Green's Theorem

The Punch Line: We get the same result by measuring local rotation in the interior of a region or global rotation around the boundary.

If $D \subset \mathbb{R}^2$ is a (nice) region bounded by the simple closed curve $\vec{c} : [a, b] \to \mathbb{R}^2$, oriented such that the region lies always on the left hand side of the curve, then

$$\int_{\vec{c}} \vec{F} \cdot d\vec{s} = \int_{\vec{c}} P \, dx + Q \, dy = \iint_D \operatorname{curl}(\vec{F}) \, dA$$

for all C^1 vector fields $\vec{F} = (P, Q)$. Here $\operatorname{curl}(\vec{F}) = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix}$ is the scalar curl of the vector field \vec{F} . It is a notion of derivative that measures the "local rotation" of the vector field at each point.

Computational

- (a) Suppose $\vec{F} = x^2 \hat{\imath} + xy \hat{\jmath}$. Compute curl (\vec{F}) , and verify Green's Theorem for $D = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$.
- (b) Use Green's Theorem to compute $\int_{\vec{c}} y^3 dx + x^3 dy$ where \vec{c} is the triangular path from the origin to (R, 0) to (0, R) back to the origin (oriented positively).

Theoretical

- (a) What is $\int_{\vec{c}} P(x) dx + Q(y) dy$?
- (b) Suppose we wanted to compute $\iint_D (x^2 + y^2) dA$ (integrals of this form are related to the *moment of inertia* in physics) for some region *D*. Can we find a vector field \vec{F} such that we can compute this by taking an integral around the boundary of *D*?