Second Order Equations III

The Punch Line: Non-homogeneous equations can be approached by exploiting the homogeneous equation.
Undetermined Coefficients: Given the equation $y^{\prime \prime}+b y^{\prime}+c y=g(t)$, if g is "nice enough" a particular solution can often by found by solving for a y which is a linear combination of g and its derivatives (here "nice enough" essentially means repeated derivatives only result in a finite number of functions with various constants; examples are polynomials, exponentials, and trigonometric functions). If g is a solution to the homogeneous equation, additional factors of t multiplying g and its derivatives may be necessary (for the same reasons they appear in multiple roots).

1: Solve the following differential equations (if there are no initial conditions, give the general solution):
(a) $y^{\prime \prime}-y=e^{2 t}$ with $y(0)=1$ and $y^{\prime}(0)=0$
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=5 \cos (t)+t$ with $y(0)=\frac{9}{2}, y^{\prime}(0)=-\frac{3}{2}$
(b) $y^{\prime \prime}+5 y^{\prime}+6 y=1-t^{2}$
(d) $y^{\prime \prime}+2 y^{\prime}+y=e^{-t}$

Variation of Parameters: If we have a differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ and know that y_{1}, y_{2} are a fundamental set of solutions, we can solve the system in one (complicated) step as

$$
y(t)=-y_{1}(t) \int \frac{y_{2}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} d t+y_{2}(t) \int \frac{y_{1}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} d t
$$

This offloads the difficulty into computing an integral (and the proof, of course).

2: Find the general solutions of these differential equations using variation of parameters (it's for practice, even if undetermined coefficients would be easier; leaving the solutions in integral form is fine here)
(a) $y^{\prime \prime}(t)+y(t)=t$
(b) $t^{2} y^{\prime \prime}(t)+y(t)=\cos (t)$ where $y_{1}(t)=t^{2}$ and $y_{2}(t)=$ t^{-1} is a fundamental set of solutions

