Series I

The Punch Line: Series are analyzed in terms of their partial sums.
A series is the sum of a sequence, which is really a sequence of partial sums. If the partial sums converge, we say the series converges; likewise if it diverges. Important series are geometric series of the form $\sum a r^{n}$, and telescoping series of the form $\sum a_{n+1}-a_{n}$.

Computational Compute the limits of the given series, or prove that they diverge.
(a) $\sum_{n=3}^{\infty}\left(\frac{e}{\pi}\right)^{n}$
(d) $\sum_{n=1}^{\infty} \frac{2^{3-2 n}+2^{2-3 n}}{5^{1-n}}$
(b) $\sum_{n=5}^{\infty} n e^{n}$
(e) $\sum_{n=1}^{\infty} 2^{-n} \sin (n \pi / 2)$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}-\frac{1}{n^{2}+2 n+2}$
(f) $\sum_{n=7}^{\infty} \frac{2}{n^{2}-1}$

Theoretical

(a) Suppose $\sum_{n=0}^{\infty} a_{n}$ converges. Does the series $\sum_{n=N}^{\infty} a_{n}$ always converge for fixed $N>0$? What can we say about its limit when it does?
(b) Suppose $\sum_{n=0}^{\infty} a_{n}$ converges. Does the sequence $R_{N}=\sum_{n=N}^{\infty} a_{n}$ always converge? What can we say about its limit when it does?
(c) Suppose a_{n} is a sequence of positive real numbers. Can $\sum_{N=0}^{\infty} \sum_{n=0}^{N} a_{n}$ converge?

