Fourier Series

The Punch Line: For periodic functions, we can expand in terms of trigonometric functions with the same period.

If $f(x)$ is periodic in the sense that $f(x+2 L)=f(x)$, then we can examine $f(x)$ on the interval $[-L, L]$ to obtain an expansion in terms of sine and cosine functions:

$$
f(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{k \pi}{L} x\right)+b_{k} \sin \left(\frac{k \pi}{L} x\right)
$$

which is valid wherever f is sufficiently smooth. In particular, if f has left and right derivatives at all points in $[-L, L]$, the Fourier series above converges at all x at which f is continuous. If f is an even function, only the a_{k} are nonzero, while if it is odd, only the b_{k} are nonzero.

Computational Compute Fourier series for the following functions, on the appropriate intervals.

(a)

$$
f(x)=x \text { on }[-\pi, \pi]
$$

(b)

$$
f(x)=x \text { on }[0,1]
$$

(this is the "fractional part" of x)
(c)

$$
f(x)= \begin{cases}1+x, & -1 \leq x \leq 0 \\ 1-x, & 0 \leq x \leq 1\end{cases}
$$

(this is a "triangular wave")
(d) The odd extension of

$$
f(x)=x^{2} \text { on }[0,1]
$$

(a) We see that this is an odd function, so we only need the sine series. We compute

$$
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin (k x) d x=\frac{1}{\pi}\left[-\frac{1}{k} x \cos (k x)\right]_{-\pi}^{\pi}+\frac{1}{k \pi} \int_{-\pi}^{\pi} \cos (k x) d x=\frac{2}{k}(-1)^{k+1} .
$$

Thus, the Fourier series for f is

$$
\sum_{k=1}^{\infty}(-1)^{k+1} \frac{2}{k} \sin (k x)
$$

This converges for $x \neq n \pi, n \in \mathbb{Z}$.
(b) Here, we're periodic about $\frac{1}{2}$. We could compute on the interval $[-1 / 2,1 / 2]$, but it'll actually be easier to reparametrize and use the above result. Let $y=2 \pi x-\pi$; we examine the function $x=\frac{y+\pi}{2 \pi}$ on $y \in[-\pi, \pi]$. By the above considerations, we have the Fourier series

$$
\frac{1}{2}+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \pi} \sin (k y)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \pi} \sin (2 \pi k x-k \pi)=\frac{1}{2}-\sum_{k=1}^{\infty} \frac{1}{k \pi} \sin (2 \pi k x)
$$

where we have used the fact that shifting sine by π negates it.
(c) This is an even function, so we only need the cosine series. The average value is $a_{0}=\frac{1}{2}$ (consider the area of
the triangle). We compute for $k>0$

$$
\begin{aligned}
a_{k} & =\int_{-1}^{0}(1+x) \cos (k \pi x) d x+\int_{0}^{1}(1-x) \cos (k \pi x), d x \\
& =\left[\frac{1}{k \pi} x \sin (k \pi x)\right]_{-1}^{0}-\left[\frac{1}{k \pi} x \sin (k \pi x)\right]_{0}^{1}+\int_{-1}^{0} \frac{1}{k \pi} \sin (k \pi x) d x-\int_{0}^{1} \frac{1}{k \pi} \sin (k \pi x) d x+\int_{-1}^{1} \cos (k \pi x) d x \\
& =0-0+\frac{1}{k^{2} \pi^{2}}[-\cos (k \pi x)]_{-1}^{0}-\frac{1}{k^{2} \pi^{2}}[-\cos (k \pi x)]_{0}^{1}+0 \\
& =\frac{2(1-\cos (k \pi))}{k^{2} \pi^{2}}= \begin{cases}\frac{4}{k^{2} \pi^{2}}, & k=2 j+1, \\
0, & k=2 j\end{cases}
\end{aligned}
$$

Thus, our Fourier series is

$$
\frac{1}{2}+\sum_{j=0}^{\infty} \frac{4}{(2 j+1)^{2} \pi^{2}} \cos ((2 j+1) \pi x)
$$

