Second Order Equations II

The Punch Line: Repeated and complex roots require only slight elaborations on the basic solution techniques from last section.

Repeated Roots and Reduction of Order: If the characteristic polynomial of our differential equation has a repeated root (e.g., is of the form $(r-a)^{2}=0$), then a simple exponential solution is insufficient. Instead, we should expect solutions of the form $y(t)=C_{1} e^{a t}+C_{2} t e^{a t}$.

More generally, if we know $y_{1}(t)$ is a solution to a DE , then often we can find a solution $y_{2}(t)=v(t) y_{1}(t)$ for some function $v(t)$. Plugging this y_{2} into the DE will give a DE for v which is (hopefully) simpler to solve.

1: Solve the following differential equations with given initial conditions:
(a) $y^{\prime \prime}-2 y^{\prime}+y=0$ with $y(0)=1$ and $y^{\prime}(0)=1$
(b) $y^{\prime \prime}+18 y^{\prime}+81 y=0$ with $y(0)=0$ and $y^{\prime}(0)=4$
(c) $2 t^{2} y^{\prime \prime}-t y^{\prime}+y=0$ with $y(1)=1$ and $y^{\prime}(1)=0\left(y_{1}(t)=t\right.$ is a solution to the DE)

Complex Roots: If we have complex roots, e.g. $r=\alpha \pm \beta i$, we expect solutions of the form $y(t)=C_{1} e^{\alpha t} e^{i \beta t}+$ $C_{2} e^{\alpha t} e^{-i \beta t}$. Using Euler's Identity $e^{i \theta}=\cos \theta+i \sin \theta$ shows that this actually has the (real-valued) solutions $y(t)=D_{1} e^{\alpha t} \cos (\beta t)+D_{2} e^{\alpha t} \sin (\beta t)$, which are often easier to use.

2: Solve these differential equations
(a) $y^{\prime \prime}+4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=2$
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with $y(\pi)=1$ and $y^{\prime}(\pi)=0$
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with $y(0)=0$ and $y^{\prime}(0)=1$
(d) $y^{\prime \prime}+4 y^{\prime}+13=0$ with $y(0)=1$ and $y^{\prime}(0)=0$

