Math 4B
Worksheet 4a

Existence and Uniqueness Theory

The Punch Line: We can determine if it’s possible to solve IVPs without actually solving them.

Linear Theory: If we have a differential equation y’ + p(t)y = g(¢) and initial condition y(ty) =y + 0, and p
and g are both continuous on the same open interval (a, f) containing f;, then there is a unique function ¢(t)
that satisfies the initial value problem. So, if we can find all of the intervals on which p and g are simultaneously
continuous, we can find intervals on which we are guaranteed some solution to IVPs (without actually solving the
equation). This is useful if, for example, we want to be sure that approximate numerical solutions are close to
some real solution.

1:  For the following linear equations, find the intervals (in ¢) on which we are guaranteed unique solutions
to an IVP with the following differential equations:

(a) y'+ay=0 (d) [ylnt] =0
(b) ty'+2y = e (&) v+ H5y =54
(c) v/ +ly=L (f) Ht=2)y +(t— 1)y =In(t* - 16)

(a) Here we get p(t) = a and g(t) = 0, both of which are continuous functions for all t. Thus, given any initial
data, we have a unique solution for all time ¢.

(b) Here, we get p(t) = % and g(t) = t"'e~!, which both have singularities at t = 0 and nowhere else. Thus, we
have the two possible intervals t € (—o0,0) and t € (0,00) on which our functions could be defined. If # is
positive (or negative), we will have a unique solution for all positive (negative) time ¢.

(c) Here, we get p(t) = % and g(t) = ﬁ, so the two “bad points” are t = 0 and t = 1. Thus, our intervals are
(—00,0), (0,1), and (1, c0).

(d) Here, we first expand the DE to y’Int + %y =0,ory + ﬁ = 0. Here, we have problems if t < 0, so our

possible interval is t € (0, c0).

(e) Here, we get problems at ¢ = +2,+3, so our intervals are (—oo0,-3), (—3,-2), (-2,2), (2,3), and (3, o). It’s worth
noting that we need to consider the “bad points” of both p and g at the same time, as some of these intervals
have one endpoint determined by p and the other by g.

(f) Here we get problems at t = 0,2, +4, so our intervals are (—o0,—4), (—4,0), (0,2), (2,4), and (4, ).



General First-Order Theory: If we have a differential equation v’ = f(¢,y) and f(¢,) is continuous on some
rectangle t € (a, f), v € (y,0) containing the point (fy,7) (our initial data), then there is some interval (ty —h, o+ h)
contained in («, f) where we have a solution to the IVP, ¢(t). If 3—;5 is also continuous on the rectangle, then that
solution is unique. It’s worth noting that the interval on which we have (unique) solutions are in general not the
full interval on which f is continuous, and may be either larger or smaller: we are just guaranteed the existence of
some interval that works—finding what it is generally involves finding the solution to the DE itself.

2:  For the following first-order equations, find the initial conditions (¢, yo) that do not result in guaranteed
solutions to the DE, and do not result in guaranteed unique solutions.

2]

(a) v'=y| (c) vy’ =

(b) v/ +ty =p? (d) (x+t)+(t—x2)x’:0

(a) Here, we are guaranteed a solution for any (#y,vg), but are not guaranteed uniqueness if y, = 0, as the
derivative is discontinuous (in fact, not defined) there.

(b) Here f(t,y) = y(t —v), and f, = t — 2y, which are both always continuous, so we are always guaranteed a
unique solution for some interval.
(c) Here, f(t,y)= zity, with f, = #;2, so we need for y, # 0 and ty = 0 for both existence and uniqueness.

(d) Here f(t,x) = ﬁ, and f, = #, so we will only have existence problems with this theory if xy = ty, and only

uniqueness problems if xé =ty (or of course xg = ty). In fact, we can solve this exact equation, and as it turns
out for some pairs with xy = fy we will in fact have solutions: the theory simply fails to guarantee them,

rather than proving they don’t exist.