(d) To take the odd extension, we consider the sine series. We compute

$$
\begin{aligned}
b_{k} & =2 \int_{0}^{1} x^{2} \sin (k \pi x) d x \\
& =\left[\frac{-2 x^{2}}{k \pi} \cos (k \pi x)\right]_{0}^{1}+4 \int_{0}^{1} \frac{x}{k \pi} \cos (k \pi x) d x \\
& =\frac{(-1)^{k+1} 2}{k \pi}+4\left[\frac{x}{k^{2} \pi^{2}} \sin (k \pi x)\right]_{0}^{1}-4 \int_{0}^{1} \frac{1}{k^{2} \pi^{2}} \sin (k \pi x) d x \\
& =\frac{(-1)^{k+1} 2}{k \pi}+4\left[\frac{1}{k^{3} \pi^{3}} \cos (k \pi x)\right]_{0}^{1} \\
& =\frac{(-1)^{k+1} 2 k^{2} \pi^{2}+4(-1)^{k}-4}{k^{3} \pi^{3}}=\frac{2(-1)^{k}\left(2-k^{2} \pi^{2}\right)-4}{k^{3} \pi^{3}} .
\end{aligned}
$$

So, our Fourier series is

$$
\sum_{k=1}^{\infty} \frac{2(-1)^{k}\left(2-\pi^{2} k^{2}\right)-4}{\pi^{3} k^{3}} \sin (\pi k x)
$$

Theoretical

(a) What happens to the Fourier series for the function $f(x)=x$ on $[-L, L]$ as L converges to zero? Does this make sense?
(b) What conditions on $f(x)$, if any, are necessary for $F(x)=\int_{-\pi}^{x} f(x) d x$ to be periodic with period 2π ?
(c) If $f(x)$ has a Fourier series on $[-\pi, \pi]$ with even coefficients a_{k} and odd coefficients b_{k}, what is the Fourier series for $f^{\prime}(x)$? (Prove this without differentiating termwise.)
(a) We only need the sine series, and setting $x=\frac{L}{\pi} y$ we compute

$$
b_{k}=\frac{1}{L} \int_{-L}^{L} x \sin \left(\frac{k \pi}{L} x\right) d x=\frac{L}{\pi^{2}} \int_{-\pi}^{\pi} y \sin (k y) d y=\frac{2 L}{k \pi}(-1)^{k+1}
$$

As L tends to zero, the sine terms are bounded, and the coefficients decreasing to zero. Thus, the Fourier series tends to the zero series. This makes sense, as on $[-L, L],|f(x)| \leq L$: with a small period, the function doesn't grow large, and in fact tends pointwise to zero.
(b) We need f to be integrable (of course) and periodic, and then there is simply the requirement that $F(\pi)=F(-\pi)$, which requires that $\int_{-\pi}^{\pi} f(x) d x=0$.
(c) We see that $f^{\prime}(x)$ must have mean zero (else its antiderivative would accumulate value between periods). We compute

$$
\begin{aligned}
\frac{1}{\pi} \int_{-\pi}^{\pi} f^{\prime}(x) \cos (k x) d x & =\frac{1}{\pi}[k f(x) \sin (k x)]_{-\pi}^{\pi}-\frac{1}{\pi} \int_{-\pi}^{\pi} k f(x) \sin (k x) d x \\
& =-k b_{k} \\
\frac{1}{\pi} \int_{-\pi}^{\pi} f^{\prime}(x) \sin (k x) d x & =\frac{1}{\pi}[-k f(x) \cos (k x)]_{-\pi}^{\pi}+\frac{1}{\pi} \int_{\pi}^{\pi} k f(x) \cos (k x) d x \\
& =k a_{k}
\end{aligned}
$$

Thus, the Fourier series for $f^{\prime}(x)$ is

$$
\sum_{k=1}^{\infty} k a_{k} \sin (k x)-k b_{k} \cos (k x)
$$

