Sequences I

The Punch Line: We can evaluate limiting behavior of sequences by comparing them to known sequences.
A sequence is a function whose domain is (a subset of) the integers, usually into the reals. If $\left\{a_{n}\right\}$ is a sequence, it has a limit $L=\lim _{n \rightarrow \infty} a_{n}$ if for every real $\epsilon>0$ there exists an integer $N>0$ such that if $n \geq N$, then $\left|a_{n}-L\right|<\epsilon$. A sequence can fail to have a limit, in which case it is said to diverge.

Computational Compute the limits of the given sequences, or prove that they diverge.
(a) $a_{n}=\left(1+\frac{1}{n}\right)^{\frac{1}{n}}$
(b) $a_{n}=\frac{\left(\frac{\sin x+\cos x}{2}\right)^{n}}{n+1}$ for fixed x (does your answer depend on x ?)
(c) $a_{n}=\frac{e^{1+\frac{1}{n}}}{n}+\frac{e^{1+\frac{2}{n}}}{n}+\cdots+\frac{e^{1+\frac{n}{n}}}{n}$
(d) $a_{n}=\frac{n^{2} \sin \left(\frac{n \pi}{2}\right)}{n^{2}+1}$
(a) We observe that $a_{n} \geq 1^{\frac{1}{n}}=1$, so $L=\lim _{n \rightarrow \infty} a_{n} \geq 1$. Also, $a_{n} \leq 2^{\frac{1}{n}}$, so $L=\lim _{n \rightarrow \infty} a_{n} \leq 1$. Thus, $L=1$.
(b) Since $\left|\frac{\sin x+\cos x}{2}\right| \leq 1$, we have that $\left|a_{n}\right| \leq \frac{1}{n+1}$. Thus, $\lim _{n \rightarrow \infty}\left|a_{n}\right| \leq 0$, so it must be equal to zero (it is composed of nonnegative terms), so $\lim _{n \rightarrow \infty} a_{n}=0$ as well.
(c) Writing this as $a_{n}=\sum_{k=1}^{n} \frac{1}{n} e^{1+\frac{k}{n}}$, we recognize this as a right Riemann sum for the integral $\int_{1}^{2} e^{x} d x$. This integral converges, so the Riemann sum must also converge; it then has the value $\lim _{n \rightarrow \infty} a_{n}=\int_{1}^{2} e^{x} d x=e^{2}-e$.
(d) We first divide both numerator and denominator by n^{2} to obtain $a_{n}=\frac{\sin \left(\frac{n \pi}{2}\right)}{1+\frac{1}{n^{2}}}$. If $n=1,5,9,13, \ldots$, then $a_{n}=\frac{1}{1+\frac{1}{n^{2}}}$, so the limit of these terms is 1 . If $n=3,7,11,15, \ldots$, then $a_{n}=\frac{-1}{1+\frac{1}{n^{2}}}$, so the limit of these terms is -1 . Thus, a_{n} diverges, because for any $N>0$, there are $n>N$ with a_{n} close to 1 and also $n>N$ with a_{n} close to -1 .

Theoretical

(a) Suppose $a_{n+2}-\frac{5}{2} a_{n+1}+a_{n}=0$ defines a sequence a_{n}, and suppose $\lim _{n \rightarrow \infty} a_{n}=L$ (that is, the sequence a_{n} converges). What must L be? Is there a sequence a_{n} satisfying the relation above which diverges?
(b) Suppose $\lim _{n \rightarrow \infty} a_{n}=L$. Prove that, given $\epsilon>0$, there is an integer $N>0$ such that if $n, m>N$, we have $\left|a_{n}-a_{m}\right|<\epsilon$.
(c) Suppose $\lim _{n \rightarrow \infty} a_{n}=L$. Does the sequence $b_{n}=\frac{1}{n} \sum_{k=1}^{n} a_{k}$ converge, and if so to what?
(a) If $\lim _{n \rightarrow \infty} a_{n}=L$, then L is also the limit of a_{n+1} and a_{n+2} (these are just translates of the original sequence). Taking the limit of the defining relation then gives that $L-\frac{5}{2} L+L=0$, so $\frac{-1}{2} L=0$, so $L=0$ if it exists. However, if $a_{n}=2^{n}$, then $a_{n+1}=2\left(2^{n}\right)$ and $a_{n+2}=4\left(2^{n}\right)$, so $a_{n+2}-\frac{5}{2} a_{n+1}+a_{n}=(4-5+1) 2^{n}=0$, and 2^{n} does not converge.
(b) If we are given $\epsilon>0$, by assumption we may find $N>0$ such that if $n, m>N$ we have $\left|a_{n}-L\right|<\frac{1}{2} \epsilon$ and $\left|a_{m}-L\right|<\frac{1}{2} \epsilon$. Then $\left|a_{n}-a_{m}\right|=\left|\left(a_{n}-L\right)-\left(a_{m}-L\right)\right| \leq\left|a_{n}-L\right|+\left|a_{m}-L\right|=\epsilon$.
(c) We know for any $\epsilon>0$ there exists $N>0$ such that if $n>N$, we have $\left|a_{n}-L\right|<\epsilon$. We claim $\lim _{n \rightarrow \infty} b_{n}=L$ as well. We will show $\lim _{n \rightarrow \infty}\left|b_{n}-L\right|=0$, which will imply this result. We can write $\left|b_{n}-L\right|=\frac{1}{n} \sum_{k=1}^{n}\left|a_{k}-L\right|$.
Fix $\epsilon>0$, and choose $N>0$ such that if $n>N$, we have $\left|a_{n}-L\right|<\epsilon$. Let $M=\max \left\{\left|a_{k}-L\right|: 1 \leq k \leq N\right\}$. Then (if $n>N$) we have $\left|b_{n}-L\right|=\frac{1}{n} \sum_{k=1}^{N}\left|a_{k}-L\right|+\frac{1}{n} \sum_{k=N+1}^{n}\left|a_{k}-L\right| \leq \frac{M}{n}+\frac{(n-N-1) \epsilon}{n}$. Taking the limit as $n \rightarrow \infty$ gives $\lim _{n \rightarrow \infty}\left|b_{n}-L\right| \leq \lim _{n \rightarrow \infty} \frac{M}{n}+\lim _{n \rightarrow \infty} \frac{(n-N-1) \epsilon}{n}=0+\epsilon=\epsilon$. This is true for all choices of ϵ, so $\lim _{n \rightarrow \infty}\left|b_{n}-L\right|=0$.

