Series I

The Punch Line: Series are analyzed in terms of their partial sums.
A series is the sum of a sequence, which is really a sequence of partial sums. If the partial sums converge, we say the series converges; likewise if it diverges. Important series are geometric series of the form $\sum a r^{n}$, and telescoping series of the form $\sum a_{n+1}-a_{n}$.

Computational Compute the limits of the given series, or prove that they diverge.
(a) $\sum_{n=3}^{\infty}\left(\frac{e}{\pi}\right)^{n}$
(d) $\sum_{n=1}^{\infty} \frac{2^{3-2 n}+2^{2-3 n}}{5^{1-n}}$
(b) $\sum_{n=5}^{\infty} n e^{n}$
(e) $\sum_{n=1}^{\infty} 2^{-n} \sin (n \pi / 2)$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}-\frac{1}{n^{2}+2 n+2}$
(f) $\sum_{n=7}^{\infty} \frac{2}{n^{2}-1}$
(a) This is a modified geometric series; we re-index it with $n=m+3$ to get $\sum_{m=0}^{\infty}\left(\frac{e}{\pi}\right)^{m+3}$. To put it into the notation above, we have $a=\left(\frac{e}{\pi}\right)^{3}$ and $r=\frac{e}{\pi}$. We know geometric series have the limit $\frac{a}{1-r}$ if $|r|<1$, and diverge if $r>1$. Here, $|r|<1$, so our limit is $\frac{\left(\frac{e}{\pi}\right)^{3}}{1-\frac{e}{\pi}}=\frac{e^{3}}{\pi^{2}(\pi-e)}$.
(b) Each term in this sequence is bounded below by $5 e^{n}$, so the $N^{\text {th }}$ partial sum is bounded below by $\sum_{n=5}^{N} 5 e^{N}=\frac{5\left(e^{N}-1\right)}{e-1}$. This diverges, so the given series must as well.
(c) We recognize the denominator in the second term as $(n+1)^{2}+1$, so this is really the telescoping sum $-\sum_{n=1}^{\infty}\left(\frac{1}{(n+1)^{2}+1}-\frac{1}{n^{2}+1}\right)$. Thus, the $N^{\text {th }}$ partial sum is $S_{N}=\frac{1}{2}-\frac{1}{(N+1)^{2}+1}$, so the limit of the partial sums is $\frac{1}{2}$.
(d) We simplify this to the series $\sum_{n=1}^{\infty}\left(\frac{8}{5}\left(\frac{5}{4}\right)^{n}+\frac{4}{5}\left(\frac{5}{8}\right)^{n}\right)$, which has the divergent part with base $\frac{5}{4}>1$, hence diverges.
(e) Here, we have several cases: if n is even, then $\sin (n \pi / 2)=0$. If $n=1+4 k$, then $\sin (n \pi / 2)=1$, and if $n=3+4 k$ then $\sin (n \pi / 2)=-1$. So, we can re-write our series as $\sum_{k=0}^{\infty} 2^{-1-4 k}-\sum_{k=0}^{\infty} 2^{-3-4 k}=\sum_{k=0}^{\infty}\left(2^{-1}-2^{-3}\right) 2^{-4 k}$. This is $\frac{3}{8} \sum_{k=0}^{\infty} 16^{-k}=\frac{3}{8} \frac{1}{1-16^{-1}}=\frac{2}{5}$.
(f) We write $\frac{2}{n^{2}-1}=\frac{2}{(n+1)(n-1)}=\frac{1}{n-1}-\frac{1}{n+1}$. Examining the even terms $n=2 k$ gives terms $\frac{1}{2 k-1}-\frac{1}{2 k+1}=\frac{-1}{2(k+1)-1}-\frac{-1}{2 k-1}$, and examining the odd terms $n=2 k+1$ gives terms $\frac{1}{2 k}-\frac{1}{2 k+2}=\frac{-1}{2(k+1)}-\frac{-1}{2 k}$. Thus, our series is the sum of the two telescoping series of even and odd terms, $\sum_{n=7}^{\infty} \frac{2}{n^{2}-1}=\sum_{k=4}^{\infty}\left(\frac{-1}{2(k+1)-1}-\frac{-1}{2 k-1}\right)+\sum_{k=3}^{\infty}\left(\frac{-1}{2(k+1)}-\frac{-1}{2 k}\right)=\frac{1}{7}+\frac{1}{6}=\frac{13}{42}$.

Theoretical

(a) Suppose $\sum_{n=0}^{\infty} a_{n}$ converges. Does the series $\sum_{n=N}^{\infty} a_{n}$ always converge for fixed $N>0$? What can we say about its limit when it does?
(b) Suppose $\sum_{n=0}^{\infty} a_{n}$ converges. Does the sequence $R_{N}=\sum_{n=N}^{\infty} a_{n}$ always converge? What can we say about its limit when it does?
(c) Suppose a_{n} is a sequence of positive real numbers. Can $\sum_{N=0}^{\infty} \sum_{n=0}^{N} a_{n}$ converge?
(a) Yes-the partial sums of the series are the partial sums of the original series minus the first $N-1$ terms. We know the partial sums converge, so the difference between the partial sums and a constant sequence also converges, to the difference between the limit and that constant. So, $\sum_{n=N}^{\infty} a_{n}=\sum_{n=0}^{\infty} a_{n}-\sum_{n=0}^{N-1} a_{n}$.
(b) Yes—put $S_{N}=\sum_{n=0}^{N} a_{n}$ for the partial sums, and $S=\lim _{N \rightarrow \infty} S_{N}$ for the limit of the convergent series. Then $R_{N}=S-S_{N}$. By the definition of limit, for every $\epsilon>0$ there is an $M>0$ such that if $N>M$, we have $\left|S-S_{N}\right|=\left|R_{N}-0\right|<\epsilon$. Thus, $\lim _{N \rightarrow \infty} R_{N}=0$.
(c) No-since each $a_{n}>0$, we have the partial sums $S_{N}=\sum_{n=0}^{N} a_{n}$ are increasing, as $S_{N+1}-S_{N}=a_{N+1}>0$. Then the $M^{\text {th }}$ partial sum of the overall series $\sum_{N=0}^{M} S_{N}>\sum_{N=0}^{M} S_{0}=M S_{0}$, so the limit is $\lim _{M \rightarrow \infty} M S_{0}=S_{0} \lim _{M \rightarrow \infty} M$, which diverges to infinity (noting that $S_{0}=a_{0}>0$).

