Spring Systems

The Punch Line: One of the most common DE models is the linear mass-spring system.

Setup: The mass-spring-damper system has the general form $mu'' + \gamma u' + ku = F(t)$, where m, γ , and k are the mass, damping, and spring constants, respectively, and F(t) is an external force. We divide these models into three classes based on the discriminant $\gamma^2 - 4mk$: *underdamped* if $\gamma < \sqrt{4mk}$ (complex roots), *critically damped* if $\gamma = \sqrt{4mk}$ (repeated root), and *overdamped* if $\gamma > \sqrt{4mk}$ (distinct real roots).

1: (Note: in the given units, the gravitational acceleration is 9.8 meters per second squared.)		
 (a) A mass of 10 kilograms is placed on a scale supported by a spring, pushing it down by 1.4 meters (it is a very large scale). Material imperfections in the spring cause it to resist the motion of the mass with a force of 240 newtons (kilogram meters per second squared) when it has a velocity of 3 meters per second squared. 	(b) A particular spring has a spring constant of 100 new- tons per meter (kilograms per second squared) and damping constant of 60 new- tons per meter per sec- ond (kilograms per second). When a particular mass is suspended from this spring, it stretches by 98 centime- ters.	(c) A mass of 2 kilograms is suspended from a spring, stretching it by 2.45 me- ters. You are in charge of choosing a damping constant to make this system criti- cally damped. What damp- ing constant do you choose? What is the general solution to the resulting differential equation?
What is the general solution to this DE? Is it under-, over-, or critically damped?	What is the general solution to this DE? Is it under-, over-, or critically damped?	

(a) We use the differential equation $mu'' + \gamma u' + ku = 0$. Here, m = 10, $3\gamma = 240$, and 10(9.8) = k(1.4), or $\gamma = 80$ and k = 70. So, the differential equation is 10u'' + 80u' + 70u = 0, or

$$u'' + 8u' + 7u = 0.$$

The characteristic equation is $r^2 + 8r + 7 = 0$, or (r+1)(r+7). This has two real roots, so we are overdamped (we can also examine the discriminant $(80)^2 - 4(10)(70) = 3600 > 0$). The general solution is $u(t) = C_1 e^{-t} + C_2 e^{-7t}$.

(b) Here we are given k = 100 and c = 60. We know 9.8m = 100/0.98, or m = 10 kilograms. Then our differential equation is

$$10u'' + 60u' + 100u = 0.$$

Then we get $r^2 + 6r + 10 = 0$ as our characteristic equation, or $r = -3 \pm i$. So, the general solution is $u(t) = e^{-3t} (A \cos(t) + B \sin(t))$. This system is underdamped.

(c) We can solve for *k* first: 9.8(2) = 2.45k, or k = 8. Then our differential equation is 2u'' + cu' + 8u = 0. This is critically damped if $c = \sqrt{4(2)(8)} = \sqrt{64} = 8$. Then our DE is 2u'' + 8u' + 8u = 0, or u'' + 4u' + 4u = 0. So, the characteristic equation is $-2\pm\sqrt{4-16} = -2\pm i\sqrt{12}$. The solution is then $u(t) = e^{-2t} \left(A\cos(t\sqrt{12}) + B\sin(t\sqrt{12})\right)$.