Fourier Series

The Punch Line: For periodic functions, we can expand in terms of trigonometric functions with the same period.

If $f(x)$ is periodic in the sense that $f(x+2 L)=f(x)$, then we can examine $f(x)$ on the interval $[-L, L]$ to obtain an expansion in terms of sine and cosine functions:

$$
f(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{k \pi}{L} x\right)+b_{k} \sin \left(\frac{k \pi}{L} x\right)
$$

which is valid wherever f is sufficiently smooth. In particular, if f has left and right derivatives at all points in $[-L, L]$, the Fourier series above converges at all x at which f is continuous. If f is an even function, only the a_{k} are nonzero, while if it is odd, only the b_{k} are nonzero.

Computational Compute Fourier series for the following functions, on the appropriate intervals.
(a)

$$
f(x)=x \text { on }[-\pi, \pi]
$$

(b)

$$
f(x)=x \text { on }[0,1]
$$

(this is the "fractional part" of x)
(c)

$$
f(x)= \begin{cases}1+x, & -1 \leq x \leq 0 \\ 1-x, & 0 \leq x \leq 1\end{cases}
$$

(this is a "triangular wave")
(d) The odd extension of

$$
f(x)=x^{2} \text { on }[0,1]
$$

Theoretical

(a) What happens to the Fourier series for the function $f(x)=x$ on $[-L, L]$ as L converges to zero? Does this make sense?
(b) What conditions on $f(x)$, if any, are necessary for $F(x)=\int_{-\pi}^{x} f(x) d x$ to be periodic with period 2π ?
(c) If $f(x)$ has a Fourier series on $[-\pi, \pi]$ with even coefficients a_{k} and odd coefficients b_{k}, what is the Fourier series for $f^{\prime}(x)$? (Prove this without differentiating termwise.)

