Math 4B
Worksheet 10a

Generalized Eigenvectors

The Punch Line: Generalized eigenvectors allow us to write down the solution to differential equations where
there are not enough eigenvectors to form solutions like we have before.

Setup: If A is an eigenvalue of A where the eigenspace has one fewer dimension than the multiplicity of A
in the characteristic equation of A, then given a vector u such that (A — AI)u = v for v an eigenvector of A, then
eM (tv +u) is a solution of x” = Ax.

We can write the solution to a DE as a fundmental matrix W(#)¢, or more specifically @(#)¥(0). We can recover
O(t) = W(t)W(0)~! (although often computing W(0)~! is more computationally difficult than solving the equation
W(0)c’= x(0) for ¢by row reduction).

1:  Solve the following DEs (if initial conditions are given, use them, otherwise give the general solution).
Write a fundamental matrix W(t) such that x(t) = W(#)¢ (it might be a good idea to find a ®(t) such that
x(t) = D(t)x(0)—such as W(t)¥(0)71).

@ x=|5 1 (),_’—94 010 0
A*r=1 5 |F “X=l16 7|F @ x = |1 00 ¢ (the
10 0 0 -1
1 0 0 0 01 0
1 -1 (d) x’=[0 1 2|x eigenvalues are +i, each with
(b) ¥ = x valu
1 3 0 0 1 multiplicity two).

(a) We compute the characteristic equation as (5-1)>~1 = A?~101+24 = (A-4)(A-6) = 0. We compute vy = 1

and vg = [_11] as the eigenvectors for 4 and 6 respectively. So, the general solution is
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We then have W(0)! = [1 1 ] = %[1 1 ] Then ®(t) = U(1)W(0)~! = %[i‘hiz& e
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(b) We compute the characteristic equation as (1-A)(3-1)+1=12-41+ 12 =0, so A = 2 (with multiplicity 2).
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We find v = [_11] as an eigenvector for 2, but no second eigenvector. Then we look at (A —2I)u = v, finding
that we must have u; +u, = -1, so u = [_01} is a generalized eigenvector. We can then write the general

solution

x(t) = Cre?
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c¢) We find the characteristic polynomial (-9—-A)(7-A)+64=A“+21+1=(A+1)° =0. We then get v = as a
find the ch istic polynomial (<9— A)(7=A)+ 64 = A2+ 21+ 1 = (1+1)? hen g ;
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eigenvector for —1. Then solving (A+I)u = v we get —2u +u, = }I, SO U = [l] is a generalized eigenvector for

1
eigenvalue —1. Then we can write the general solution as

x(t) = Cye [2 +Cye (t[z
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Then W(t) =¢ [2 2t+zl; ,s0 W (0)™" = [—8 4]. So, @(t)=e [—161‘ 1+8tl
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(d) We see that 1 is the sole eigenvalue of the matrix, and v; = [0 and v, = |1| are eigenvectors. Examining
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(A—TI)u = v, we see that v; does not have generalized eigenvectors, but for v, we have u = {O] So, our
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general solution is
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(e) We compute the eigenvectors (l) and ? for eigenvalue i. Then we can compute a general solution as
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