Math 6B

Series 1

The Punch Line: Series are analyzed in terms of their partial sums.

A series is the sum of a sequence, which is really a sequence of partial sums. If the partial sums converge,
we say the series converges; likewise if it diverges. Important series are geometric series of the form ) ar", and
telescoping series of the form ) a,,; —a,

Computational Compute the limits of the given series, or prove that they diverge.
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(a) Thisis a modified geometric series; we re-index it with n = m+3 to get )_ (E)
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above, we have a = (;) and r =

Here, |r| <1, so our limit is T+
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(b) Each term in this sequence is bounded below by 5¢", so the N'! partial sum is bounded below by ¥ 5eV =

£ . To put it into the notation

£ . We know geometric series have the limit 1% if |r| < 1, and diverge if r > 1.

_8
ni2(m—e)”

A
|
~
:Hm 5

5(eN-1)
e—1

n=>5

This diverges, so the given series must as well.

(c) We recognize the denominator in the second term as (n
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(d) We simplify this to the series E (%(

diverges.

(e) Here, we have several cases: if n is even, then sin(n7/2) =

then sin(n7t/2)
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two telescoping series of even and odd terms, Z
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and examlnlng the odd terms n = 2k + 1 gives terms ﬁ -

1)? + 1, so this is really the telescoping sum
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0. If n =1+ 4k, then sin(nn/2) =1, and if n = 3+ 4k
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Theoretical

(o] (o]
(a) Suppose ) a, converges. Does the series ) a, always converge for fixed N > 0?2 What can we say
n=0 n=N
about its limit when it does?
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(b) Suppose Z a, converges. Does the sequence Ry = Z a, always converge? What can we say about its
n=N
limit when it does?
oo N
(c) Suppose a,, is a sequence of positive real numbers. Can ) Y a4, converge?
N=01=0

(a) Yes—the partial sums of the series are the partial sums of the original series minus the first N — 1 terms. We
know the partial sums converge, so the difference between the partial sums and a Constant sequence also

converges, to the difference between the limit and that constant. So, ): a, = Z a, — Z a,.
n=N n=0 n=0

(b) Yes—put Sy = Z a, for the partial sums, and S = hm Sy for the limit of the convergent series. Then

Ry =S -Sy. By the definition of limit, for every e > O there is an M > 0 such that if N > M, we have
IS —Sn|=|Ry — 0| < €. Thus, I\}lm Ry =0.
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(c) No—since each a,, > 0, we have the partial sums Sy = }_ a, are increasing, as Sy1 — Sy = an41 > 0. Then
n=0
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the M partial sum of the overall series Y Sy > Y So=MS,, so the limit is A}Iim MSy =S, Nllim M, which
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diverges to infinity (noting that Sy = ag > 0).



