ODE Review

First Order Equations Find solutions (if possible) to the following equations for $t>0$ given the initial condition $u(0)=u_{0}$.
(a) $2 u^{\prime}=t u$
(c) $u^{\prime}+4 u=-u^{2}$
(b) $u u^{\prime}=(3-t)^{-1}$
(d) $(t-2 u) u^{\prime}+(u-2 t)=0$
(a) As a linear first order ODE, this is a standard integrating factor problem; we want a function μ such that $\mu^{\prime}=\frac{t}{2} \mu$, meaning $\mu=\exp \left(t^{2} / 4\right)$. Then our DE is $\left[e^{t^{2} / 4} u\right]^{\prime}=0$, so $u=C e^{-t^{2} / 4}$ for some constant C. Clearly, the solution we seek is then $u=u_{0} e^{-t^{2} / 4}$.
(b) Here, we see we have a differential equation which is linear in $v=u^{2}$: since $v^{\prime}=2 u u^{\prime}$, we have $v^{\prime}=\frac{1}{2(3-t)}$, so $v=C-\frac{1}{2} \ln (3-t)$. The initial condition here is $v(0)=u_{0}^{2}$, so we get $C=u_{0}^{2}+\frac{1}{2} \ln 3$, for a final answer of $u=\operatorname{sign}\left(u_{0}\right) \sqrt{u_{0}^{2}+\frac{1}{2} \ln \left(\frac{3}{3-t}\right)}$.
(c) We can be tricky here, writing the equation as

$$
\frac{-u^{\prime}-4 u}{u^{2}}=1,
$$

and observing that with an integrating factor of $\mu=e^{-4 t}$ we have $\left[\frac{e^{-4 t}}{u}\right]^{\prime}=e^{-4 t}$, or $\left.e^{-4 t}=\left(C-\frac{1}{4} e^{-4 t}\right)\right) u$. Then $1=\left(C-\frac{1}{4}\right) u_{0}$, so $C=\frac{1}{u_{0}}+\frac{1}{4}$, and we have a final solution of $u=\frac{4 u_{0} e^{-4 t}}{4+u_{0}\left(1-e^{-4 t)}\right.}$.
(d) We recall the multivariable chain rule: if $F(t, u)$ is some function, then $\frac{d}{d t} F=\frac{\partial}{\partial t} F+\frac{\partial}{\partial u} F \frac{d u}{d t}$. So, if the coefficient of u^{\prime} and the other term are compatible (in the sense their mixed partials agree), we can recover the function F (this is the motivation behind exact equations), which will be constant along a solution curve. Here, $\frac{\partial}{\partial t}[t-2 u]=1=\frac{\partial}{\partial u}[u-2 t]$, so we can find such an F.
We know $\frac{\partial}{\partial u} F=t-2 u$, so integrating gives $F=t u-u^{2}+g(t)$ for some function $g(t)$. Differentiating gives $\frac{\partial}{\partial t} F=u+g^{\prime}(t)$, so $g^{\prime}(t)=-2 t$, and we can choose $g(t)=-t^{2}$ (setting the integration constant to zero for convenience).
Thus, $F(t, u)=t u-u^{2}-t^{2}$. Our solution is a curve along which this is constant, with value $F\left(0, u_{0}\right)=-u_{0}^{2}$. That is, it is given implicitly by the equation $t u-u^{2}-t^{2}+u_{0}^{2}=0$. A little work shows this is the equation of an ellipse, and our solution will be an arc of that ellipse.

