Second Order Equations III

The Punch Line: Non-homogeneous equations can be approached by exploiting the homogeneous equation.
Undetermined Coefficients: Given the equation $y^{\prime \prime}+b y^{\prime}+c y=g(t)$, if g is "nice enough" a particular solution can often by found by solving for a y which is a linear combination of g and its derivatives (here "nice enough" essentially means repeated derivatives only result in a finite number of functions with various constants; examples are polynomials, exponentials, and trigonometric functions). If g is a solution to the homogeneous equation, additional factors of t multiplying g and its derivatives may be necessary (for the same reasons they appear in multiple roots).

1: Solve the following differential equations (if there are no initial conditions, give the general solution):
(a) $y^{\prime \prime}-y=e^{2 t}$ with $y(0)=1$ and $y^{\prime}(0)=0$
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=5 \cos (t)+t$ with $y(0)=\frac{9}{2}, y^{\prime}(0)=-\frac{3}{2}$
(b) $y^{\prime \prime}+5 y^{\prime}+6 y=1-t^{2}$
(d) $y^{\prime \prime}+2 y^{\prime}+y=e^{-t}$
(a) The characteristic equation here is $r^{2}-1=0$, so $r= \pm 1$. Then the homogeneous solution is $y_{h}(t)=C_{1} e^{t}+C_{2} e^{-t}$. We search for a particular solution of the form $y_{p}(t)=A e^{2 t}$: this has $y_{p}^{\prime \prime}(t)=4 A e^{2 t}$, so our differential equation gives $3 A e^{2 t}=e^{2 t}$, so $A=\frac{1}{3}$.
Then the general solution is $y(t)=C_{1} e^{t}+C_{2} e^{-t}+\frac{1}{3} e^{2 t}$. Our first initial condition gives $C_{1}+C_{2}+\frac{1}{3}=1$, and our second that $C_{1}-C_{2}+\frac{2}{3}=0$. Solving these gives $C_{1}=0$ and $C_{2}=\frac{2}{3}$, for a final solution of $y(t)=\frac{1}{3} e^{2 t}+\frac{2}{3} e^{-t}$.
(b) Here the characteristic equation is $r^{2}+5 r+6=(r+2)(r+3)=0$, so the homogeneous solution is $y_{h}(t)=$ $C_{1} e^{-2 t}+C_{2} e^{-3 t}$. For the particular solution, we try $y_{p}(t)=a t^{2}+b t+c$ (the derivatives of $1-t^{2}$ will all be polynomials of degree at most two), with $y_{p}^{\prime}(t)=2 a t+b$ and $y_{p}^{\prime \prime}(t)=2 a$. In the differential equation this gives $2 a+10 a t+5 b+6 a t^{2}+6 b t+6 c=6 a t^{2}+(10 a+6 b) t+(2 a+5 b+6 c)=1-t^{2}$. Equating like powers (starting with t^{2}), we see that $a=-\frac{1}{2}, b=\frac{5}{6}$, and $c=\frac{-13}{36}$. So, the general solution is $y(t)=C_{1} e^{-2 t}+C_{2} e^{-3 t}-\frac{1}{2} t^{2}+\frac{5}{6} t-\frac{13}{36}$.
(c) The characteristic equation is $r^{2}+2 r+2=0$, which has roots at $r=-1 \pm i$, so the general solution to the homogeneous equation is $y_{h}(t)=C_{1} e^{-t} \cos (t)+C_{2} e^{-t} \sin (t)$. We try $y_{p}(t)=A \cos (t)+B \sin (t)+C t+D$, with $y_{p}^{\prime}(t)=-A \sin (t)+B \cos (t)+C$ and $y_{p}^{\prime \prime}(t)=-A \cos (t)-B \sin (t)$; putting these in the DE and solving gives $(A+2 B) \cos (t)+(B-2 A) \sin (t)+2 C t+(2 C+2 D)=5 \cos (t)+t$. Then $B=2 A$ and $A=1$, while $C=\frac{1}{2}$ and $D=-\frac{1}{2}$, so the general solution is

$$
y(t)=C_{1} e^{-t} \cos (t)+C_{2} e^{-t} \sin (t)+\cos (t)+2 \sin (t)+\frac{1}{2}(t-1) .
$$

