## Existence and Uniqueness Theory

The Punch Line: We can determine if it's possible to solve IVPs without actually solving them.

Linear Theory: If we have a differential equation $y^{\prime}+p(t) y=g(t)$ and initial condition $y\left(t_{0}\right)=y+0$, and $p$ and $g$ are both continuous on the same open interval $(\alpha, \beta)$ containing $t_{0}$, then there is a unique function $\phi(t)$ that satisfies the initial value problem. So, if we can find all of the intervals on which $p$ and $g$ are simultaneously continuous, we can find intervals on which we are guaranteed some solution to IVPs (without actually solving the equation). This is useful if, for example, we want to be sure that approximate numerical solutions are close to some real solution.

1: For the following linear equations, find the intervals (in $t$ ) on which we are guaranteed unique solutions to an IVP with the following differential equations:
(a) $y^{\prime}+a y=0$
(d) $[y \ln t]^{\prime}=0$
(b) $t y^{\prime}+2 y=e^{-t}$
(e) $y^{\prime}+\frac{t+2}{t^{2}-9} y=\frac{t^{2}+1}{t^{2}-4}$
(c) $y^{\prime}+\frac{1}{t} y=\frac{1}{1-t}$
(f) $t(t-2) y^{\prime}+(t-1) y=\ln \left(t^{2}-16\right)$
(a) Here we get $p(t)=a$ and $g(t)=0$, both of which are continuous functions for all $t$. Thus, given any initial data, we have a unique solution for all time $t$.
(b) Here, we get $p(t)=\frac{2}{t}$ and $g(t)=t^{-1} e^{-t}$, which both have singularities at $t=0$ and nowhere else. Thus, we have the two possible intervals $t \in(-\infty, 0)$ and $t \in(0, \infty)$ on which our functions could be defined. If $t_{0}$ is positive (or negative), we will have a unique solution for all positive (negative) time $t$.
(c) Here, we get $p(t)=\frac{1}{t}$ and $g(t)=\frac{1}{1-t}$, so the two "bad points" are $t=0$ and $t=1$. Thus, our intervals are $(-\infty, 0),(0,1)$, and $(1, \infty)$.
(d) Here, we first expand the DE to $y^{\prime} \ln t+\frac{1}{t} y=0$, or $y^{\prime}+\frac{1}{t \ln t}=0$. Here, we have problems if $t \leq 0$, so our possible interval is $t \in(0, \infty)$.
(e) Here, we get problems at $t= \pm 2, \pm 3$, so our intervals are $(-\infty,-3),(-3,-2),(-2,2),(2,3)$, and $(3, \infty)$. It's worth noting that we need to consider the "bad points" of both $p$ and $g$ at the same time, as some of these intervals have one endpoint determined by $p$ and the other by $g$.
(f) Here we get problems at $t=0,2, \pm 4$, so our intervals are $(-\infty,-4),(-4,0),(0,2),(2,4)$, and $(4, \infty)$.

General First-Order Theory: If we have a differential equation $y^{\prime}=f(t, y)$ and $f(t, y)$ is continuous on some rectangle $t \in(\alpha, \beta), y \in(\gamma, \delta)$ containing the point $\left(t_{0}, y_{0}\right)$ (our initial data), then there is some interval $\left(t_{0}-h, t_{0}+h\right)$ contained in $(\alpha, \beta)$ where we have a solution to the IVP, $\phi(t)$. If $\frac{\partial f}{\partial y}$ is also continuous on the rectangle, then that solution is unique. It's worth noting that the interval on which we have (unique) solutions are in general not the full interval on which $f$ is continuous, and may be either larger or smaller: we are just guaranteed the existence of some interval that works-finding what it is generally involves finding the solution to the DE itself.

2: For the following first-order equations, find the initial conditions $\left(t_{0}, y_{0}\right)$ that do not result in guaranteed solutions to the DE , and do not result in guaranteed unique solutions.
(a) $y^{\prime}=|y|$
(c) $y y^{\prime}=\frac{1}{2 t}$
(b) $y^{\prime}+t y=y^{2}$
(d) $(x+t)+\left(t-x^{2}\right) x^{\prime}=0$
(a) Here, we are guaranteed a solution for any $\left(t_{0}, y_{0}\right)$, but are not guaranteed uniqueness if $y_{0}=0$, as the derivative is discontinuous (in fact, not defined) there.
(b) Here $f(t, y)=y(t-y)$, and $f_{y}=t-2 y$, which are both always continuous, so we are always guaranteed a unique solution for some interval.
(c) Here, $f(t, y)=\frac{1}{2 t y}$, with $f_{y}=\frac{-1}{2 t y^{2}}$, so we need for $y_{0} \neq 0$ and $t_{0} \neq 0$ for both existence and uniqueness.
(d) Here $f(t, x)=\frac{1}{x-t}$, and $f_{x}=\frac{1}{t-x^{2}}$, so we will only have existence problems with this theory if $x_{0}=t_{0}$, and only uniqueness problems if $x_{0}^{2}=t_{0}$ (or of course $x_{0}=t_{0}$ ). In fact, we can solve this exact equation, and as it turns out for some pairs with $x_{0}=t_{0}$ we will in fact have solutions: the theory simply fails to guarantee them, rather than proving they don't exist.

