Systems of Equations

The Punch Line: The behavior of ODEs can be captured by systems of first-order equations.
Setup: Given a differential equation, we can introduce new variables for the various lower-order derivatives in order to write an equivalent system of equations, all of which are first-order. This system will have the form

$$
x^{\prime}(t)=P(t) x(t)+g(t)
$$

(where x and g are vector-valued and P is matrix-valued).

1: Write the following DEs as an equivalent system of first-order equations (it would be instructive to write it in matrix form, if possible).
(a) $u^{\prime \prime}+5 u^{\prime}+6 u=0$
(c) $t^{3} y^{\prime \prime \prime}-6 t y^{\prime}+12 y=2$
(e) $\left[t^{2} u\right]^{\prime \prime}=u$
(b) $2 u^{\prime \prime}+12 u^{\prime}+18 u=t^{2} e^{3 t}$
(d) $\left[e^{t} y^{\prime}+e^{-t} y\right]^{\prime}=0$
(f) $u^{2}+\left(u^{\prime}\right)^{2}=u^{\prime \prime}$

Solving (Simple) Linear Systems: If we have a homogeneous linear system with constant coefficients $x^{\prime}=A x$, and A has n (the dimension of x) real distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ with eigenvectors v_{1}, \ldots, v_{n} respectively, the general solution to the DE is $x(t)=C_{1} e^{\lambda_{1} t} v_{1}+\cdots+C_{n} e^{\lambda_{n} t} v_{n}$ where C_{1}, \ldots, C_{n} are constants (compare with a linear, constant coefficient $n^{\text {th }}$ degree equation).

2: Find the general solutions to these equations:
(a) $x^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] x$
(c) $x^{\prime}=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & 4 & 3 \\ 0 & 18 & 1\end{array}\right] x$
(b) $x^{\prime}=\left[\begin{array}{ll}-2 & -1 \\ -2 & -3\end{array}\right] x$
(d) $x^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

