Divergence and Stokes' Theorem

The Punch Line: We can also compute flux and circulation by looking at boundary values in three dimensions.
For a region $W \subset \mathbb{R}^{3}$ with boundary surface S, and vector field $\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, we have $\iint_{S} \vec{F} \cdot \hat{n} d A=\iiint_{W} \operatorname{div}(\vec{F}) d V$, where \hat{n} is the outward unit normal vector, and $\operatorname{div}(\vec{F})=\nabla \cdot \vec{F}$ is the divergence.

For a surface $S \subset \mathbb{R}^{3}$ with positive boundary curve \vec{c}, we have $\int_{\vec{c}} \vec{F} \cdot d \vec{s}=\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d A$, where the orientation of \hat{n} depends on the orientation of \vec{c}.

Computational Let W be the region in \mathbb{R}^{3} given in polar coordinates by

$$
W=\left\{(r, \theta, z): 0 \leq r \leq z^{4}, 0 \leq z \leq 1,0 \leq \theta \leq 2 \pi\right\}
$$

with boundary $S=S_{1} \cup S_{2}$ for S_{1} the lower "bowl" surface and S_{2} the upper "flat disc" surface, with outward facing normals. Define $\vec{F}=(x-y z, x z-y, z-x y)$.
(a) Compute $\iint_{S_{1}} \vec{F} \cdot \hat{n} d A$.
(b) Compute $\iint_{S_{1}}(\nabla \times \vec{F}) \cdot \hat{n} d A$.
(c) Compute $\iint_{S_{2}}(\nabla \times \vec{F}) \cdot \hat{n} d A$.
(a) We first use the Divergence Theorem to write

$$
\iint_{S_{1}} \vec{F} \cdot \hat{n} d A=\iiint_{W} \operatorname{div}(\vec{F}) d V-\iint_{S_{2}} \vec{F} \cdot \hat{n} d A
$$

To make use of this result, we compute $\operatorname{div}(\vec{F})=1$, and note that on S_{2}, we have $\hat{n}=\hat{k}$, the unit vector parallel to the positive z axis. Then we compute

$$
\begin{aligned}
\iiint_{W} \operatorname{div}(\vec{F}) d V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{z^{4}} r d r d z d \theta=\int_{0}^{2 \pi} \int_{0}^{1} \frac{1}{2} z^{8} d z d \theta=\int_{0}^{2 \pi} \frac{1}{18} d \theta=\frac{\pi}{9} \\
\iint_{S_{2}} \vec{F} \cdot \hat{n} d A & =\int_{0}^{2 \pi} \int_{0}^{1}\left(r \cos \theta-r \sin \theta, r \cos \theta-r \sin \theta, 1-r^{2} \cos \theta \sin \theta\right) \cdot(0,0,1) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r-r^{3} \cos \theta \sin \theta d r d \theta=\int_{0}^{2 \pi} \frac{1}{2}-\frac{1}{8} \sin 2 \theta d \theta=\pi
\end{aligned}
$$

Thus, the integral we are interested in is $\iint_{S_{1}} \vec{F} \cdot \hat{n} d A=\frac{\pi}{9}-\pi=-\frac{8}{9} \pi$.
(b) The curve $\vec{c}(\theta)=(\cos \theta,-\sin \theta, 1)$ for $0 \leq \theta \leq 2 \pi$ traverses a circular path at height one in the clockwise direction, so it is a positively oriented boundary curve for S_{1}. It has tangent vector $\vec{c}(\theta)=(-\sin \theta,-\cos \theta, 0)$. This allows us to use Stokes' Theorem to compute

$$
\begin{aligned}
\iint_{S_{1}}(\nabla \times \vec{F}) \cdot \hat{n} d A=\int_{\vec{c}} \vec{F} \cdot d \vec{s} & =\int_{0}^{2 \pi}(\cos \theta+\sin \theta, \cos \theta+\sin \theta, 1+\cos \theta \sin \theta) \cdot(-\sin \theta,-\cos \theta, 0) d \theta \\
& =\int_{0}^{2 \pi}-\sin ^{2} \theta-\cos ^{2} \theta-2 \cos \theta \sin \theta d \theta=\int_{0}^{2 \pi}-1-\sin 2 \theta d \theta=-2 \pi
\end{aligned}
$$

(c) The curve \vec{c} above has a negative orientation for the region S_{2}, so our answer is simply $\iint_{S_{2}}(\nabla \times \vec{F}) d A=2 \pi$.

Theoretical

(a) Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a differentiable function and $S(k)=\{\vec{x}: f(\vec{x})=k\}$ denotes the level surface for value $k \in \mathbb{R}$. What is the unit normal vector to the surface $S(k)$? (There are two possible answers.)
(b) With the setup above, suppose $W(k)=\{\vec{x}: f(\vec{x}) \leq k\}$ is a closed and bounded region (which then has boundary $S(k)$; this can arise with functions like $f(\vec{x})=\|\vec{x}\|^{2}$). Compute $\iiint_{W(k)} \Delta f d V$ (where $\Delta f=\nabla \cdot \nabla f$) using the Divergence Theorem to conclude that it is nonnegative, and positive if k is not the maximum value of f.
(c) Use the Divergence Theorem to prove the following integration by parts formula for a closed and bounded region W with boundary S, and $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ differentiable functions:

$$
\iiint_{W} f \Delta g d V=\iint_{S} f \nabla g \cdot \hat{n} d A-\iiint_{W} \nabla f \cdot \nabla g d V
$$

You may need the product rule $\operatorname{div}(f \vec{F})=\nabla f \cdot \vec{F}+f \operatorname{div}(\vec{F})$ for a differentiable scalar function f and vector field \vec{F}.
(a) We know that ∇f will be everywhere orthogonal to $S(k)$ for fixed k, because it is the direction along which the function changes. Thus, the unit normal vectors are $\pm\|\nabla f\|^{-1} \nabla f$. This of course has singularities if the gradient vanishes, requiring more involved analysis (beyond the intended scope of this exercise).
(b) Taking $\vec{F}=\nabla f$, we use the Divergence Theorem to compute (with the outward facing normal)

$$
\iiint_{W(k)} \Delta f d V=\iint_{S(k)} \nabla f \cdot\left(\|\nabla f\|^{-1} \nabla f\right) d A=\iint_{S(k)}\|\nabla f\| d A
$$

(assuming that on the surface any singularities are removable, and generally the integral makes sense; this can fail to be true if e.g. $f=k$ on some solid region with positive volume). The integrand on the right hand side is nonnegative, so the triple integral must be as well. If k is not the maximum value of f, for some $\vec{x} \in S(k)$ we will have $\nabla f(\vec{x}) \neq \overrightarrow{0}$, hence $\|\nabla f(\vec{x})\|>0$, hence the integral will be positive. It's worth noting that if k is the maximum value of f, the region $S(k)$ will quite possibly not be a surface; we actually require stronger conditions on f than provided here for everything to be properly well-behaved, and it's worth thinking about what they are.
(c) We put $\vec{F}=f \nabla g$. Then $\operatorname{div}(\vec{F})=\nabla f \cdot \nabla g+f \Delta g$ by the product rule above. This allows us to compute

$$
\iint_{S} f \nabla g \cdot \hat{n} d A=\iiint_{W} \nabla f \cdot \nabla g+f \Delta g d V
$$

and rearranging gives the integration by parts formula.

