)+2 c B(\eta)=c \eta$, and $B(\eta)+2 c C(\eta)=\frac{c}{2} \eta^{2}$. Solving these iteratively, we get $A(\eta)=\frac{1}{4}, B(\eta)=\frac{1}{2} \eta-\frac{1}{4 c}$, and $C(\eta)=\frac{1}{4} \eta^{2}-\frac{1}{4 c} \eta+\frac{1}{8 c^{2}}$. Thus, the general solution of the PDE (in $\xi-\eta$ coordinates) is

$$
u(\xi, \eta)=f(\eta) e^{-2 c \xi}+\frac{1}{4} \xi^{2}+\frac{1}{2} \xi \eta+\frac{1}{4} \eta^{2}-\frac{1}{4 c} \xi-\frac{1}{4 c} \eta+\frac{1}{8 c^{2}}
$$

Converting back to x - t coordinates, we have

$$
u(t, x)=f(x-c t) e^{-2 c x} e^{-2 c^{2} t}+x^{2}-\frac{1}{2 c} x+\frac{1}{8 c^{2}}
$$

Then $u(0, x)=f(x) e^{-2 c x}+x^{2}-\frac{1}{2 c} x+\frac{1}{8 c^{2}}=u_{0}(x)$, so

$$
f(s)=e^{2 c s}\left(u_{0}(s)-s^{2}+\frac{1}{2 c} s-\frac{1}{8 c^{2}}\right) .
$$

This gives the solution to the initial value problem

$$
u(t, x)=e^{-4 c^{2} t}\left(u_{0}(x-c t)-(x-c t)^{2}+\frac{1}{2 c}(x-c t)-\frac{1}{8 c^{2}}\right)+x^{2}-\frac{1}{2 c} x+\frac{1}{8 c^{2}}
$$

2 Describe the solution to the equation

$$
u_{t}+2 u u_{x}=0
$$

with initial condition

$$
u(0, x)= \begin{cases}1, & x>0 \\ 0, & x<0\end{cases}
$$

Discuss the characteristic curves.

We first rewrite the equation as

$$
(1,2 u) \cdot \nabla u=0
$$

Thus, the characteristic curves are orthogonal to $(1,2 u)$, hence satisfy

$$
x^{\prime}(t)=2 u(t, x(t))=2 u(0, x(0))
$$

and hence

$$
x(t)=2 u(0, x(0)) t+x(0)
$$

If $x(0)>0$, then we have a line $x(t)=2 t+x(0)$.
The "characteristic curves" for $x(0)<0$ are constant. So, if (x, t) with $t>0$ does not lie along one of the lines above, it must come from a characteristic curve emanating from the origin (a rarefaction event). For such a point, $x=2 u(t, x) t$, so $u(t, x)=\frac{x}{2 t}$. Thus, our solution is

$$
u(t, x)= \begin{cases}1, & x>2 t \\ \frac{x}{2 t}, & x<2 t\end{cases}
$$

However, we can see that this is discontinuous as we approach the $x<0$ semiaxis!

