Second Order Equations I

The Punch Line: The solutions to many second-order constant-coefficient equations may be deduced by solving quadratic equations.

Linear Homogeneous Constant-Coefficient Second Order Equations: If we have the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$, we can ask ourselves if there are any solutions of the form $y(t)=e^{r t}$. If so, we would have $a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0$, which can only happen if $a r^{2}+b r+c=0\left(e^{r t}>0\right.$ for all $\left.t\right)$. This quadratic equation is the characteristic equation, and its roots tell us what solutions to expect. In general, the solution to an IVP is a linear combination of the two possibilities (if there are two distinct roots), with coefficients chosen to match the initial conditions.

1: Solve the following differential equations with the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$:
(a) $y^{\prime \prime}-9 y=0$
(c) $2 y^{\prime \prime}+3 y^{\prime}+y=0$
(b) $y^{\prime \prime}-3 y^{\prime}+2 y=0$
(d) $y^{\prime \prime}+y^{\prime}=0$
(a) The characteristic equation here is $r^{2}-9=0$, so $r= \pm 3$, so our solution is of the form $C_{1} e^{3 t}+C_{2} e^{-3 t}$. Our initial conditions give $C_{1}+C_{2}=1$ and $3\left(C_{1}-C_{2}\right)=0$, so $C_{1}=C_{2}=\frac{1}{2}$. Thus, our final answer is $y(t)=\frac{1}{2} e^{3 t}+\frac{1}{2} e^{-3 t}$.
(b) The characteristic equation here is $r^{2}-3 r+2=(r-1)(r-2)=0$, so our general solution has the form $C_{1} e^{t}+C_{2} e^{2 t}$. The first initial condition gives $C_{1}+C_{2}=1$, the second gives $C_{1}+2 C_{2}=0$, or $C_{1}=-2 C_{2}$, so $C_{2}=-1$ and $C_{1}=2$ for a final solution of $y(t)=2 e^{t}-e^{2 t}$.
(c) The characteristic equation here is $2 r^{2}+3 r+1=2\left(r+\frac{1}{2}\right)(r+1)=0$, so our general solution is $C_{1} e^{t}+C_{2} e^{t / 2}$. Initial conditions give $C_{1}+C_{2}=1$ and $C_{1}+\frac{1}{2} C_{2}=0$, so $C_{2}=-2 C_{1}, C_{1}=-1$, so our final answer is $2 e^{t / 2}-e^{t}$.
(d) The characteristic equation here is $r^{2}+r=r(r+1)=0$, so our general solution is $C_{1}+C_{2} e^{-t}$. Our second initial condition gives $C_{2}=0$, so our final answer is $y(t)=1$.

Challenge Problems: Sometimes, the solution technique above will fail (e.g., what happens if the characteristic equation has only one root?). Also, we are occasionally interested in boundary value problems, where instead of a derivative condition we have a value condition at a different point. The ideas used in dealing with these situations are similar (although we haven't done them yet in class, so don't worry if you can't solve these problems).

Challenges: Solve these differential equations
(a) $y^{\prime \prime}-4 y^{\prime}+4 y=0$, where $y(0)=1, y^{\prime}(0)=0$ (hint: think about $y^{\prime \prime}=0$ first)
(b) $y^{\prime \prime}-y=0$, where $y(0)=1$ and $y(1)=0$
(c) $y^{\prime \prime}+y=0$, where $y(0)=y(\pi)=0$
(a) Here, our characteristic equation is $r^{2}-4 r-4=(r-2)^{2}=0$. So, we expect $e^{2 t}$ to be a solution. However, if $y(t)=C e^{2 t}$, then $y^{\prime}(t)=2 C e^{2 t}$; we can't satisfy both initial conditions with this function.
As it turns out (more on this later, or ask me!), the function $y(t)=t e^{2 t}$ also satisfies the differential equation (try it), so our general solution is $C_{1} e^{2 t}+C_{2} t e^{2 t}$. Then $y^{\prime}=\left(2 C_{1}+C_{2}\right) e^{2 t}+2 C_{2} t e^{2 t}$. Our first initial condition gives $C_{1}=1$, and our second gives $C_{2}=-2$, for a final answer of $y(t)=e^{2 t}-2 t e^{2 t}$. This phenomenon (a t-multiple of the solution being necessary) is called resonance.
(b) The general solution here is $C_{1} e^{t}+C_{2} e^{-t}$. Our first initial condition gives $C_{1}+C_{2}=1$, and our second gives $e C_{1}+\frac{1}{e} C_{2}=0$. Then $C_{2}=-e^{2} C_{1}$, and thus $C_{1}=\frac{-1}{e^{2}-1}$ and $C_{2}=\frac{e^{2}}{e^{2}-1}$, for a final solution of $y(t)=\frac{e^{2-t}-e^{t}}{e^{2}-1}$. We can check that this matches the boundary values, as desired.
(c) Our characteristic polynomial here is $r^{2}+1=0$. This has complex roots; we could put a general solution as $C_{1} e^{i t}+C_{2} e^{-i t}$, but this is hard to physically interpret. Better is to observe that the equation is $y^{\prime \prime}=-y$, and recall that this is true of the sine and cosine functions (which gives us two solutions, as expected).

Putting $y(t)=A \sin (t)+B \cos (t)$, we get $y(0)=B$ and $y(\pi)=-B$. Thus, any solution $y(t)=A \sin (t)$ solves the boundary value problem. Note that this solution is obviously not unique-this is much more common for boundary value problems than initial value problems (where all the information is at a single point). If we want a unique solution, we'll need more data (such as a value of y at some point not of the form $n \pi$).

