Sequences I

The Punch Line: We can evaluate limiting behavior of sequences by comparing them to known sequences.

A sequence is a function whose domain is (a subset of) the integers, usually into the reals. If $\{a_n\}$ is a sequence, it has a *limit* $L = \lim_{n\to\infty} a_n$ if for every real $\epsilon > 0$ there exists an integer N > 0 such that if $n \ge N$, then $|a_n - L| < \epsilon$. A sequence can fail to have a limit, in which case it is said to *diverge*.

Computational Compute the limits of the given sequences, or prove that they diverge.

(a) $a_n = \left(1 + \frac{1}{n}\right)^{\frac{1}{n}}$ (b) $a_n = \frac{\left(\frac{\sin x + \cos x}{2}\right)^n}{n+1}$ for fixed *x* (does your answer depend on *x*?) (c) $a_n = \frac{e^{1+\frac{1}{n}}}{n} + \frac{e^{1+\frac{2}{n}}}{n} + \dots + \frac{e^{1+\frac{n}{n}}}{n}$ (d) $a_n = \frac{n^2 \sin(\frac{n\pi}{2})}{n^{2+1}}$

Theoretical

- (a) Suppose $a_{n+2} \frac{5}{2}a_{n+1} + a_n = 0$ defines a sequence a_n , and suppose $\lim_{n \to \infty} a_n = L$ (that is, the sequence a_n converges). What must *L* be? Is there a sequence a_n satisfying the relation above which diverges?
- (b) Suppose $\lim_{n\to\infty} a_n = L$. Prove that, given $\epsilon > 0$, there is an integer N > 0 such that if n, m > N, we have $|a_n a_m| < \epsilon$.
- (c) Suppose $\lim_{n\to\infty} a_n = L$. Does the sequence $b_n = \frac{1}{n} \sum_{k=1}^n a_k$ converge, and if so to what?