Second Order Equations II

The Punch Line: Repeated and complex roots require only slight elaborations on the basic solution techniques from last section.

Repeated Roots and Reduction of Order: If the characteristic polynomial of our differential equation has a repeated root (e.g., is of the form $(r-a)^{2}=0$), then a simple exponential solution is insufficient. Instead, we should expect solutions of the form $y(t)=C_{1} e^{a t}+C_{2} t e^{a t}$.

More generally, if we know $y_{1}(t)$ is a solution to a DE , then often we can find a solution $y_{2}(t)=v(t) y_{1}(t)$ for some function $v(t)$. Plugging this y_{2} into the DE will give a DE for v which is (hopefully) simpler to solve.

1: Solve the following differential equations with given initial conditions:
(a) $y^{\prime \prime}-2 y^{\prime}+y=0$ with $y(0)=1$ and $y^{\prime}(0)=1$
(b) $y^{\prime \prime}+18 y^{\prime}+81 y=0$ with $y(0)=0$ and $y^{\prime}(0)=4$
(c) $2 t^{2} y^{\prime \prime}-t y^{\prime}+y=0$ with $y(1)=1$ and $y^{\prime}(1)=0\left(y_{1}(t)=t\right.$ is a solution to the DE)
(a) The characteristic equation here is $r^{2}-2 r+1=(r-1)^{2}=0$, so we expect a solution of the form $y(t)=C_{1} e^{t}+C_{2} t e^{t}$. Then $C_{1}=1$ (from the $y(0)=1$ condition), so $y^{\prime}(t)=e^{t}+C_{2}\left(t e^{t}+e^{t}\right)$, so $C_{2}=0$ (from the $y^{\prime}(0)=1$ condition), for a final solution of $y(t)=e^{t}$.
(b) The characteristic equation here is $r^{2}+18 r+81=(r+9)^{2}=0$, so we expect a solution of the form $y(t)=C_{1} e^{9 t}+C_{2} t e^{9 t}$. Then $C_{1}=0$, so $y^{\prime}(t)=C_{2}\left(9 t e^{9 t}+e^{9 t}\right)$, so $C_{2}=4$ and our final solution is $y(t)=4 t e^{9 t}$.
(c) Here, we try a solution of the form $y_{2}(t)=t v(t)$, with $y_{2}^{\prime}(t)=t v^{\prime}(t)+v(t)$ and $y_{2}^{\prime \prime}(t)=t v^{\prime \prime}(t)+(1+t) v^{\prime}(t)$. Then we get the differential equation $2 t^{3} v^{\prime \prime}(t)+4 t^{2} v^{\prime}(t)-t^{2} v^{\prime}(t)-t v(t)+t v(t)=2 t^{3} v^{\prime \prime}(t)+3 t^{2} v^{\prime}(t)=0$, or $v^{\prime \prime}(t)+\frac{1}{2 t} v^{\prime}(t)=0$.
Here we can essentially use an integrating factor of $\mu(t)=t^{3 / 2}$ to get $\left[t^{3 / 2} v^{\prime}\right]^{\prime}=0$, so $v^{\prime}=\tilde{C} t^{-3 / 2}$, so $v=C t^{-1 / 2}+D$, so ultimately $y(t)=C_{1} \sqrt{t}+C_{2} t$. Then we get $C_{1}+C_{2}=1$ from the initial value condition and $\frac{1}{2} C_{1}+C_{2}=0$ from the initial derivative condition. So, we get $C_{1}=-2 C_{2}$ and $-C_{2}=1$, so $C_{2}=-1$ and $C_{1}=2$, for a final solution of $y(t)=2 \sqrt{t}-t$.
It's worth noting that the Wronskian here is $W\left(y_{1}, y_{2}\right)(t)=t\left(\frac{1}{2 \sqrt{t}}\right)-\sqrt{t}=-\frac{1}{2} \sqrt{t}$, which is nonzero around $t=1$.
We would have problems near zero, which is unsurprising as $p(t)=\frac{-1}{2 t}$ is not continuous there.

Complex Roots: If we have complex roots, e.g. $r=\alpha \pm \beta i$, we expect solutions of the form $y(t)=C_{1} e^{\alpha t} e^{i \beta t}+$ $C_{2} e^{\alpha t} e^{-i \beta t}$. Using Euler's Identity $e^{i \theta}=\cos \theta+i \sin \theta$ shows that this actually has the (real-valued) solutions $y(t)=D_{1} e^{\alpha t} \cos (\beta t)+D_{2} e^{\alpha t} \sin (\beta t)$, which are often easier to use.

2: Solve these differential equations
(a) $y^{\prime \prime}+4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=2$
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with $y(\pi)=1$ and $y^{\prime}(\pi)=0$
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=0$ with $y(0)=0$ and $y^{\prime}(0)=1$
(d) $y^{\prime \prime}+4 y^{\prime}+13=0$ with $y(0)=1$ and $y^{\prime}(0)=0$
(a) Here, our characteristic equation is $r^{2}+4 r=0$, so the roots are $r= \pm 2 i$. Thus, we have a general solution $y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)$. Then $C_{1}=1$ and so $y^{\prime}(t)=-2 \sin (2 t)+2 C_{2} \cos (2 t)$, so $C_{2}=1$ and our final solution is $y(t)=\cos (2 t)+\sin (2 t)$.
(b) Here, our characteristic equation is $r^{2}+2 r+2=0$, so the quadratic formula gives $r=-1 \pm i$. So, our general solution has the form $y(t)=C_{1} e^{-t} \cos (t)+C_{2} e^{-t} \sin (t)$. Then $C_{1}=0$ and $y^{\prime}(t)=-C_{2} e^{-t} \sin (t)+C_{2} e^{-t} \cos (t)$, so $C_{2}=1$ and $y(t)=e^{-t} \sin (t)$.
(c) Here, we have the same general solution, so get $y(\pi)=-C_{1} e^{-\pi}$, or $C_{1}=-e^{\pi}$, and

$$
y^{\prime}(t)=e^{\pi} e^{-t} \cos (t)+e^{\pi} e^{-t} \sin (t)-C_{2} e^{-t} \sin (t)+C_{2} e^{-t} \cos (t)
$$

so $y^{\prime}(\pi)=-1-C_{2} e^{-\pi}$, or $C_{2}=-e^{\pi}$. Thus, $y(t)=-e^{\pi-t}(\cos (t)+\sin (t))$.
(d) Here, the characteristic equation is $r^{2}+4 r+13=0$, so the quadratic formula gives $r=-2 \pm 3 i$. So, our general solution is $y(t)=C_{1} e^{-2 t} \cos (3 t)+C_{2} e^{-2 t} \sin (3 t)$. Then $C_{1}=1$, and

$$
y^{\prime}(t)=-2 e^{-2 t} \cos (3 t)-3 e^{-2 t} \sin (3 t)-2 C_{2} e^{-2 t} \sin (3 t)+3 C_{2} e^{-2 t} \cos (3 t),
$$

so $-2+3 C_{2}=0$, or $C_{2}=\frac{2}{3}$, and thus $y(t)=e^{-2 t} \cos (3 t)+\frac{2}{3} e^{-2 t} \sin (3 t)$.

