Math 6B

Series 11

The Punch Line: We can apply various tests to attempt to determine convergence. Important ones are the
ratio test (examining lim,,_,, “2;1) and the root test (examining lim,,_,, {/a,,) for series with positive terms, and

the integral test (examining J::f dx) for series with positive decreasing terms.

Computational Compute the limits of the given series, or prove that they diverge.
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(a) We use the ratio test, computing
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so the series diverges.

(b) We use the root test, computing
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so the series converges.
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(c) We write this as ) (n:r%)" + (2152{)171) Now, we could re-index with m = n+ 1 to obtain a p-series with p = t. We
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can also directly use the integral test, examining
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which is finite, so the series converges.
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(d) We examine the series whose terms are the absolute values of the given series. Thisis ) n?}m The denom-
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inator satisfies n?Inn > n? for n > 2 (not for n = 2, but that won’t harm convergence), so the terms satisfy

L_ <1 and the latter forms a convergent series. Thus, the given series is convergent.
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Challenging
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(a) The numerator is always bounded below by 1. The denominator consists of the tails of a convergent series,
and so forms a sequence b,, converging to zero (from above). Thus, the sequence of terms is bounded below
by b;,!, a sequence which diverges to infinity. Thus the series diverges to infinity.
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(b) For any fixed 1, we have ng’:n(l)m — " _n
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. Then we are left with } *, ©—-. The terms are bounded
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above by n!™" < n27". Applying the ratio test to this, we examine lim,,_,, o = lim, 5 =5

Thus, it converges.



