Quiz-Fourier Transform

(a) What is the Fourier transform of the function f defined by

$$
f(x)= \begin{cases}1, & -1 \leq x \leq 1 \\ 0, & \text { else }\end{cases}
$$

(b) What is the Fourier transform of the function g defined by

$$
g(x)= \begin{cases}x, & -1 \leq x \leq 1 \\ 0 & \text { else }\end{cases}
$$

[Hint: you can use your previous answer and an identity to avoid a second integration.]
Show all work and clearly mark your final answer. No calculators/notes allowed. Partial credit will be given for correctly explaining any steps you're unable to carry out, as well as demonstrating correct methods with computational errors.
(a) We compute

$$
F[f](\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-i \omega x} d x=\frac{1}{\sqrt{2 \pi}}\left[\frac{1}{-i \omega} e^{-i \omega x}\right]_{-1}^{1} \frac{2}{\omega}\left(\frac{e^{i \omega}-e^{-i \omega}}{2 i}\right)=\frac{2}{\sqrt{2 \pi}} \frac{\sin \omega}{\omega}
$$

(b) We know that $g(x)=x f(x)$, so

$$
F[g](\omega)=F[x f](\omega)=i F[-i x f](\omega)=i F[f]^{\prime}(\omega)=\frac{2 i}{\sqrt{2 \pi}}\left(\frac{\cos \omega}{\omega}-\frac{\sin \omega}{\omega^{2}}\right)
$$

We could also have computed directly, of course, which is not much harder. We could not have used the derivative of g, which fails to exist at $x= \pm 1$.

