Generalized Eigenvectors

The Punch Line: Generalized eigenvectors allow us to write down the solution to differential equations where there are not enough eigenvectors to form solutions like we have before.

Setup: If λ is an eigenvalue of A where the eigenspace has one fewer dimension than the multiplicity of λ in the characteristic equation of A, then given a vector u such that $(A - \lambda I)u = v$ for v an eigenvector of A, then $e^{\lambda t} (tv + u)$ is a solution of x' = Ax.

We can write the solution to a DE as a fundmental matrix $\Psi(t)\vec{c}$, or more specifically $\Phi(t)\vec{x}(0)$. We can recover $\Phi(t) = \Psi(t)\Psi(0)^{-1}$ (although often computing $\Psi(0)^{-1}$ is more computationally difficult than solving the equation $\Psi(0)\vec{c} = \vec{x}(0)$ for \vec{c} by row reduction).

1: Solve the following DEs (if initial conditions are given, use them, otherwise give the general solution). Write a fundamental matrix $\Psi(t)$ such that $x(t) = \Psi(t)\vec{c}$ (it might be a good idea to find a $\Phi(t)$ such that $x(t) = \Phi(t)x(0)$ —such as $\Psi(t)\Psi(0)^{-1}$).

(a) $x' = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix} x$	(c) $x' = \begin{bmatrix} -9 & 4 \\ -16 & 7 \end{bmatrix} x$	(e) $x' = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} x$ (the
(b) $x' = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} x$	(d) $x' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} x$	$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$ eigenvalues are $\pm i$, each with multiplicity two).

(a) We compute the characteristic equation as $(5-\lambda)^2 - 1 = \lambda^2 - 10\lambda + 24 = (\lambda - 4)(\lambda - 6) = 0$. We compute $v_4 = \begin{bmatrix} 1\\1 \end{bmatrix}$ and $v_6 = \begin{bmatrix} 1\\-1 \end{bmatrix}$ as the eigenvectors for 4 and 6 respectively. So, the general solution is

$$x(t) = C_1 e^{4t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} e^{4t} & e^{6t} \\ e^{4t} & -e^{6t} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

We then have $\Psi(0)^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. Then $\Phi(t) = \Psi(t)\Psi(0)^{-1} = \frac{1}{2} \begin{bmatrix} e^{4t} + e^{6t} & e^{4t} - e^{6t} \\ e^{4t} - e^{6t} & e^{4t} + e^{6t} \end{bmatrix}$.

(b) We compute the characteristic equation as $(1 - \lambda)(3 - \lambda) + 1 = \lambda^2 - 4\lambda + \lambda^2 = 0$, so $\lambda = 2$ (with multiplicity 2). We find $v = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as an eigenvector for 2, but no second eigenvector. Then we look at (A - 2I)u = v, finding that we must have $u_1 + u_2 = -1$, so $u = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ is a generalized eigenvector. We can then write the general solution

$$x(t) = C_1 e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + C_2 e^{2t} \left(t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -(t+1)e^{2t} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}.$$

We then have $\Psi(0) = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$, so $\Psi(0)^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$, so $\Phi(t) = \begin{bmatrix} e^{2t} & te^{2t} \\ -e^{2t} & (1+t)e^{2t} \end{bmatrix} = e^{2t} \begin{bmatrix} 1-t & -t \\ t & 1+t \end{bmatrix}$

(c) We find the characteristic polynomial $(-9 - \lambda)(7 - \lambda) + 64 = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2 = 0$. We then get $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ as a eigenvector for -1. Then solving (A + I)u = v we get $-2u_1 + u_2 = \frac{1}{4}$, so $u = \begin{bmatrix} 0 \\ \frac{1}{4} \end{bmatrix}$ is a generalized eigenvector for eigenvalue -1. Then we can write the general solution as

$$x(t) = C_1 e^{-t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + C_2 e^{-t} \left(t \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{4} \end{bmatrix} \right).$$

Then
$$\Psi(t) = e^{-t} \begin{bmatrix} 1 & t \\ 2 & 2t + \frac{1}{4} \end{bmatrix}$$
, so $\Psi(0)^{-1} = \begin{bmatrix} 1 & 0 \\ -8 & 4 \end{bmatrix}$. So, $\Phi(t) = e^{-t} \begin{bmatrix} 1 - 8t & 4t \\ -16t & 1 + 8t \end{bmatrix}$.

(d) We see that 1 is the sole eigenvalue of the matrix, and $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ are eigenvectors. Examining

(A - I)u = v, we see that v_1 does not have generalized eigenvectors, but for v_2 we have $u = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \end{bmatrix}$. So, our general solution is

$$x(t) = C_1 e^t \begin{bmatrix} 1\\0\\0 \end{bmatrix} + C_2 e^t \begin{bmatrix} 0\\1\\0 \end{bmatrix} + C_3 e^t \left(t \begin{bmatrix} 0\\1\\0 \end{bmatrix} + \begin{bmatrix} 0\\0\\\frac{1}{2} \end{bmatrix} \right) = e^t \begin{bmatrix} 1 & 0 & 0\\0 & 1 & t\\0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} C_1\\C_2\\C_3 \end{bmatrix}.$$

Then
$$\Psi(0)^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, so $\Phi(t) = e^t \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2t \\ 0 & 0 & 1 \end{bmatrix}$

(e) We compute the eigenvectors $\begin{vmatrix} 1 \\ i \\ 0 \\ 0 \end{vmatrix}$ and $\begin{vmatrix} 0 \\ 0 \\ i \\ 1 \end{vmatrix}$ for eigenvalue *i*. Then we can compute a general solution as

Then
$$\Psi(0)^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
, so $\Phi(t) = \begin{bmatrix} -\sin t & \cos t & 0 & 0 \\ 0 & 0 & \cos t & -\sin t \\ 0 & 0 & \sin t & \cos t \end{bmatrix}$