Spring Systems

The Punch Line: One of the most common DE models is the linear mass-spring system.
Setup: The mass-spring-damper system has the general form $m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t)$, where m, γ, and k are the mass, damping, and spring constants, respectively, and $F(t)$ is an external force. We divide these models into three classes based on the discriminant $\gamma^{2}-4 m k$: underdamped if $\gamma<\sqrt{4 m k}$ (complex roots), critically damped if $\gamma=\sqrt{4 m k}$ (repeated root), and overdamped if $\gamma>\sqrt{4 m k}$ (distinct real roots).

1: (Note: in the given units, the gravitational acceleration is 9.8 meters per second squared.)
(a) A mass of 10 kilograms is placed on a scale supported by a spring, pushing it down by 1.4 meters (it is a very large scale). Material imperfections in the spring cause it to resist the motion of the mass with a force of 240 newtons (kilogram meters per second squared) when it has a velocity of 3 meters per second squared.
What is the general solution to this DE? Is it under-, over-, or critically damped?
(b) A particular spring has a spring constant of 100 newtons per meter (kilograms per second squared) and damping constant of 60 newtons per meter per second (kilograms per second). When a particular mass is suspended from this spring, it stretches by 98 centimeters.

What is the general solution to this DE? Is it under-, over-, or critically damped?
(c) A mass of 2 kilograms is suspended from a spring, stretching it by 2.45 meters. You are in charge of choosing a damping constant to make this system critically damped. What damping constant do you choose? What is the general solution to the resulting differential equation?
(a) We use the differential equation $m u^{\prime \prime}+\gamma u^{\prime}+k u=0$. Here, $m=10,3 \gamma=240$, and $10(9.8)=k(1.4)$, or $\gamma=80$ and $k=70$. So, the differential equation is $10 u^{\prime \prime}+80 u^{\prime}+70 u=0$, or

$$
u^{\prime \prime}+8 u^{\prime}+7 u=0
$$

The characteristic equation is $r^{2}+8 r+7=0$, or $(r+1)(r+7)$. This has two real roots, so we are overdamped (we can also examine the discriminant $\left.(80)^{2}-4(10)(70)=3600>0\right)$. The general solution is $u(t)=C_{1} e^{-t}+C_{2} e^{-7 t}$.
(b) Here we are given $k=100$ and $c=60$. We know $9.8 m=100 / 0.98$, or $m=10$ kilograms. Then our differential equation is

$$
10 u^{\prime \prime}+60 u^{\prime}+100 u=0 .
$$

Then we get $r^{2}+6 r+10=0$ as our characteristic equation, or $r=-3 \pm i$. So, the general solution is $u(t)=e^{-3 t}(A \cos (t)+B \sin (t))$. This system is underdamped.
(c) We can solve for k first: $9.8(2)=2.45 k$, or $k=8$. Then our differential equation is $2 u^{\prime \prime}+c u^{\prime}+8 u=0$. This is critically damped if $c=\sqrt{4(2)(8)}=\sqrt{64}=8$. Then our DE is $2 u^{\prime \prime}+8 u^{\prime}+8 u=0$, or $u^{\prime \prime}+4 u^{\prime}+4 u=0$. So, the characteristic equation is $-2 \pm \sqrt{4-16}=-2 \pm i \sqrt{12}$. The solution is then $u(t)=e^{-2 t}(A \cos (t \sqrt{12})+B \sin (t \sqrt{12}))$.

