
Math 4B
Worksheet 5

Second Order Equations II
The Punch Line: Repeated and complex roots require only slight elaborations on the basic solution techniques

from last section.

Repeated Roots and Reduction of Order: If the characteristic polynomial of our differential equation has a
repeated root (e.g., is of the form (r−a)2 = 0), then a simple exponential solution is insufficient. Instead, we should
expect solutions of the form y(t) = C1e

at +C2te
at .

More generally, if we know y1(t) is a solution to a DE, then often we can find a solution y2(t) = v(t)y1(t) for
some function v(t). Plugging this y2 into the DE will give a DE for v which is (hopefully) simpler to solve.

1: Solve the following differential equations with given initial conditions:

(a) y′′ − 2y′ + y = 0 with y(0) = 1 and y′(0) = 1

(b) y′′ + 18y′ + 81y = 0 with y(0) = 0 and y′(0) = 4

(c) 2t2y′′ − ty′ + y = 0 with y(1) = 1 and y′(1) = 0 (y1(t) = t is a solution to the DE)

(a) The characteristic equation here is r2−2r+1 = (r−1)2 = 0, so we expect a solution of the form y(t) = C1e
t +C2te

t .
Then C1 = 1 (from the y(0) = 1 condition), so y′(t) = et +C2(tet + et), so C2 = 0 (from the y′(0) = 1 condition),
for a final solution of y(t) = et .

(b) The characteristic equation here is r2+18r+81 = (r+9)2 = 0, so we expect a solution of the form y(t) = C1e
9t +C2te

9t .
Then C1 = 0, so y′(t) = C2(9te9t + e9t), so C2 = 4 and our final solution is y(t) = 4te9t .

(c) Here, we try a solution of the form y2(t) = tv(t), with y′2(t) = tv′(t) + v(t) and y′′2 (t) = tv′′(t) + (1 + t)v′(t).
Then we get the differential equation 2t3v′′(t) + 4t2v′(t) − t2v′(t) − tv(t) + tv(t) = 2t3v′′(t) + 3t2v′(t) = 0, or
v′′(t) + 1

2t v
′(t) = 0.

Here we can essentially use an integrating factor of µ(t) = t3/2 to get
[
t3/2v′

]′
= 0, so v′ = C̃t−3/2, so v = Ct−1/2 +D,

so ultimately y(t) = C1
√
t +C2t. Then we get C1 +C2 = 1 from the initial value condition and 1

2C1 +C2 = 0
from the initial derivative condition. So, we get C1 = −2C2 and −C2 = 1, so C2 = −1 and C1 = 2, for a final
solution of y(t) = 2

√
t − t.

It’s worth noting that the Wronskian here isW (y1, y2)(t) = t
(

1
2
√
t

)
−
√
t = −1

2

√
t, which is nonzero around t = 1.

We would have problems near zero, which is unsurprising as p(t) = −1
2t is not continuous there.
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Complex Roots: If we have complex roots, e.g. r = α ± βi, we expect solutions of the form y(t) = C1e
αteiβt +

C2e
αte−iβt . Using Euler’s Identity eiθ = cosθ + i sinθ shows that this actually has the (real-valued) solutions

y(t) =D1e
αt cos(βt) +D2e

αt sin(βt), which are often easier to use.

2: Solve these differential equations

(a) y′′ + 4y = 0 with y(0) = 1 and y′(0) = 2

(b) y′′ + 2y′ + 2y = 0 with y(0) = 0 and y′(0) = 1

(c) y′′ + 2y′ + 2y = 0 with y(π) = 1 and y′(π) = 0

(d) y′′ + 4y′ + 13 = 0 with y(0) = 1 and y′(0) = 0

(a) Here, our characteristic equation is r2 + 4r = 0, so the roots are r = ±2i. Thus, we have a general solution
y(t) = C1 cos(2t) + C2 sin(2t). Then C1 = 1 and so y′(t) = −2sin(2t) + 2C2 cos(2t), so C2 = 1 and our final
solution is y(t) = cos(2t) + sin(2t).

(b) Here, our characteristic equation is r2 + 2r + 2 = 0, so the quadratic formula gives r = −1± i. So, our general
solution has the form y(t) = C1e

−t cos(t) +C2e
−t sin(t). Then C1 = 0 and y′(t) = −C2e

−t sin(t) +C2e
−t cos(t), so

C2 = 1 and y(t) = e−t sin(t).

(c) Here, we have the same general solution, so get y(π) = −C1e
−π, or C1 = −eπ, and

y′(t) = eπe−t cos(t) + eπe−t sin(t)−C2e
−t sin(t) +C2e

−t cos(t),

so y′(π) = −1−C2e
−π, or C2 = −eπ. Thus, y(t) = −eπ−t (cos(t) + sin(t)).

(d) Here, the characteristic equation is r2 +4r+13 = 0, so the quadratic formula gives r = −2±3i. So, our general
solution is y(t) = C1e

−2t cos(3t) +C2e
−2t sin(3t). Then C1 = 1, and

y′(t) = −2e−2t cos(3t)− 3e−2t sin(3t)− 2C2e
−2t sin(3t) + 3C2e

−2t cos(3t),

so −2 + 3C2 = 0, or C2 = 2
3 , and thus y(t) = e−2t cos(3t) + 2

3e
−2t sin(3t).
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