
Math 6B

Divergence and Stokes’ Theorem
The Punch Line: We can also compute flux and circulation by looking at boundary values in three dimensions.

For a regionW ⊂ R3 with boundary surface S, and vector field ~F : R3→ R3, we have
!
S
~F · n̂dA =

#
W

div(~F)dV ,

where n̂ is the outward unit normal vector, and div(~F) = ∇ · ~F is the divergence.
For a surface S ⊂ R3 with positive boundary curve ~c, we have

∫
~c
~F · d~s =

!
S

(∇× ~F) · n̂dA, where the orientation
of n̂ depends on the orientation of ~c.

Computational Let W be the region in R3 given in polar coordinates by

W =
{
(r,θ,z) : 0 ≤ r ≤ z4, 0 ≤ z ≤ 1, 0 ≤ θ ≤ 2π

}
,

with boundary S = S1∪S2 for S1 the lower “bowl” surface and S2 the upper “flat disc” surface, with outward
facing normals. Define ~F = (x − yz,xz − y,z − xy).

(a) Compute
!
S1
~F · n̂dA.

(b) Compute
!
S1

(∇× ~F) · n̂dA.

(c) Compute
!
S2

(∇× ~F) · n̂dA.

(a) We first use the Divergence Theorem to write"
S1

~F · n̂dA =
$

W
div(~F)dV −

"
S2

~F · n̂dA.

To make use of this result, we compute div(~F) = 1, and note that on S2, we have n̂ = k̂, the unit vector parallel
to the positive z axis. Then we compute$

W
div(~F)dV =

∫ 2π

0

∫ 1

0

∫ z4

0
r dr dzdθ =

∫ 2π

0

∫ 1

0

1
2
z8 dzdθ =

∫ 2π

0

1
18
dθ =

π
9
,"

S2

~F · n̂dA =
∫ 2π

0

∫ 1

0
(r cosθ − r sinθ,r cosθ − r sinθ,1− r2 cosθ sinθ) · (0,0,1)r dr dθ

=
∫ 2π

0

∫ 1

0
r − r3 cosθ sinθdr dθ =

∫ 2π

0

1
2
− 1

8
sin2θdθ = π.

Thus, the integral we are interested in is
!
S1
~F · n̂dA = π

9 −π = −8
9π.

(b) The curve ~c(θ) = (cosθ,−sinθ,1) for 0 ≤ θ ≤ 2π traverses a circular path at height one in the clockwise
direction, so it is a positively oriented boundary curve for S1. It has tangent vector ~c′(θ) = (−sinθ,−cosθ,0).
This allows us to use Stokes’ Theorem to compute"

S1

(∇× ~F) · n̂dA =
∫
~c

~F · d~s =
∫ 2π

0
(cosθ + sinθ,cosθ + sinθ,1 + cosθ sinθ) · (−sinθ,−cosθ,0)dθ

=
∫ 2π

0
−sin2θ − cos2θ − 2cosθ sinθdθ =

∫ 2π

0
−1− sin2θdθ = −2π.

(c) The curve ~c above has a negative orientation for the region S2, so our answer is simply
!
S2

(∇× ~F)dA = 2π.
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Theoretical

(a) Suppose f : R3 → R is a differentiable function and S(k) =
{
~x : f (~x) = k

}
denotes the level surface for

value k ∈ R. What is the unit normal vector to the surface S(k)? (There are two possible answers.)

(b) With the setup above, suppose W (k) =
{
~x : f (~x) ≤ k

}
is a closed and bounded region (which then has

boundary S(k); this can arise with functions like f (~x) =
∥∥∥~x∥∥∥2

). Compute
#

W (k)∆f dV (where ∆f = ∇·∇f )
using the Divergence Theorem to conclude that it is nonnegative, and positive if k is not the maximum
value of f .

(c) Use the Divergence Theorem to prove the following integration by parts formula for a closed and
bounded region W with boundary S, and f ,g : R3→ R differentiable functions:$

W
f ∆g dV =

"
S
f ∇g · n̂dA−

$
W
∇f · ∇g dV .

You may need the product rule div(f ~F) = ∇f · ~F + f div(~F) for a differentiable scalar function f and
vector field ~F.

(a) We know that ∇f will be everywhere orthogonal to S(k) for fixed k, because it is the direction along which
the function changes. Thus, the unit normal vectors are ±‖∇f ‖−1∇f . This of course has singularities if the
gradient vanishes, requiring more involved analysis (beyond the intended scope of this exercise).

(b) Taking ~F = ∇f , we use the Divergence Theorem to compute (with the outward facing normal)$
W (k)

∆f dV =
"

S(k)
∇f · (‖∇f ‖−1∇f )dA =

"
S(k)
‖∇f ‖ dA

(assuming that on the surface any singularities are removable, and generally the integral makes sense; this
can fail to be true if e.g. f = k on some solid region with positive volume). The integrand on the right
hand side is nonnegative, so the triple integral must be as well. If k is not the maximum value of f , for
some ~x ∈ S(k) we will have ∇f (~x) , ~0, hence

∥∥∥∇f (~x)
∥∥∥ > 0, hence the integral will be positive. It’s worth

noting that if k is the maximum value of f , the region S(k) will quite possibly not be a surface; we actually
require stronger conditions on f than provided here for everything to be properly well-behaved, and it’s
worth thinking about what they are.

(c) We put ~F = f ∇g. Then div(~F) = ∇f · ∇g + f ∆g by the product rule above. This allows us to compute"
S
f ∇g · n̂dA =

$
W
∇f · ∇g + f ∆g dV ,

and rearranging gives the integration by parts formula.
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