Generalized Eigenvectors

The Punch Line: Generalized eigenvectors allow us to write down the solution to differential equations where there are not enough eigenvectors to form solutions like we have before.

Setup: If λ is an eigenvalue of A where the eigenspace has one fewer dimension than the multiplicity of λ in the characteristic equation of A, then given a vector u such that $(A-\lambda I) u=v$ for v an eigenvector of A, then $e^{\lambda t}(t v+u)$ is a solution of $x^{\prime}=A x$.

We can write the solution to a DE as a fundmental matrix $\Psi(t) \vec{c}$, or more specifically $\Phi(t) \vec{x}(0)$. We can recover $\Phi(t)=\Psi(t) \Psi(0)^{-1}$ (although often computing $\Psi(0)^{-1}$ is more computationally difficult than solving the equation $\Psi(0) \vec{c}=\vec{x}(0)$ for \vec{c} by row reduction).

1: Solve the following DEs (if initial conditions are given, use them, otherwise give the general solution). Write a fundamental matrix $\Psi(t)$ such that $x(t)=\Psi(t) \vec{c}$ (it might be a good idea to find a $\Phi(t)$ such that $x(t)=\Phi(t) x(0)$-such as $\left.\Psi(t) \Psi(0)^{-1}\right)$.
(a) $x^{\prime}=\left[\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right] x$
(c) $x^{\prime}=\left[\begin{array}{cc}-9 & 4 \\ -16 & 7\end{array}\right] x$
(b) $x^{\prime}=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right] x$
(d) $x^{\prime}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right] x$
(e) $x^{\prime}=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right] x$ (the eigenvalues are $\pm i$, each with multiplicity two).
(a) We compute the characteristic equation as $(5-\lambda)^{2}-1=\lambda^{2}-10 \lambda+24=(\lambda-4)(\lambda-6)=0$. We compute $v_{4}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $v_{6}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ as the eigenvectors for 4 and 6 respectively. So, the general solution is

$$
x(t)=C_{1} e^{4 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2} e^{6 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
e^{4 t} & e^{6 t} \\
e^{4 t} & -e^{6 t}
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] .
$$

We then have $\Psi(0)^{-1}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$. Then $\Phi(t)=\Psi(t) \Psi(0)^{-1}=\frac{1}{2}\left[\begin{array}{ll}e^{4 t}+e^{6 t} & e^{4 t}-e^{6 t} \\ e^{4 t}-e^{6 t} & e^{4 t}+e^{6 t}\end{array}\right]$.
(b) We compute the characteristic equation as $(1-\lambda)(3-\lambda)+1=\lambda^{2}-4 \lambda+\lambda^{2}=0$, so $\lambda=2$ (with multiplicity 2). We find $v=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ as an eigenvector for 2 , but no second eigenvector. Then we look at $(A-2 I) u=v$, finding that we must have $u_{1}+u_{2}=-1$, so $u=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ is a generalized eigenvector. We can then write the general solution

$$
x(t)=C_{1} e^{2 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+C_{2} e^{2 t}\left(t\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right)=\left[\begin{array}{cc}
e^{2 t} & t e^{2 t} \\
-e^{2 t} & -(t+1) e^{2 t}
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] .
$$

We then have $\Psi(0)=\left[\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right]$, so $\Psi(0)^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right]$, so $\Phi(t)=\left[\begin{array}{cc}e^{2 t} & t e^{2 t} \\ -e^{2 t} & (1+t) e^{2 t}\end{array}\right]=e^{2 t}\left[\begin{array}{cc}1-t & -t \\ t & 1+t\end{array}\right]$.
(c) We find the characteristic polynomial $(-9-\lambda)(7-\lambda)+64=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}=0$. We then get $v=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ as a eigenvector for -1 . Then solving $(A+I) u=v$ we get $-2 u_{1}+u_{2}=\frac{1}{4}$, so $u=\left[\begin{array}{l}0 \\ \frac{1}{4}\end{array}\right]$ is a generalized eigenvector for eigenvalue -1 . Then we can write the general solution as

$$
x(t)=C_{1} e^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{-t}\left(t\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{4}
\end{array}\right]\right) .
$$

Then $\Psi(t)=e^{-t}\left[\begin{array}{cc}1 & t \\ 2 & 2 t+\frac{1}{4}\end{array}\right]$, so $\Psi(0)^{-1}=\left[\begin{array}{cc}1 & 0 \\ -8 & 4\end{array}\right]$. So, $\Phi(t)=e^{-t}\left[\begin{array}{cc}1-8 t & 4 t \\ -16 t & 1+8 t\end{array}\right]$.
(d) We see that 1 is the sole eigenvalue of the matrix, and $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ are eigenvectors. Examining $(A-I) u=v$, we see that v_{1} does not have generalized eigenvectors, but for v_{2} we have $u=\left[\begin{array}{l}0 \\ 0 \\ \frac{1}{2}\end{array}\right]$. So, our general solution is

$$
x(t)=C_{1} e^{t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+C_{3} e^{t}\left(t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
\frac{1}{2}
\end{array}\right]\right)=e^{t}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right] .
$$

Then $\Psi(0)^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$, so $\Phi(t)=e^{t}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 2 t \\ 0 & 0 & 1\end{array}\right]$.
(e) We compute the eigenvectors $\left[\begin{array}{l}1 \\ i \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ i \\ 1\end{array}\right]$ for eigenvalue i. Then we can compute a general solution as

$$
x(t)=C_{1}\left[\begin{array}{c}
\cos t \\
-\sin t \\
0 \\
0
\end{array}\right]+C_{2}\left[\begin{array}{c}
\sin t \\
\cos t \\
0 \\
0
\end{array}\right]+C_{3}\left[\begin{array}{c}
0 \\
0 \\
-\sin t \\
\cos t
\end{array}\right]+C_{4}\left[\begin{array}{c}
0 \\
0 \\
\cos t \\
\sin t
\end{array}\right]=\left[\begin{array}{cccc}
\cos t & \sin t & 0 & 0 \\
-\sin t & \cos t & 0 & 0 \\
0 & 0 & -\sin t & \cos t \\
0 & 0 & \cos t & \sin t
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3} \\
C_{4}
\end{array}\right] .
$$

Then $\Psi(0)^{-1}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$, so $\Phi(t)=\left[\begin{array}{cccc}\cos t & \sin t & 0 & 0 \\ -\sin t & \cos t & 0 & 0 \\ 0 & 0 & \cos t & -\sin t \\ 0 & 0 & \sin t & \cos t\end{array}\right]$.