Our $y(0)$ condition gives $C_{1}+\frac{1}{2}=\frac{9}{2}$, so $C_{1}=4$. Then

$$
y^{\prime}(t)=-4 e^{-t} \sin (t)-4 e^{-t} \cos (t)+C_{2} e^{-t} \cos (t)-C_{2} e^{-t} \sin (t)-\sin (t)+2 \cos (t)+\frac{1}{2}
$$

so $y^{\prime}(0)=-4+C_{2}+2+\frac{1}{2}=-\frac{3}{2}$, so $C_{2}=1$ and our final answer is

$$
y(t)=4 e^{-t} \cos (t)+e^{-t} \sin (t)+\cos (t)+2 \sin (t)+\frac{1}{2}(t-1) .
$$

(d) Our differential equation has characteristic equation $r^{2}+2 r+1=(r+1)^{2}=0$, so the general homogeneous solution is $C_{1} e^{-t}+C_{2} t e^{-t}$. Our $g(t)$ and $t g(t)$ are in this form, so we try $y_{p}(t)=A t^{2} e^{-t}$ (the homogeneous solution will include any e^{-t} or $t e^{-t}$ terms). Putting this through our differential equation gives $\left[\left(A t^{2}-4 A t+2 A\right)+2\left(-A t^{2}+2 A t\right)+\left(A t^{2}\right)\right] e^{-t}=2 A e^{-t}$, so $A=\frac{1}{2}$. This means the general solution to the DE is $y(t)=C_{1} e^{-t}+C_{2} t e^{-t}+\frac{1}{2} t^{2} e^{-t}$.

Variation of Parameters: If we have a differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ and know that y_{1}, y_{2} are a fundamental set of solutions, we can solve the system in one (complicated) step as

$$
y(t)=-y_{1}(t) \int \frac{y_{2}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} d t+y_{2}(t) \int \frac{y_{1}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} d t .
$$

This offloads the difficulty into computing an integral (and the proof, of course).

2: Find the general solutions of these differential equations using variation of parameters (it's for practice, even if undetermined coefficients would be easier; leaving the solutions in integral form is fine here)
(a) $y^{\prime \prime}(t)+y(t)=t$
(b) $t^{2} y^{\prime \prime}(t)+y(t)=\cos (t)$, where $y_{1}(t)=t^{2}$ and $y_{2}(t)=t^{-1}$ is a fundamental set of solutions
(a) Here we recognize $y_{1}(t)=\cos (t), y_{2}(t)=\sin (t)$ as a fundamental set of solutions (by finding the homogeneous solution). Then $W\left(y_{1}, y_{2}\right)(t)=\cos ^{2}(t)+\sin ^{2}(t)=1$, so our solution is

$$
y(t)=-\cos (t) \int t \sin (t) d t+\sin (t) \int t \cos (t) d t
$$

Now, integration by parts gives that $\int t \sin (t) d t=-t \cos (t)+\sin (t)+C$ and $\int t \cos (t) d t=t \sin (t)+\cos (t)+D$ (where C and D are constants of integration), so our final solution is

$$
\begin{aligned}
y(t) & =-\cos (t)[-t \cos (t)+\sin (t)+C]+\sin (t)[t \sin (t)+\cos (t)+D] \\
& =t\left[\cos ^{2}(t)+\sin ^{2}(t)\right]-C \cos (t)+D \sin (t) \\
& =t-C \cos (t)+D \sin (t)
\end{aligned}
$$

which is precisely what we would get by using undetermined coefficients.
(b) Here we get $W\left(y_{1}, y_{2}\right)=t^{2}\left(-t^{-2}\right)-2 t\left(t^{-1}\right)=-3$, so our final solution is

$$
y(t)=-t^{2} \int \frac{t^{-1} \cos (t)}{-3} d t+t^{-1} \int \frac{t^{2} \cos (t)}{-3} d t
$$

We can compute $\int t^{2} \cos (t) d t$ by parts to get $t^{2} \sin (t)+t \cos (t)-\sin (t)+C$, but $\int t^{-1} \cos (t) d t$ doesn't have a solution in terms of elementary functions. So, the best form we can express the general solution in is

$$
y(t)=\frac{t^{2}}{3} \int t^{-1} \cos (t) d t-\frac{t}{3} \sin (t)-\frac{1}{3} \cos (t)+\frac{1}{3 t} \sin (t)-\frac{C}{3 t}
$$

(keeping in mind that the indefinite integral is hiding another constant of integration dependent on initial data).

