Sequences I

The Punch Line: We can evaluate limiting behavior of sequences by comparing them to known sequences.
A sequence is a function whose domain is (a subset of) the integers, usually into the reals. If $\left\{a_{n}\right\}$ is a sequence, it has a limit $L=\lim _{n \rightarrow \infty} a_{n}$ if for every real $\epsilon>0$ there exists an integer $N>0$ such that if $n \geq N$, then $\left|a_{n}-L\right|<\epsilon$. A sequence can fail to have a limit, in which case it is said to diverge.

Computational Compute the limits of the given sequences, or prove that they diverge.
(a) $a_{n}=\left(1+\frac{1}{n}\right)^{\frac{1}{n}}$
(b) $a_{n}=\frac{\left(\frac{\sin x+\cos x}{2}\right)^{n}}{n+1}$ for fixed x (does your answer depend on x ?)
(c) $a_{n}=\frac{e^{1+\frac{1}{n}}}{n}+\frac{e^{1+\frac{2}{n}}}{n}+\cdots+\frac{e^{1+\frac{n}{n}}}{n}$
(d) $a_{n}=\frac{n^{2} \sin \left(\frac{n \pi}{2}\right)}{n^{2}+1}$

Theoretical

(a) Suppose $a_{n+2}-\frac{5}{2} a_{n+1}+a_{n}=0$ defines a sequence a_{n}, and suppose $\lim _{n \rightarrow \infty} a_{n}=L$ (that is, the sequence a_{n} converges). What must L be? Is there a sequence a_{n} satisfying the relation above which diverges?
(b) Suppose $\lim _{n \rightarrow \infty} a_{n}=L$. Prove that, given $\epsilon>0$, there is an integer $N>0$ such that if $n, m>N$, we have $\left|a_{n}-a_{m}\right|<\epsilon$.
(c) Suppose $\lim _{n \rightarrow \infty} a_{n}=L$. Does the sequence $b_{n}=\frac{1}{n} \sum_{k=1}^{n} a_{k}$ converge, and if so to what?

