Power Series

The Punch Line: We can manipulate convergent power series to learn about the functions they represent, and vice versa.

If $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on the interval $(-r, r)$, then $f^{\prime}(x)=\sum_{k=0}^{\infty} \frac{d}{d x}\left[c_{k} x^{k}\right]$ and $\int f d x=C+\sum_{k=0}^{\infty} \int c_{k} x^{k} d x$, and algebraic operations between power series are valid on (at least) the intersection of their radii of convergence.

Computational

(a) What is the power series for $\sin \left(\pi x^{2}\right)$? What is its radius of convergence?
(b) What is the function represented by

$$
\sum_{k=0}^{\infty}(k+1)(k+2) x^{k} ?
$$

What is an interval on which this is valid?
(c) What is a Taylor series for $\frac{1}{1-x}$ about the point $x_{0}=5$? What is the radius of convergence here?
(a) We know that $\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}$, so

$$
\sin \left(\pi x^{2}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\pi x^{2}\right)^{2 k+1}}{(2 k+1)!}=\sum_{k=0}^{\infty} \frac{(-1)^{k} \pi^{2 k+1} x^{4 k+2}}{(2 k+1)!}
$$

Both $\sin x$ and πx^{2} have infinite radii of convergence, so so too does $\sin \left(\pi x^{2}\right)$.
(b) Reindexing so $j=k-2$, we have $\sum_{j=2}^{\infty} j(j-1) x^{j-2}$. We can see that the second antiderivative of this (termwise) is $C_{0}+C_{1} x+\sum_{j=2}^{\infty} x^{j}=C_{0}+C_{1} x+\frac{1}{1-x}$, so we have the second derivative $\frac{d^{2}}{d x^{2}}\left[\frac{1}{1-x}\right]=\frac{d}{d x}\left[\frac{1}{(1-x)^{2}}\right]=\frac{2}{(1-x)^{3}}$. As the series for $\frac{1}{1-x}$ is valid when $|x|<1$, so too is this series.
(c) A series for x about $x_{0}=2$ is a series for $y=x-5$ about $y_{0}=0$; so, we make the substitution $x=y+5$ to obtain the function $\frac{1}{1-y-5}=\frac{-1 / 4}{1-\left(\frac{-y}{4}\right)}$. For $|-y|=|y|<4$, this has the series representation $-\frac{1}{4} \sum_{k=0}^{\infty}\left(\frac{-y}{4}\right)^{k}$, so for $|x-5|<4$ we have the Taylor series $\frac{1}{1-x}=-\frac{1}{4} \sum_{k=0}^{\infty}\left(\frac{5-x}{4}\right)^{k}=\sum_{k=0}^{\infty}\left(\frac{-1}{4}\right)^{k+1}(x-5)^{k}$.
(d) We see that for all x, we have $\left|\frac{x^{k}}{(k!)^{2}}\right| \leq\left|\frac{x^{k}}{k!}\right|$, which are the terms of the power series for $e^{|x|}$. Thus, the given series converges everywhere that function does, and it converges everywhere. Thus, we have an infinite radius of convergence. The derivative has the power series $\sum_{k=1}^{\infty} \frac{x^{k-1}}{k!(k-1)!}$ (note that the summation is from 1 rather than zero: the derivative of the constant term is zero, rather than proportional to x^{-1}).

Theoretical

(a) Show that the power series $\sum_{k=0}^{\infty} c_{k} x^{k}$ satisfying $c_{k+2}=\frac{1}{k+2} c_{k}$ all converge, and form a twodimensional vector space.
(b) Show that $\sum_{k=0}^{\infty} x^{-k}$ converges for $|x|>M$ for some M (find it), and to which function.
(a) We can see that for $k=2 j$, we have $c_{k}=\frac{1}{(2 j)!!} c_{0}=\frac{1}{(2 j)(2 j-2) \cdots(2)} c_{0}=\frac{2^{j}}{j!} c_{0}$. Similarly, for $k=2 j+1$, we have $c_{k}=\frac{1}{(2 j+1)!!} c_{0}=\frac{1}{(2 j+1)(2 j-1) \cdots(3)(1)} c_{1}$. Thus, the series of even and odd terms both converge (we have previously shown this; it is also fairly easy to compare both to convergent p-series), so the overall series converges. We are free to choose c_{0} and c_{1}, so it is clear that all linear combinations of such series are allowed, giving us the vector space structure.
(b) We set $y=\frac{1}{x}$; then the series is $\sum_{k=0}^{\infty} y^{k}=\frac{1}{1-y}$ for $|y|<1$. This happens when $|x|>1$, and the limit is then $\frac{1}{1-\frac{1}{x}}=\frac{x}{x-1}$. This is an example of a "Taylor Series at infinity", which is sometimes a helpful concept.

