Series II

The Punch Line: We can apply various tests to attempt to determine convergence. Important ones are the ratio test (examining $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$) and the root test (examining $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$) for series with positive terms, and the integral test (examining $\int_{N}^{\infty} f d x$) for series with positive decreasing terms.

Computational Compute the limits of the given series, or prove that they diverge.

(a) $\sum_{n=0}^{\infty} \frac{(2 n)!}{(2 n)^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{1+2 n}{(n+1)^{n}}$
(b) $\sum_{n=1}^{\infty} n^{-2 n}$
(d) $\sum_{n=2}^{\infty} \frac{\sin (n)}{n^{2} \ln n}$
(a) We use the ratio test, computing

$$
\lim _{n \rightarrow \infty} \frac{\frac{(2 n+2)!}{(2 n+2)^{n+1}}}{\frac{(2 n)!}{(2 n)^{n}}}=\lim _{n \rightarrow \infty} \frac{2^{n} n^{n}}{2^{n}(2 n+2)(n+1)^{n}} \frac{(2 n+2)(2 n+1)(2 n)!}{(2 n)!}=\lim _{n \rightarrow \infty}(2 n+1)\left(\frac{n}{n+1}\right)^{n}=\infty,
$$

so the series diverges.
(b) We use the root test, computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{-2 n}}=\lim _{n \rightarrow \infty} n^{-2}=0
$$

so the series converges.
(c) We write this as $\sum_{n=1}^{\infty} \frac{-1}{(n+1)^{\pi}}+\frac{2(n+1)}{(n+1)^{\pi}}$. Now, we could re-index with $m=n+1$ to obtain a p-series with $p=\pi$. We can also directly use the integral test, examining

$$
\int_{1}^{\infty} \frac{2}{(n+1)^{\pi-1}}-\frac{1}{(n+1)^{\pi}} d x=\left[\frac{2(2-\pi)}{(n+1)^{\pi-2}}+\frac{\pi}{(n+1)^{\pi-1}}\right]_{1}^{\infty}=\frac{2(2-\pi)}{2^{\pi-2}}+\frac{\pi}{2^{\pi-1}}
$$

which is finite, so the series converges.
(d) We examine the series whose terms are the absolute values of the given series. This is $\sum_{n=2}^{\infty} \frac{1}{n^{2} \ln n}$. The denominator satisfies $n^{2} \ln n>n^{2}$ for $n>2$ (not for $n=2$, but that won't harm convergence), so the terms satisfy $\frac{1}{n^{2} \ln n}<\frac{1}{n^{2}}$, and the latter forms a convergent series. Thus, the given series is convergent.

Challenging

(a) $\sum_{n=1}^{\infty} \frac{\sum_{k=1}^{n-1} k^{-2}}{\sum_{k=n}^{\infty} k^{-2}}$
(b) $\sum_{n=2}^{\infty} \sum_{m=n}^{\infty}\left(\frac{1}{n}\right)^{m}$
(a) The numerator is always bounded below by 1 . The denominator consists of the tails of a convergent series, and so forms a sequence b_{n} converging to zero (from above). Thus, the sequence of terms is bounded below by b_{n}^{-1}, a sequence which diverges to infinity. Thus the series diverges to infinity.
(b) For any fixed n, we have $\sum_{m=n}^{\infty}\left(\frac{1}{n}\right)^{m}=\frac{n^{-n}}{1-\frac{1}{n}}=\frac{n^{1-n}}{n-1}$. Then we are left with $\sum_{n=2}^{\infty} \frac{n^{1-n}}{n-1}$. The terms are bounded above by $n^{1-n}<n 2^{-n}$. Applying the ratio test to this, we examine $\lim _{n \rightarrow \infty} \frac{(n+1) 2^{-n-1}}{n 2^{-n}}=\lim _{n \rightarrow \infty} \frac{n+1}{2 n}=\frac{1}{2}<1$. Thus, it converges.

