
Math 6B

Taylor Series
The Punch Line: Differentiable functions admit optimal polynomial approximations around specified points,

which are easily computed in terms of the derivatives. The Taylor series of the smooth function f (x) about the
point x0 is

∞∑
k=0

f (k)(x0)
k!

(x − x0)k .

If x0 = 0, this is called a Maclaurin series, and the partial sums are called the Taylor (or Maclaurin) polynomials of
the appropriate order.

Computational Compute the Taylor polynomials of the specified orders about the appropriate points of
the following functions:

(a) Order 2; f (x) = e−2x about x0 = ln2

(b) Order 4; f (x) = 2sin(2x) about x0 = π

(c) Order 3; f (x) = sin(x2) about x0 = 0

(d) Order 2; f (x) = esinx about x0 = 0

(e) Order 3; f (x) = (1 + x)n about x0 = 0

(f) Order 1; f (x) = |x| about any x0 , 0

(a) We have f ′(x) = −2e−2x and f ′′(x) = 4e−2x, so we have the Taylor polynomial p2(x) = 1
4−

1
2 (x−ln2)+ 1

2 (x−ln2)2.

(b) We have f ′(x) = 4cos(2x), f ′′(x) = −8sin(2x), f ′′′(x) = −16cos(2x), and f (4)(x) = 32sin(2x). Thus, the Taylor
polynomial p4(x) = 4(x −π)− 8

3 (x −π)3.

(c) We have f ′(x) = 2xcos(x2), f ′′(x) = 2cos(x2) − 4x2 sin(x2), and f ′′′(x) = −4x sin(x2) − 8x sin(x2) − 8x3 cos(x2).
Then p3(x) = x2.

(d) We have f ′(x) = cosxesinx and f ′′(x) = −sinxesinx + cos2 xesinx, so p2(x) = 1 + x + 1
2x

2. It’s worth noting that
this is indistinguishable from ex at this point; the functions only begin to differ at the third order.

(e) We have f ′(x) = n(1 + x)n−1, f ′′(x) = n(n − 1)(1 + x)n−2, and f ′′′(x) = n(n − 1)(n − 2)(1 + x)n−3 (with the under-
standing that the kth derivative is zero if k > n). Then p3(x) = 1 +nx+ 1

2n(n− 1)x2 + 1
6n(n− 1)(n− 2)x3.

(f) We have f ′(x) = 1 for x > 0 and f ′(x) = −1 for x < 0 (f is not differentiable at zero). Thus, if x0 < 0, we have
p1(x) = −x0 − (x − x0), while if x0 > 0, we have p1(x) = x0 + (x − x0). While we usually write Taylor series in
terms of powers of (x − x0), it is worth mentioning that in the former case, we have p1(x) = −x, while in the
latter p1(x) = x; that is, the Taylor series only “knows about” the branch of the absolute value function it is
on, not about the turn.
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Theoretical

(a) Suppose

f (x) =

e−x
−2
, x , 0

0, x = 0.

What is the Maclaurin series for f ?

[This is quite difficult, but it is worth investi-
gating the first few Maclaurin polynomials even
without a general result.]

(b) If p(x) is a polynomial, show that the Taylor co-
efficients of p about x0 are polynomials in x0.
Show this explicitly for p(x) = x3 − x.

(c) Suppose f ′(x) = xf (x) and f (0) = 1. Solve this
differential equation by considering a Maclau-
rin series for f and solving for the coefficients,
then showing this converges for all x.

(a) We’ll show that f (k) = Pk(x)
x3k f (x) where Pk is a polynomial of degree 2(k − 1) by using a technique called

mathematical induction (if this is unfamiliar, this argument may seem very strange, but it is valid). The first
derivative is f ′(x) = 2

x3 f (x), so the claim is true for k = 1. Suppose f (k−1)(x) = Pk−1(x)
x3k−3 f (x) for some polynomial

Pk−1 of degree 2(k − 2). Then

f (k)(x) =
(
P ′k−1(x)

x3k−3
− (3k − 3)

Pk−1(x)
x3k−2

+
2Pk−1(x)
x3k

)
f (x) =

x3P ′k−1(x)− (3k − 3)x2Pk−1(x) + 2Pk−1(x)

x3k
f (x),

and we can see that the numerator has gone up in degree by two, so the claim is true of k as well. Since e−x
−2

tends to zero faster than any polynomial (this requires some checking, but is true), the derivative f (k)(0) is
then 0 for all k. Thus, the Maclaurin series for f is the zero function.

(b) The derivative of a polynomial is a polynomial of one lower degree, so all derivatives of p(x) are polynomials.
The Taylor coefficients are multiples of the derivatives, so this is enough to say that they are polynomials.
For p(x) = x3 − 1, we have Taylor coefficients x3

0 − x0, 3x2
0 − 1, 3x0, and 1.

(c) Suppose f (x) =
∞∑
k=0

ckx
k . Then f ′(x) =

∞∑
k=1

kckx
k−1 =

∞∑
k=0

(k + 1)ck+1x
k , while xf (x) =

∞∑
k=0

ckx
k+1 =

∞∑
k=1

ck−1x
k .

Thus, our differential equation requires

c1 +
∞∑
k=1

(k + 1)ck+1x
k =

∞∑
k=1

ck−1x
k .

Equating like terms, we see that c1 = 0 and (k + 1)ck+1 = ck−1 for k ≥ 1. Re-writing this, ck+2 = ck
k+2 for all k. In

particular, this means that for k odd, ck = 0, and if k = 2j, we have c2(j+1) = 1
(2j+2)!! (where n!! = n(n−2)(n−4) · · · ,

stepping down by powers of two) because c0 = f (0) = 1. Thus, f (x) =
∞∑
j=0

1
(2j)!!x

2j .

Letting aj = x2j

(2j)!! , we consider
aj+1
aj

= x2jx2(2j)!!
(2j+2)(2j)!!x2j = x2

2j+2 . For any fixed x, as j →∞ this converges to zero, so

by the Ratio Test f (x) is defined for all x. In fact, f (x) = ex
2/2, as simple separation of variables can show, but

this technique can solve differential equations which are not tractable otherwise.
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