Fourier Series

The Punch Line: For periodic functions, we can expand in terms of trigonometric functions with the same period.

If f(x) is periodic in the sense that f(x + 2L) = f(x), then we can examine f(x) on the interval [-L, L] to obtain an expansion in terms of sine and cosine functions:

$$f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos\left(\frac{k\pi}{L}x\right) + b_k \sin\left(\frac{k\pi}{L}x\right),$$

which is valid wherever f is sufficiently smooth. In particular, if f has left and right derivatives at all points in [-L, L], the *Fourier series* above converges at all x at which f is continuous. If f is an even function, only the a_k are nonzero, while if it is odd, only the b_k are nonzero.

Computational	Compute Fourier series for the following functions, on the appropriate intervals.	
(a)		(c)
	$f(x) = x \text{ on } [-\pi, \pi]$	$f(x) = \begin{cases} 1+x, & -1 \le x \le 0, \\ 1-x, & 0 \le x \le 1 \end{cases}$
(b)		(this is a "triangular wave")
	f(x) = x on $[0, 1]$	(d) The odd extension of
(this is the "fractional part" of x)		$f(x) = x^2$ on [0,1]

Theoretical

- (a) What happens to the Fourier series for the function f(x) = x on [-L, L] as *L* converges to zero? Does this make sense?
- (b) What conditions on f(x), if any, are necessary for $F(x) = \int_{-\pi}^{x} f(x) dx$ to be periodic with period 2π ?
- (c) If f(x) has a Fourier series on $[-\pi, \pi]$ with even coefficients a_k and odd coefficients b_k , what is the Fourier series for f'(x)? (Prove this without differentiating termwise.)