Reflections

1 Find all solutions to the following mixed Dirichlet-Neumann problem for $t \in \mathbb{R}$ and $x \in[0,1]$:

$$
\left\{\begin{array}{l}
u_{t t}-16 u_{x x}=0 \\
u(0, x)=16 x^{2}(1-x)^{2} \\
u_{t}(0, x)=0 \\
u_{x}(t, 0)=0 \\
u(t, 1)=0
\end{array}\right.
$$

First, we find a solution by extending our initial data to the whole real line. The Neumann condition at $x=0$ means our data must be even, while the Dirichlet condition at $x=1$ means it must be odd about $x=1$. The zero function satisfies both these properties already. We must have $\phi(-x)=\phi(x)$ and $\phi(1-x)=-\phi(1+x)$. These imply that

$$
\phi(x+4)=-\phi(-x-2)=-\phi(x+2)=\phi(x),
$$

so ϕ must be extended to a 4 -periodic function. We may write this as

$$
\phi(x)= \begin{cases}-16(x+2)^{2}(-x-1)^{2}, & x \in[-2,-1] \\ 16(x+1)^{2}(-x)^{2}, & x \in[-1,0] \\ 16 x^{2}(1-x)^{2}, & x \in[0,1] \\ -16(x-1)^{2}(2-x)^{2}, & x \in[1,2] \\ \text { extended to be 4-periodic. } & \end{cases}
$$

In fact, we may simplify our notation by using the floor and integer part functions, writing

$$
\phi(x)=16[x]^{2}(1-[x])^{2}(-1)^{\left\lfloor\frac{x+1}{2}\right\rfloor}
$$

(the fundamental region up to sign is $[0,1]$, and the sign changes every two integers, and is positive on $[-1,1]$). The D'Alembert's solution is then

$$
u(t, x)=\frac{1}{2}(\phi(x-4 t)+\phi(x+4 t)) .
$$

Now, we consider the question of uniqueness. Suppose w solves the same problem except with zero initial condition as well, and define the energy function $E(t)=\frac{1}{2} \int_{0}^{1} w_{t}^{2}+16 w_{x}^{2} d x$. We then have

$$
E^{\prime}(t)=\int_{0}^{1} w_{t} w_{t t}+16 w_{x} w_{x t} d x
$$

Integrating by parts, we have

$$
E^{\prime}(t)=\left[16 w_{x} w_{t}\right]_{x=0}^{x=1}+\int_{0}^{1} w_{t}\left(w_{t t}-16 w_{x x}\right) d x
$$

Now, the Neumann condition at zero means the left boundary term vanishes, the Dirichlet condition at one means $w_{t}(t, 1)=0$ so the right boundary term vanishes, and the PDE itself means the integral term vanishes. Thus, $E^{\prime}(t)=0$, so the energy is constant. Since $E(0)=0$ by the initial data, by the usual argument $w \equiv 0$. It follows that the D'Alembert's solution above is the unique solution to the problem.

