Green's Theorem

The Punch Line: We get the same result by measuring local rotation in the interior of a region or global rotation around the boundary.

If $D \subset \mathbb{R}^{2}$ is a (nice) region bounded by the simple closed curve $\vec{c}:[a, b] \rightarrow \mathbb{R}^{2}$, oriented such that the region lies always on the left hand side of the curve, then

$$
\int_{\vec{c}} \vec{F} \cdot d \vec{s}=\int_{\vec{c}} P d x+Q d y=\iint_{D} \operatorname{curl}(\vec{F}) d A
$$

for all \mathcal{C}^{1} vector fields $\vec{F}=(P, Q)$. Here $\operatorname{curl}(\vec{F})=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\left|\begin{array}{cc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q\end{array}\right|$ is the scalar curl of the vector field \vec{F}. It is a notion of derivative that measures the "local rotation" of the vector field at each point.

Computational

(a) Suppose $\vec{F}=x^{2} \hat{\imath}+x y \hat{\jmath}$. Compute curl (\vec{F}), and verify Green's Theorem for $D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$.
(b) Use Green's Theorem to compute $\int_{\vec{c}} y^{3} d x+x^{3} d y$ where \vec{c} is the triangular path from the origin to $(R, 0)$ to $(0, R)$ back to the origin (oriented positively).

Theoretical

(a) What is $\int_{\vec{c}} P(x) d x+Q(y) d y$?
(b) Suppose we wanted to compute $\iint_{D}\left(x^{2}+y^{2}\right) d A$ (integrals of this form are related to the moment of inertia in physics) for some region D. Can we find a vector field \vec{F} such that we can compute this by taking an integral around the boundary of D ?

