Generalized Eigenvectors

The Punch Line: Generalized eigenvectors allow us to write down the solution to differential equations where there are not enough eigenvectors to form solutions like we have before.

Setup: If λ is an eigenvalue of A where the eigenspace has one fewer dimension than the multiplicity of λ in the characteristic equation of A, then given a vector u such that $(A-\lambda I) u=v$ for v an eigenvector of A, then $e^{\lambda t}(t v+u)$ is a solution of $x^{\prime}=A x$.

We can write the solution to a DE as a fundmental matrix $\Psi(t) \vec{c}$, or more specifically $\Phi(t) \vec{x}(0)$. We can recover $\Phi(t)=\Psi(t) \Psi(0)^{-1}$ (although often computing $\Psi(0)^{-1}$ is more computationally difficult than solving the equation $\Psi(0) \vec{c}=\vec{x}(0)$ for \vec{c} by row reduction).

1: Solve the following DEs (if initial conditions are given, use them, otherwise give the general solution). Write a fundamental matrix $\Psi(t)$ such that $x(t)=\Psi(t) \vec{c}$ (it might be a good idea to find a $\Phi(t)$ such that $x(t)=\Phi(t) x(0)$-such as $\left.\Psi(t) \Psi(0)^{-1}\right)$.
(a) $x^{\prime}=\left[\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right] x$
(c) $x^{\prime}=\left[\begin{array}{cc}-9 & 4 \\ -16 & 7\end{array}\right] x$
(b) $x^{\prime}=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right] x$
(d) $x^{\prime}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right] x$
(e) $x^{\prime}=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right] x$ (the eigenvalues are $\pm i$, each with multiplicity two).

