Second Order Equations I

The Punch Line: The solutions to many second-order constant-coefficient equations may be deduced by solving quadratic equations.

Linear Homogeneous Constant-Coefficient Second Order Equations: If we have the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$, we can ask ourselves if there are any solutions of the form $y(t)=e^{r t}$. If so, we would have $a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0$, which can only happen if $a r^{2}+b r+c=0\left(e^{r t}>0\right.$ for all $\left.t\right)$. This quadratic equation is the characteristic equation, and its roots tell us what solutions to expect. In general, the solution to an IVP is a linear combination of the two possibilities (if there are two distinct roots), with coefficients chosen to match the initial conditions.

1: Solve the following differential equations with the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$:
(a) $y^{\prime \prime}-9 y=0$
(c) $2 y^{\prime \prime}+3 y^{\prime}+y=0$
(b) $y^{\prime \prime}-3 y^{\prime}+2 y=0$
(d) $y^{\prime \prime}+y^{\prime}=0$

Challenge Problems: Sometimes, the solution technique above will fail (e.g., what happens if the characteristic equation has only one root?). Also, we are occasionally interested in boundary value problems, where instead of a derivative condition we have a value condition at a different point. The ideas used in dealing with these situations are similar (although we haven't done them yet in class, so don't worry if you can't solve these problems).

Challenges: Solve these differential equations

(a) $y^{\prime \prime}-4 y^{\prime}+4 y=0$, where $y(0)=1, y^{\prime}(0)=0$ (hint: think about $y^{\prime \prime}=0$ first)
(b) $y^{\prime \prime}-y=0$, where $y(0)=1$ and $y(1)=0$
(c) $y^{\prime \prime}+y=0$, where $y(0)=y(\pi)=0$

