Higher Order Equations

The Punch Line: Higher order equations behave essentially like second-order equations with more terms.
Setup: Given a differential equation $a_{n} y^{(n)}+\cdots+a_{0} y=g(t)$, we write down the characteristic equation $a_{n} r^{n}+\cdots+a_{0}=0$. If $r=\lambda$ is a root with multiplicity k (that is, $(r-\lambda)^{k}$ is a term in the factorization of the polynomial), then $\left(C_{1}+\cdots+C_{k} t^{k-1}\right) e^{\lambda t}$ is a term in the general solution. If $r=\alpha \pm i \beta$ is a pair of roots with multiplicity k (that is, a quadratic with those roots appears with multiplicity k in the factorization), then

$$
e^{\alpha t}\left(A_{1} \cos (\mu t)+B_{1} \sin (\mu t)+A_{2} t \cos (\mu t)+B_{2} t \sin (\mu t)+\cdots+A_{k} t^{k-1} \cos (\mu t)+B_{k} t^{k-1} \sin (\mu t)\right)
$$

is a term in the general solution. That is, each solution you'd expect from the characteristic equation is presentthere are simply more of them due to the additional roots higher-order equations have.

Undetermined coefficients works the same way as it does for second order equations. Variation of parameters uses a very similar formula: if $W_{m}(t)$ denotes the Wronskian with the m th column replaced with the vector $\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right]$, then the solution is

$$
y(t)=\sum_{m=1}^{n} y_{m}(t) \int \frac{g(t) W_{m}(t)}{W(t)} d t
$$

1: For each DE, write down the general solution.
(a) $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0$
(c) A homogeneous DE with characteristic polynomial $(r+2)(r+4)^{2}\left(r^{2}+2 r+2\right)^{2}$
(b) $y^{\prime \prime \prime}+y=0$
(d) $y^{(4)}-y=t e^{-t}$

