Power Series

The Punch Line: We can manipulate convergent power series to learn about the functions they represent, and vice versa.

If $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on the interval $(-r, r)$, then $f^{\prime}(x)=\sum_{k=0}^{\infty} \frac{d}{d x}\left[c_{k} x^{k}\right]$ and $\int f d x=C+\sum_{k=0}^{\infty} \int c_{k} x^{k} d x$, and algebraic operations between power series are valid on (at least) the intersection of their radii of convergence.

Computational

(a) What is the power series for $\sin \left(\pi x^{2}\right)$? What is its radius of convergence?
(b) What is the function represented by

$$
\sum_{k=0}^{\infty}(k+1)(k+2) x^{k} ?
$$

What is an interval on which this is valid?
(c) What is a Taylor series for $\frac{1}{1-x}$ about the point $x_{0}=5$? What is the radius of convergence here?
(d) Let $f(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{(k!)^{2}}$. What is the radius of convergence of this series? Give a series representation of $f^{\prime}(x)$.

Theoretical

(a) Show that the power series $\sum_{k=0}^{\infty} c_{k} x^{k}$ satisfying $c_{k+2}=\frac{1}{k+2} c_{k}$ all converge, and form a twodimensional vector space.
(b) Show that $\sum_{k=0}^{\infty} x^{-k}$ converges for $|x|>M$ for some M (find it), and to which function.

